Math 113 Homework 9

David Corwin

April 11, 2019

There are four problems due Wednesday, April 17.

- 1. Give examples of subrings R of \mathbb{C} satisfying the following containments and non-containments. If it's not possible, explain why not:
 - (a) $\mathbb{Q} \subset R, R \subset \mathbb{R} \ (\mathbb{Q} \neq R \neq \mathbb{R}).$
 - (b) $\mathbb{Z} \subset R$, $\mathbb{Q} \not\subset R$ $(R \neq \mathbb{Z}$.
 - (c) $\mathbb{R} \subseteq R, R \subseteq \mathbb{C} \ (\mathbb{R} \neq R \neq \mathbb{C}).$
- 2. Which of the following sets are ideals in the given ring?
 - (a) $\{p(x,y) \mid p(x,x) = 0\} \subseteq \mathbb{C}[x,y]$
 - (b) $\{p(x,y) \mid p(x,y) = p(y,x)\} \subseteq \mathbb{C}[x,y]$
 - (c) $\{p(x) \mid p \text{ has no real roots}\} \subseteq \mathbb{C}[x]$
- 3. Let R be a commutative ring. Recall that there is a unique homomorphism from \mathbb{Z} to R. For two rings A and B, let $\operatorname{Hom}(A, B)$ denote the set of ring homomorphisms from A to B.
 - (a) Give an example of R for which $\operatorname{Hom}(R, \mathbb{Z})$ is empty.
 - (b) Give an example of R for which $\operatorname{Hom}(R,\mathbb{Z})$ is infinite.
 - (c) Prove that the set $\operatorname{Hom}(\mathbb{Z}[x], R)$ can be naturally put into bijection with the set R.
- 4. Let R be a commutative ring with unity.
 - (a) Let $X \subseteq R$ be an arbitrary subset. Prove that there exists an ideal $I \subseteq R$ containing X with the following property: if J is an ideal and $X \subseteq J$, then $I \subseteq J$. (We call I the *ideal generated by* X, and denote it $(X) \subseteq R$.)
 - (b) If $m, n \in \mathbb{Z}$, when is the ideal generated by $\{m, n\}$ equal to all of \mathbb{Z} ?
 - (c) Determine (X) when $X = \{x 1, x + 1\}$ and $R = \mathbb{R}[x]$.