Math 113 Homework 4

David Corwin

October 4, 2019

There are five problems, due Thursday, October 3.

1. Consider the quaternion group $Q=\{1,-1, i,-i, j,-j, k,-k\}$ with the binary operation as follows:

	1	-1	i	j	k	-i	-j	-k
1	1	-1	i	j	k	-i	-j	-k
-1	-1	1	-i	-j	-k	i	j	k
i	i	-i	-1	k	-j	1	-k	j
j	j	-j	-k	-1	i	k	1	-i
k	k	-k	j	-i	-1	-j	i	1
-i	-i	i	1	-k	j	-1	k	-j
-j	-j	j	k	1	-i	-k	-1	i
-k	-k	k	-j	i	1	j	-i	-1

(a) For each element of Q, find its order.
(b) For each element of Q, find its inverse.

Remark. Seehttp://mathworld.wolfram.com/QuaternionGroup.html for more information about the Quaternion group.
2. Consider the quaternion group Q.
(a) Find all of the cyclic subgroups of Q [Hint: there are five of them.]
(b) Is there a non-cyclic subgroup?
3. Consider the group $G=$ Sym $_{6}$. Let $\sigma=(142)(36)$, and let $\tau=(5362)$, both elements of G.

If the answer is an element of G, you can express your answer either by saying where it sends each element of $\{1,2,3,4,5,6\}$ (which was covered in class on Tuesday Sept 24), or in disjoint cycle notation.
(a) What is $\sigma \tau$?
(b) What is $\tau \sigma$?
(c) What are the orders of τ and σ ?
(d) What are the inverses of τ and σ ?
4. Consider the group $G=S y m_{3}$.
(a) Show that $\{i d,(123),(132)\}$ is a subgroup of G.
(b) What well-known group is $\{i d,(123),(132)\}$ isomorphic to?
(c) The set $\{i d,(12)\}$ is a subgroup of G (you don't have to prove this). What are its left cosets?
5. Let $(G, *)$ and (H, \circ) be groups, and suppose that G is generated by the set $\left\{x_{1}, \cdots, x_{n}\right\}$. Let ϕ and ψ be two group homomorphisms from $(G, *)$ to (H, \circ). Show that if $\phi\left(x_{i}\right)=\psi\left(x_{i}\right)$ for $i=1, \cdots, n$, then ϕ and ψ are the same homomorphism (i.e., $\phi(g)=\psi(g)$ for all $g \in G$).

Remark. This proves the important fact that a homomorphism is completely deter-mined by what it does to a generating set. [CAUTION: it does not follow, as in the case of linear algebra, that we can define a homomorphism simply by specifying where to send the generators; one has to be careful about possiblerelations the generators may satisfy]

