Math 185 Problem Set 1, Spring 2020 (due on Monday, Feb. 3)

Problem 1. (30: 10,5,10,5 points)
(a) Let $z_{1}=1+i, z_{2}=1+3 i$. Compute $z_{1} z_{2}, z_{1} / z_{2}, z_{1}^{z_{2}}$ (use the principal branch of \log).
(Give $z_{1} z_{2}$ and z_{1} / z_{2} in standard rectangular form and $z_{1}^{z_{2}}$ in polar form.)
(b) Compute all the values of i^{i}. Say which one comes from the principal branch of log. (Give all your answers in standard form.)
Is it surprising that i^{i} is real?
(c) Let $z=1+i \sqrt{3}$.
(i) Compute z^{8}. (Give your answer in standard form.)
(ii) Find all the 4th roots of z.
(d) Copy the following figure and add all the 5th roots of z to it. (The figure indicates that $|z|=2.5$. The circle on the outside is a handy protractor marked off in 10° increments.)

Problem 2. (15: 5,5,5 points)
(a) Show $\overline{\mathrm{e}^{z}}=\mathrm{e}^{\bar{z}}$.
(b) Show that if $|z|=1$ then $z^{-1}=\bar{z}$.
(c) Let $\frac{x+i y}{x-i y}=a+i b$. Show that $a^{2}+b^{2}=1$.

Hint: This takes one line if you look at it right. Think polar form.
Problem 3. (15: 5,10 points)
(a) Sketch the curve $z=\mathrm{e}^{t(1+i)}$, where $-\infty<t<\infty$.
(b) Consider the mapping $z \rightarrow w=z^{2}$. Draw the image in the w-plane of the triangular region in the z-plane with vertices 0,1 and i.

Problem 4. (10 points)
Let $z_{k}=\mathrm{e}^{2 \pi i / n}$. Show

$$
1+z_{k}+z_{k}^{2}+z_{k}^{3}+\ldots+z_{k}^{n-1}=0
$$

Hint: The polynomial $z^{n}-1$ has one easy root. Use that to factor it into a linear term and a degree $n-1$ term.

Problem 5. (20: 10,10 points) (Orthogonal lines stay orthogonal!)
(a) Consider the mapping $w=\mathrm{e}^{z}$.
(i) Sketch in the w-plane the image under this mapping of vertical lines in the z-plane.
(ii) On the same graph sketch the image of horizontal lines.

Show enough lines to give a good idea of what's happening.
(iii) Show (argue either geometrically or analytically) that the images of a vertical and a horizontal lines meet at right angles.
(b) Repeat part (a) for the mapping $w=z^{2}$.

Extra problems not for points

Problem 6. (0 points) Find all points where

$$
\operatorname{Arg}\left(\frac{z-1}{z+2}\right)= \pm \frac{\pi}{2}
$$

Hint: let $w=(z-1) / z+2)$. What does the condition say about the relation between w and \bar{w} ? Be careful to note points where $\operatorname{Arg}(w)$ is not defined.

