Math 185 Problem Set 1, Spring 2020 (due on Monday, Feb. 3)

Problem 1. (30: 10,5,10,5 points)

- (a) Let $z_1 = 1 + i$, $z_2 = 1 + 3i$. Compute $z_1 z_2$, z_1 / z_2 , $z_1^{z_2}$ (use the principal branch of log). (Give $z_1 z_2$ and z_1 / z_2 in standard rectangular form and $z_1^{z_2}$ in polar form.)
- (b) Compute all the values of i^i . Say which one comes from the principal branch of log. (Give all your answers in standard form.)

Is it surprising that i^i is real?

- (c) Let $z = 1 + i\sqrt{3}$.
- (i) Compute z^8 . (Give your answer in standard form.)
- (ii) Find all the 4th roots of z.
- (d) Copy the following figure and add all the 5th roots of z to it. (The figure indicates that |z| = 2.5. The circle on the outside is a handy protractor marked off in 10° increments.)

Problem 2. (15: 5,5,5 points)

- (a) Show $\overline{e^z} = e^{\overline{z}}$.
- **(b)** Show that if |z| = 1 then $z^{-1} = \overline{z}$.

(c) Let $\frac{x+iy}{x-iy} = a + ib$. Show that $a^2 + b^2 = 1$.

Hint: This takes one line if you look at it right. Think polar form.

Problem 3. (15: 5,10 points)

- (a) Sketch the curve $z = e^{t(1+i)}$, where $-\infty < t < \infty$.
- (b) Consider the mapping $z \to w = z^2$. Draw the image in the w-plane of the triangular region in the z-plane with vertices 0, 1 and i.

Problem 4. (10 points)

Let $z_k = e^{2\pi i/n}$. Show

$$1 + z_k + z_k^2 + z_k^3 + \ldots + z_k^{n-1} = 0$$

Hint: The polynomial $z^n - 1$ has one easy root. Use that to factor it into a linear term and a degree n - 1 term.

Problem 5. (20: 10,10 points) (Orthogonal lines stay orthogonal!)

- (a) Consider the mapping $w = e^z$.
- (i) Sketch in the w-plane the image under this mapping of vertical lines in the z-plane.
- (ii) On the same graph sketch the image of horizontal lines.

Show enough lines to give a good idea of what's happening.

- (iii) Show (argue either geometrically or analytically) that the images of a vertical and a horizontal lines meet at right angles.
- (b) Repeat part (a) for the mapping $w = z^2$.

Extra problems not for points

Problem 6. (0 points) Find all points where

$$\operatorname{Arg}\left(\frac{z-1}{z+2}\right) = \pm \frac{\pi}{2}$$

Hint: let w = (z - 1)/z + 2). What does the condition say about the relation between w and \overline{w} ? Be careful to note points where Arg(w) is not defined.