Math 113 Homework 10

David Corwin

April 18, 2019

There are six problems due Wednesday, April 24.

1. Is there an integral domain containing exactly 10 elements?
2. Let R be an integral domain of characteristic p. Consider the map $\phi: R \rightarrow$ R sending x to x^{p}.
(a) Show that ϕ is a ring homomorphism.
(b) Show that ϕ is an automorphism if R is finite.
(c) Find the image of ϕ when $R=\mathbb{Z} / p \mathbb{Z}[x]$.
3. Show that $\mathbb{Q}[\sqrt{2}, \sqrt{3}]=\mathbb{Q}[\sqrt{2}+\sqrt{3}]$. [Hint: show this by showing that if T is a subring of \mathbb{C} containing \mathbb{Q}, then T contains $\sqrt{2}$ and $\sqrt{3}$ iff it contains $\sqrt{2}+\sqrt{3}$.]
4. Show that the ring $\mathbb{Z}[\sqrt{2}]$ has infinitely many units.
5. Find all $x \in \mathbb{Z} / 16 \mathbb{Z}$ such that $x^{2}=1$.
6. Give examples of the following:
(a) A ring R where 1_{R} has infinite additive order, and R has zero divisors.
(b) An ideal $I \subseteq \mathbb{C}[X]$ for which there exists $f(X) \in \mathbb{C}[X]$ such that $f(X)^{5} \in I$, but $f(X) \notin I$.
