Example 2. An integral that will play an important role in Chapter 6 (Gamma function) is

$$
\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x=\frac{\pi}{\sin \pi a}, \quad 0<a<1
$$

To prove this formula, let $f(z)=e^{a z} /\left(1+e^{z}\right)$, and consider the contour consisting of a rectangle in the upper half-plane with a side lying

Figure 2. The contour γ_{R} in Example 2
on the real axis, and a parallel side on the line $\operatorname{Im}(z)=2 \pi$, as shown in Figure 2.

The only point in the rectangle γ_{R} where the denominator of f vanishes is $z=\pi i$. To compute the residue of f at that point, we argue as follows: First, note

$$
(z-\pi i) f(z)=e^{a z} \frac{z-\pi i}{1+e^{z}}=e^{a z} \frac{z-\pi i}{e^{z}-e^{\pi i}}
$$

We recognize on the right the inverse of a difference quotient, and in fact

$$
\lim _{z \rightarrow \pi i} \frac{e^{z}-e^{\pi i}}{z-\pi i}=e^{\pi i}=-1
$$

since e^{z} is its own derivative. Therefore, the function f has a simple pole at πi with residue

$$
\operatorname{res}_{\pi i} f=-e^{a \pi i}
$$

As a consequence, the residue formula says that

$$
\begin{equation*}
\int_{\gamma_{R}} f=-2 \pi i e^{a \pi i} \tag{3}
\end{equation*}
$$

We now investigate the integrals of f over each side of the rectangle. Let I_{R} denote

$$
\int_{-R}^{R} f(x) d x
$$

and I the integral we wish to compute, so that $I_{R} \rightarrow I$ as $R \rightarrow \infty$. Then, it is clear that the integral of f over the top side of the rectangle (with
the orientation from right to left) is

$$
-e^{2 \pi i a} I_{R}
$$

Finally, if $A_{R}=\{R+i t: 0 \leq t \leq 2 \pi\}$ denotes the vertical side on the right, then

$$
\left|\int_{A_{R}} f\right| \leq \int_{0}^{2 \pi}\left|\frac{e^{a(R+i t)}}{1+e^{R+i t}}\right| d t \leq C e^{(a-1) R}
$$

and since $a<1$, this integral tends to 0 as $R \rightarrow \infty$. Similarly, the integral over the vertical segment on the left goes to 0 , since it can be bounded by $C e^{-a R}$ and $a>0$. Therefore, in the limit as R tends to infinity, the identity (3) yields

$$
I-e^{2 \pi i a} I=-2 \pi i e^{a \pi i}
$$

from which we deduce

$$
\begin{aligned}
I & =-2 \pi i \frac{e^{a \pi i}}{1-e^{2 \pi i a}} \\
& =\frac{2 \pi i}{e^{\pi i a}-e^{-\pi i a}} \\
& =\frac{\pi}{\sin \pi a}
\end{aligned}
$$

and the computation is complete.

Example 3. Now we calculate another Fourier transform, namely

Theorem 1.4 For all $s \in \mathbb{C}$,

$$
\begin{equation*}
\Gamma(s) \Gamma(1-s)=\frac{\pi}{\sin \pi s} \tag{4}
\end{equation*}
$$

Observe that $\Gamma(1-s)$ has simple poles at the positive integers $s=$ $1,2,3, \ldots$, so that $\Gamma(s) \Gamma(1-s)$ is a meromorphic function on \mathbb{C} with simple poles at all the integers, a property also shared by $\pi / \sin \pi s$.

To prove the identity, it suffices to do so for $0<s<1$ since it then holds on all of \mathbb{C} by analytic continuation.

Lemma 1.5 For $0<a<1, \int_{0}^{\infty} \frac{v^{a-1}}{1+v} d v=\frac{\pi}{\sin \pi a}$.
Proof. We observe first that

$$
\int_{0}^{\infty} \frac{v^{a-1}}{1+v} d v=\int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x
$$

which follows by making the change of variables $v=e^{x}$. However, using contour integration, we saw in Example 2 of Section 2.1 in Chapter 3, that the second integral equals $\pi / \sin \pi a$, as desired.

To establish the theorem, we first note that for $0<s<1$ we may write

$$
\Gamma(1-s)=\int_{0}^{\infty} e^{-u} u^{-s} d u=t \int_{0}^{\infty} e^{-v t}(v t)^{-s} d v
$$

where for $t>0$ we made the change of variables $v t=u$. This trick then gives

$$
\begin{aligned}
\Gamma(1-s) \Gamma(s) & =\int_{0}^{\infty} e^{-t} t^{s-1} \Gamma(1-s) d t \\
& =\int_{0}^{\infty} e^{-t} t^{s-1}\left(t \int_{0}^{\infty} e^{-v t}(v t)^{-s} d v\right) d t \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-t[1+v]} v^{-s} d v d t \\
& =\int_{0}^{\infty} \frac{v^{-s}}{1+v} d v \\
& =\frac{\pi}{\sin \pi(1-s)} \\
& =\frac{\pi}{\sin \pi s}
\end{aligned}
$$

and the theorem is proved.

