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We present a simple algorithm for approximating the motion of a ‘thin flame front of 
arbitrary shape and variable connectivity, which is advected by a fluid and which moves with 
respect to the fluid in the direction of its own normal. As an application, we examine the 
wrinkling of a flame front by a periodic array of vortex structures. 

OUTLINE OF GOAL AND METHOD 

Consider a fluid occupying a domain D with boundary aD, in two- or three-dimen- 
sional space. The fluid in a subdomain D, CD is burned, the fluid in D, = D - D, is 
unburned, and the boundary SD, between D, and D, is transported by the velocity of 
the fluid and also moves with a velocity U in the direction of its own normal; D1 is 
expanding while D, is contracting. U is the flame speed, and may depend on such 
parameters as the temperature of the fluid, its chemical composition, or the distance 
from a solid wall. D, and Dz are not assumed to be connected or simply connected. 
The need to represent the motion of the interface between D, and D, arises in a number 
of combustion problems; for example, in a number of applications one can consider a 
flame front as a discontinuity which acts as a source of specific volume, and the 
induced velocity field can be computed if the location of the flame can be found 
accurately. 

By analogy with shock dynamics, one may attempt either to follow flames explicitly 
as hydrodynamic discontinuities, or one may hope to have a hydrodynamical cal- 
culation locate the flames by solving the appropriate equations without any explicit 
allowance for the presence of a flame. The former course runs into difficulty because 
normals are difficult to find in a manner which is both stable and accurate, and because 
programming can be overwhelmingly complex in situations where flames form 
pockets, reconnect, etc. The latter course runs into difficulty because flame velocity, 
unlike shock velocity, is not determined by the basic conservation laws (see, e.g., 
[6, 71) and its determination as an intrinsic part of a general program requires an 
accurate and expensive evaluation of chemical reaction and heat transfer rates. 

In the present paper we present an alternative to both of these courses, through the 
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use of a Huyghens principle. For the sake of simplicity, we consider a situation in 
which li is a constant throughout the fluid. (The case of variable U is not essentially 
different.) Let D, be the expanding region containing burned gas. Let ui , u2 ,..., u, be 
a collection of vectors, with magnitudes / ui 1 = U, i = I,..., II, and whose directions 
are equidistributed on the unit sphere (or the unit circle in the case of plane flow). 
Consider the regions D:‘rl D:‘),..., 0:“’ obtained from D, by rigid translations with 
translation vectors respectively urk, uzk,..., u,k, where k is a time step. The union of 
the D:“, uy=, B:“, (0:“’ = Or) approximates, for II large enough, the body obtained 
from D, by having the boundary of Dr move with velocity CJ in the direction of its 
normal during the time interval k. This construction is an implementation of the 
classical Huyghens principle: If one takes points on the boundary of D, , starts 
spherical flames expanding with velocity U from each one of the points, and then 
constructs the union of the volume D, and the volumes covered by these spherical 
flames, the resulting body is identical to U Dil’. 

The construction above requires an algorithm for performing rigid body trans- 
lations and can in fact be based on any such algorithm. In the applications we have 
carried out. we found it convenient to use a translation algorithm based on the simple 
line interface advection algorithm (Noh and Woodward [14]). We shall explain this 
algorithm in the next section. In the following section we shall use this algorithm to 
implement the Huyghens principle and demonstrate that the accuracy of the resulting 
propagation algorithm is higher than that of the underlying advection algorithm. In a 
final section, we shall apply a combined advection/propagation algorithm to the 
analysis of the effect of intermittency on the velocity of a wrinkled thin flame in a 
model flow. 

A SIMPLE LINE ADVECTION ALGORITHM 

Consider a grid with mesh length h superposed on a domain D. For simplicity, we 
assume D is two dimensional. The centers of the mesh cells are located at x = ih, 
y = jh, i, j integers (Fig. 1). A velocity field is given on the associated staggered grid 
(Harlow and Welch [ll]); the horizontal velocity Ui+l/z,j is given at the centers 
([i + $1 h,jh) of the vertical sides of the cells, and the vertical velocity ~+i/~ is given 
at the centers (i/z, [j t- &] h) of the horizontal sides. Each ceil in the grid may contain 
burned as well as unburned fluid, and the volume fractionhj of burned fluid is given in 
each cell; 0 <fij < 1. To clarify the discussion, we shall call burned fluid “black” 
and unburned fluid “white”. The task at hand is to transport the black fluid through D 
with the given velocity field u = (u, u). This can be done only if the interface between 
black and white volumes can be reconstructed from the given partial volumesfij . 

The ideas in the simple line interface algorithm (Noh and Woodward 1141) are as 
follows: An interface is drawn in each cell on the basis of an inspection of the partial 
volumes fii in the cell itself and in its immediate neighbors; the interface consists of 
horizontal and vertical lines and is made as simple as possible. The velocity at the 
interface is then produced from the given velocities by interpolation (in our program, 
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FIG. 1. Computational grid for advection. 

by linear interpolation). The black volume is transported in two fractional steps, one 
vertical and one horizontal; the geometry of the interfaces is adapted to the direction 
of the flow, and it is not required that the interface constructed for the horizontal half- 
step coincide with the interface constructed for the vertical half-step. 

Consider the horizontal half-step, and consider a cell centered at (ih,jh) with 
partial volume ~j . We distinguish the following cases: 

l. No interface. fij = 0 or fij = 1. This is the simplest and usually by far the most 
frequent case. The fluid in the cell moves as a whole, with the right side moving with 
velocity ui+1/2,j and the left side with velocity ui-l,B,j . With appropriate program- 
ming, usually nothing is actually computed in this case. 

IT. Vertical Interface. 0 <fij < l,f;:+,,j = 0 and either &,j+I = 0, fi,i-l = 0 or 
A,$+, > O,A,j-I > 0. It is reasonable to guess that the interface is vertical and located 
at x = (i - a) h $-f&h (Fig. 2a). The following three cases are identical, except for 
an interchange of the roles of right and left and/or the roles of black and white: 

a. 0 <hj < l,fipI,j = O,f+l,j > 0, witheitherf;:,j+, =&,j-l = 0 orfi,jL1 > 0, 
f;,j-1 > 0: 

b. 0 <fij < I,f,-,,i < l,h+l,j = 1, witheither&,j+, =J,f:,i-l = 1 orf;:,j+l < I, 
Aj-I < 1; 

c. 0 <f$ < l,fipl,j = I,fi+,,j < 1, with eitherfi,j+l z5,j-l = 1 orfi,j+I < 1, 
A-1 < 1. 
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FIG. 2. Cases considered in advection algorithm. 

III. Horizontal Interface. 0 <fii < 1,O ~fi+~,~ < 1, 0 ~ft-~,~ < I. The cell is 
assumed to contain a horizontal interface located at y = (j - 4) h + j&h (Fig. 2b). 

IV. Corner. 0 <j& < I,0 <A-1 < l,fi+l,j = O,fi,j+1 = O,&,j-l > 0 (Fig. 2~). 
The black fluid is assumed to lie in a rectangle in the lower left corner of the cell; the 
horizontal side of the rectangle has length a, and the vertical side has length b. We must 
have 

ab = fi,jh,. 
We also require 

whenever this equation leads to b < h, a .< h. If this equation leads to b > h, we 
set b = h and a = fijh; if this equation leads to a > h we set a = h and b = &h. 
There are seven related cases, three of which yield black rectangles in one of the other 
three corners, and each of the remaining four leads to a white rectangle in one of the 
corners. These are obtained by appropriate interchanges of the roles of top and 
bottom, right and left, and black and white. 

V. Thin Finger. 0 <hj < 1 ,fi+l,j =h-l,j = 0. The black fluid is assumed to 
occupy a thin finger inside the cell (Fig. 2d). The exact location of the finger is chosen 
at random as follows: The black finger occupies the region a < x <b, a = 
(i - J-) h + $(l - fij) 0, b = a + fij , where 0 is a member of a sequence equidistri- 
buted on [0, I]. Examples of suitable equidistributed sequences can be found in Lax 
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[13], Chorin [4], Colella [8]. At each time half step, a new 8 is chosen, but for a fixed 
time, the same 0 is used in all cells in which this case occurs. A related case is found by 
exchanging the role of black and white. 

The constructions in cases I, II, III were used in Noh and Woodward [14]. Their 
work contains additional features designed to describe effectively the motion of a 
fluid system with many components. Case IV is introduced here to improve the 
resolution of the method. Case V is important because in our application it occurs 
often. In [14], the finger is placed in the middle of the cell, and as a result the dis- 
placement of the finger is determined by the Courant number uk/h rather than by the 
velocity u (this remark is due to C. Fenimore [9]). The remedy proposed here is based 
on the Glimm construction [4, lo], and it ensures that on the average the motion of 
the finger is computed correctly. Fenimore [9] has proposed a more accurate remedy. 
It is known from experience with other random choice methods that the numbers e1 
and 8, used in the horizontal and vertical half-steps must be independent. In the 
calculations to be described, we follow Colella and use two independent van der 
Corput sequences for the 0’s. 

The algorithm is stable whenever the Courant condition (max j u 1) k/h < & is 
satisfied. 

As an example, consider a rectangle of black fluid occupying 21 cells, transported 
by a “fluid” undergoing rigid body rotation centered at 0. The distance of the center 
of the rectangle from 0 is five cells (the problem can be scaled independently of h). In 
Fig. 3 we display on the right the original configuration of the black fluid, and on the 

-k-l- 
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FIG. 3. An example of advection. 

left the computed configuration obtained after a rotation of 180”. The lines are drawn 
as they are interpreted by the program. The uncertainty in the position of an interface 
is always less than one mesh length and, as can be expected, is largest at the corners. 
The accuracy is competitive with that of other methods for performing advection 
calculations. 
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IMPLEMENTATION OF THE HUYGHENS PRINCIPLE 

Consider a region D, C D in the plane whose boundary is propagating with velocity 
U. At time t = nk, n integer, D, is described by an array of partial volumes, f$ . Con- 
sider the 8 angles CY~ = (I - 1) r/4, I = I,..., 8, and the corresponding translation 
vectors uz = (U cos 01~ , U sin al). Use the algorithm described in the previous section 
to translate the area (described by thefiJ successively by each one of the velocity fields 
u1 ; this results in 8 new areasf$, I = l,.., 8. Writef:;’ = fd7 , and then write 

This is our implementation of the Huyghens principle. 

Note the following facts: 

(i) Each cell in the grid has 8 neighbors. The amount of mass transported from 
any one cell to any one of its neighbors is largest when the translation vector points 
from the center of the given ceil to the center of the neighboring cell. All such direc- 
tions coincide with one of the directions determined by the 01~ . Any additional direc- 
tions are redundant and will not affect frt’. 

(ii) In three dimensional space, 26 directions are needed. The amount of resul- 
ting labor is still modest if care is taken to ensure that the calculations are performed 
only when they are needed, i.e., when 0 < fij < 1 in a cell under consideration or in a 
neighboring cell. 

(iii) In the plane a single pair of B’s in case V is sufficient for all translations 
during a given time step; a single triplet is needed in three dimensions. 

(iv) Alternate strategies for implementing the Huyghens principle, in which 
fewer directions are used in conjunction with a sampling strategy for the angles, have 
been tried, but resulted in modest savings in computing effort with a non-negligible 
loss in accuracy. 

The accuracy of the propagation algorithm just described was consistently higher 
than that of the underlying advection algorithm in all cases we ran. There are two 
explanations: (i) the advection algorithms are most accurate when the velocity field 
is one dimensional, which is the case in each one of the translations used to implement 
the Huyghens principle, and (ii) if the propagation algorithm underestimates or 
overestimates the length of the interface, the error is self-correcting to a substantial 
extent. As an example, we ignited the fluid in one fluid cell and followed the resulting 
flame propagation; in Fig. 4 we display the flame front obtained with U = 0.2, at 
t = 1.83 = 7Ok, h = l/19, Ukjh = .099. The fractional volumes at the edge of the 
flames are drawn as they are interpreted by the program. The slight asymmetry 
reflects the effect of the ~9’s. The middle square is the square ignited at t = 0. 

The original area of burned fluid is h2, which equals the area of a circle of radius 
r,, = h/(?r)1/2. The area of burned gas should be approximately A = r(rO + Ut)2. Let 
A, be the area of burned gas as computed by the program, A, = Chjh2. In table I we 
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# 

FIG. 4. Propagation of a circular flame. 

TABLE I 

Error in a Circular Flame Calculation, h = l/19 

1 0.0038 -0.000039 -0.010 

2 0.0049 -0.000093 -0.018 

5 0.0091 0.00064 0.065 

10 0.019 0.0011 0.054 

20 0.056 0.00080 0.014 

30 0.110 -0.00028 -0.0025 

40 0.181 -0.0013 -0.0070 

50 0.269 -0.0028 -0.0085 

60 0.386 -0.0033 -0.0086 

70 0.497 -0.0038 -0.0077 

80 0.636 -0.0044 -0.0069 

7 

display the area A, , the error A - A, , and the relative error (A - A,)/& , with the 
parameters h, U, Uk/h, as above. Note that for small t = nk, substantial contri- 
butions to the value of A - A, are due to the fact that our formula for A is not exact, 
as well as to the statistical fluctuations in A, due to the reliance on the 0’s. The al- 
gorithm does perform well. 

If the flame is advected by a fluid while it is propagating, the advection algorithm 



8 ALEXANDRE JOEL CHORIN 

and the propagation algorithm can be used as successive fractional steps in the deter- 
mination of the location of the front., The propagation algorithm is stable whenever 
the underlying advection algorithm is stable. 

THE EFFECT OF INTERMITTENCY ON THE VELOCITY OF WRINKLED FLAMES 

We now present an application of the method above to a simplified problem in 
flame theory. (An excellent account of the subject can be found in Williams [17].) 
Under conditions which are often encountered in practice, one believes that a turbulent 
flame propagates faster than a laminar flame mainly because a turbulent velocity 
field wrinkles the flame and increases the area available for burning. Let the velocity 
of the turbulent flame be denoted by u, , and let u1 = U be the velocity of an 
unwrinkled flame in a fluid of the same temperature and composition. It has been 
observed from experiments (Andrews et al. [l]) that in many situations the ratio 
u,/uI is roughly proportional to the intrinsic Reynolds number R, = u'h/v, where u’ 
is the rms intensity of the turbulence, h is the Taylor microscale (for a definition, see 
e.g., [l, 15]), and v is the viscosity. According to recent theories, turbulence can be 
usefully described as a random array of vortices [see, e.g., [4]). A theory described in 
[3] and experiments described in [12] lead one to believe that these vortices are rod- 
like, and thus a two-dimensional calculation, performed in a plane normal to the axes 
of these vortices, should describe their main effects. A calculation presented by 
Tennekes [15] suggests that h is the order of magnitude of the diameter of these 
vortices. 

Thus, in order to provide the simplest possible explanation of the observation of 
Andrews et al., we are led to the following problem: Consider a time-independent 
periodic array of vertical structures in the plane. At t = 0 a plane flame front coin- 
cides with the y axis. We wish to follow the wrinkling of the flame front and the con- 
sequent increase in the velocity of the flame. 

The velocity field is periodic with period L = 1 in both x and y directions. Consider 
one periodic box, -3 < x ,< 4, -4 < y < 4. Consider the velocity field given by 
u = (u, v), 24 = -a,+, v = a,#, where # = C exp(-(9 + y2)/h2). h is the “micro- 
scale.” u is not periodic, and although it does satisfy the equation div u = 0, it does 
not satisfy the discrete equations DU -= ui+l/2,j - ui-l/2,j + Ui,j;1/2 - Ui,j-l/2 = 0. 
Du z= 0 guarantees that the area occupied by burned gas increases only due to burning 
(except for possible small errors due to the interpolations used in the advection 
algorithm). The component of u which is periodic and satisfies the equations Du = 0 
is obtained by the projection algorithm described in [2]. The constant C is then 
adjusted so that 

11) = (-& (22 + v”) /?y2 = 1. 

In Fig. 5 we display a typical flow configuration in a periodic box. At t = 0, the 
flame coincided with the left wall of the box. The front is shown at t = I .53, II z 125, 
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FIG. 5. Stretching of a flame by a vertical structure. 

with u1 = 0.2, h = 0.2, h = l/19. The partial volumes are drawn as they are inter- 
preted in a horizontal sweep, and occasional ambiguities are removed by diagonal 
lines. 

The viscosity v does not appear explicitly in our model; indeed, v governs the rate at 
which vertical structures appear and disappear, and in our problem they do neither. 

Let A(t) be the portion of the periodic box occupied by burned fluid. Define U, = 
dA/dt. Simple scaling arguments show that u,/uI can be a function of the ratios z//u1 = 
I/q and ;\lL = X only. Thus the analogue of the law of Andrews et al. is 

%I u’ x h - = constant x zr z = constant x <. 
211 1 

However, the original law u,/ul N u’X/v and the new law u,/q TV h/u, are essentially 
different, since the latter implies that U, IV h independently of u1 . This last conclusion 
is untenable and disappears only if it can be shown that U&Q is roughly independent 
of u’/ul . For u’ > uI , this last statement is indeed true. In Fig. 6 we display u,/q as a 
function of the appropriately scaled time t * = tz40.2 for several values of u1 . The 
curves coincides to a large extent, showing that u1 does not affect greatly the generation 
of new surface by vertical motion. 

It is clear that if u,/uz is roughly independent of u’/ul , the generation of new surface 
is roughly proportional to the scale h of the vertical structures. In Fig. 7 we display 
the variation of u,/uL with h as a function of time. It can be seen that for a given t 
the value of U,/ZQ is indeed roughly linear in X. u,/ul increases when the vortex 
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FIG. 6. Effect of uI on u,ilrl. 
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t 

FIG. 7. Effect of scale on u,,Iuz 

meets the flame, then decreases when the flame consumes the newly added flame 
length. The calculation was stopped when the flame was overflowing the box. Thus, 
in the narrow confines of our model problem, we have a reasonable explanation of the 
observation offered in [I]. 
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