Math 113 Homework 9

David Corwin

April 11, 2019

There are four problems due Wednesday, April 17.

1. Give examples of subrings R of \mathbb{C} satisfying the following containments and non-containments. If it's not possible, explain why not:
(a) $\mathbb{Q} \subset R, R \subset \mathbb{R}(\mathbb{Q} \neq R \neq \mathbb{R})$.
(b) $\mathbb{Z} \subset R, \mathbb{Q} \not \subset R(R \neq \mathbb{Z}$.
(c) $\mathbb{R} \subseteq R, R \subseteq \mathbb{C}(\mathbb{R} \neq R \neq \mathbb{C})$.
2. Which of the following sets are ideals in the given ring?
(a) $\{p(x, y) \mid p(x, x)=0\} \subseteq \mathbb{C}[x, y]$
(b) $\{p(x, y) \mid p(x, y)=p(y, x)\} \subseteq \mathbb{C}[x, y]$
(c) $\{p(x) \mid p$ has no real roots $\} \subseteq \mathbb{C}[x]$
3. Let R be a commutative ring. Recall that there is a unique homomorphism from \mathbb{Z} to R. For two rings A and B, let $\operatorname{Hom}(A, B)$ denote the set of ring homomorphisms from A to B.
(a) Give an example of R for which $\operatorname{Hom}(R, \mathbb{Z})$ is empty.
(b) Give an example of R for which $\operatorname{Hom}(R, \mathbb{Z})$ is infinite.
(c) Prove that the set $\operatorname{Hom}(\mathbb{Z}[x], R)$ can be naturally put into bijection with the set R.
4. Let R be a commutative ring with unity.
(a) Let $X \subseteq R$ be an arbitrary subset. Prove that there exists an ideal $I \subseteq R$ containing X with the following property: if J is an ideal and $X \subseteq J$, then $I \subseteq J$. (We call I the ideal generated by X, and denote it $(X) \subseteq R$.)
(b) If $m, n \in \mathbb{Z}$, when is the ideal generated by $\{m, n\}$ equal to all of \mathbb{Z} ?
(c) Determine (X) when $X=\{x-1, x+1\}$ and $R=\mathbb{R}[x]$.
