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EXAMPLE 2. An integral that will play an important role in Chapter
6 (Gamma function) is

o) axr
/ © dx = il O<a<l.

T g )
o lt+e sinma

To prove this formula, let f(z) =€ /(1 + e?), and consider the con-
tour consisting of a rectangle in the upper half-plane with a side lying
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Figure 2. The contour vg in Example 2

on the real axis, and a parallel side on the line Im(z) = 27, as shown in
Figure 2.

The only point in the rectangle yg where the denominator of f vanishes
is z = mi. To compute the residue of f at that point, we argue as follows:
First, note

wz X — T z —mi

(z—mi)f(z)=e =e%

1_|_ez ez_eﬂ'i'

We recognize on the right the inverse of a difference quotient, and in fact

z T
. e —e ;
Iim ——— =" = -1
z—Tt 2 — Tl

since e” is its own derivative. Therefore, the function f has a simple pole
at mi with residue

res ;[ = —e®".

As a consequence, the residue formula says that

(3) / = -z

We now investigate the integrals of f over each side of the rectangle. Let

Ir denote
R
| t@
-R

and [ the integral we wish to compute, so that I — I as R — co. Then,
it is clear that the integral of f over the top side of the rectangle (with
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the orientation from right to left) is
_627riaIR_

Finally, if Ag = {R+it: 0 <t < 27} denotes the vertical side on the

27
AR 0

and since a < 1, this integral tends to 0 as R — oo. Similarly, the integral
over the vertical segment on the left goes to 0, since it can be bounded
by Ce~% and a > 0. Therefore, in the limit as R tends to infinity, the
identity (3) yields

ea(R+it)

T o | di < OV,

I —e?mia] = —9mietm

from which we deduce

eamt
I=—2mi—mm
2mi
emia _ p—mia
™

sinma’

and the computation is complete.

ExAMPLE 3. Now we calculate another Fourier transform, namely
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Theorem 1.4 For all s € C,

™

4) I(s)I'(1—s) = P
Observe that T'(1 — s) has simple poles at the positive integers s =
1,2,3,..., so that T'(s)T'(1 — s) is a meromorphic function on C with
simple poles at all the integers, a property also shared by 7/ sinws.
To prove the identity, it suffices to do so for 0 < s < 1 since it then
holds on all of C by analytic continuation.

a—1

o
Lemma 1.5 For0<a<1, / dv = — .
o 1+wv sinma

™

Proof. We observe first that

oova71 oo eaz
/ dv:/ xdaz,
o 14w _ L te

which follows by making the change of variables v = e*. However, using
contour integration, we saw in Example 2 of Section 2.1 in Chapter 3,
that the second integral equals 7/ sin7a, as desired.

To establish the theorem, we first note that for 0 < s < 1 we may write

I(1l-s)= / e tu du = t/ e H(vt)* dv,
0 0

where for t > 0 we made the change of variables vt = u. This trick then
gives

I'(1—s)'(s) = /OOO e TIN(1 — s) dt
/OOO e~ ts 1 (t /OOO e_“t(vt)_sdv> dt
b
/ 1U+

o0
/ e+l =5 dudt

0
sinm(1—s)
™

[
dv
v

sinws’

and the theorem is proved.
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