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Abstract

Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solu-
tions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively.
We show, by analysis and example, that when the data contain significant information beyond
what is assumed in the prior, the surrogate posterior can be very different from the posterior,
and the resulting estimates become inaccurate. One can improve the accuracy by adaptively
increasing the order of the polynomial chaos, but the cost may increase too fast for this to be
cost effective compared to Monte Carlo sampling without a surrogate posterior.

1 Introduction

There are many situations in science and engineering where one needs to estimate parameters in
a model, for example, the permeability of a porous medium in studies of subsurface flow, on the
basis of noisy and/or incomplete data, e.g. pressure measurements. In the Bayesian approach, prior
information and a likelihood function for the data are combined to yield a posterior probability
density function (pdf) for the parameters. This posterior can be approximated by Monte Carlo
sampling and in principle yields all the information one needs, in particular the posterior mean
(see e.g. [14, 25, 26]). However, the sampling may require the evaluation of the posterior for many
values of the parameters, which in turn requires repeated solution of the forward problem. This
can be expensive, especially in complex high-dimensional problems.

Polynomial chaos expansions (PCE) and generalized PCE provide an approximate representa-
tion of the solution of the forward problem (see e.g. [12,15,21,31]) which can be used to reduce the
cost of Bayesian inverse problems [2, 17–19, 23]. The PCE leads to an approximate representation
of the posterior, called a “surrogate posterior”, which can generate a large number of samples at
low cost. However, the resulting samples approximate the surrogate posterior, not the posterior, so
that the accuracy of estimates based on these samples depends on how well the surrogate posterior
approximates the posterior.

We study how the accuracy of the surrogate posterior depends on the data, and show that
when the data are informative (in the sense that the posterior differs significantly from the prior),
then the surrogate posterior can be very different from the posterior and PCE-based sampling is
either inaccurate or prohibitively expensive. Specifically, we examine the behavior of PCE-based
sampling in the small noise regime [28, 29], and report results from numerical experiments on an
elliptic inverse problem for subsurface flow. In the example, a sufficiently accurate PCE require
a high order, which makes PCE-based sampling expensive compared to sampling the posterior
directly, without a PCE. Other limitations of PCE have been reported and discussed in other
settings as well, e.g. in uncertainty quantification [3, 5, 13], and statistical hydrodynamics [6, 10].
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The paper is organized as follows. In Section 2 we explain the use of PCE in the Bayesian
solution of inverse problems. In section 3 we analyze the accuracy of the surrogate posterior in the
small noise regime. In Section 4 we study the efficiency of PCE-based sampling with numerical
examples. Section 5 provides a summary. Proofs and derivations can be found in the appendix.

2 Polynomial chaos expansion for Bayesian inverse problems

Consider the problem of estimating model parameters θ ∈ Rm from noisy data d ∈ Rn such that:

d = h(θ) + η, (1)

where h : Rm → Rn is a smooth nonlinear function describing how the parameters affect the
data, and where η ∼ pη(·) is a random variable with known pdf that represents uncertainty in the
measurements. Here, h is the model and often involves a partial differential equation (PDE), or a
discretization of a PDE, in which case the evaluation of h can be computationally expensive. Fol-
lowing the Bayesian approach, we assume that prior information about the parameters is available
in form of a pdf p0(θ). This prior and the likelihood p(d|θ) = pη(d − h(θ)), defined by (1), are
combined in Bayes’ rule to give the posterior pdf

p(θ|d) =
1

γ(d)
p0(θ)p(d|θ), (2)

where γ(d) =
∫
p0(θ)p(d|θ)dθ is a normalizing constant (the marginal probability of the data).

For simplicity, we assume throughout this paper that η ∼ N (0, σ2In) is Gaussian with mean zero
and variance σ2In, and that the prior is p0(θ) = N (0, Im) (here, Ik is the identity matrix of order
k). These assumptions may be relaxed, however we can make our points in this simplified setting.
In this context, it is important to point out that we make no assumptions about the underlying
(numerical) model which, in most cases, is nonlinear.

In practice, Monte Carlo (MC) methods such as importance sampling or Markov chain Monte
Carlo (MCMC) are used to represent the posterior numerically (see e.g. [7,16]). Most MC sampling
methods require repeated evaluation of the posterior for many instances of θ. Since each posterior
evaluation involves a likelihood evaluation, many evaluations of the model are needed, which can
be computationally expensive.

To reduce the computational cost of MC sampling one can approximate the model by a trun-
cation of its PCE, because the evaluation of the truncated PCE is often less expensive than the
evaluation of the model (e.g. solving a PDE). It is natural to construct the PCE before the data are
available, i.e. one expands h using the prior. With a Gaussian prior one uses (multivariate) Hermite
polynomials, which form a complete orthonormal basis in L2(Rm, p0). Let i = (i1, . . . , im) ∈ Nm be
a multi-index and let θ = (θ1, θ2, . . . , θm) be the parameter we wish to estimate. The multivariate
Hermite polynomials {Φi(θ) : |i| = i1 + · · ·+ im <∞} are defined by

Φi(θ) = Hi1(θ1) · · ·Him(θm),

where Hk(x) is the normalized kth-order Hermite polynomial (see e.g. [24, 31]). Assuming that
h ∈ L2(Rm, p0) we define the Nth-order PCE of h by

hN (θ) =
∑
|i|≤N

aiΦi(θ),
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where the coefficients ai are given by

ai = E[h(θ)Φi(θ)] =

∫
h(θ)Φi(θ)p0(θ)dθ.

As N → ∞, hN converges to h in L2(Rm, p0). The rate of convergence depends on the regularity
of h and is estimated by (see e.g. [32])

‖h− hN‖L2(Rm,p0) ≤ CN
− k

2 ‖h‖k,2, (3)

where C is a constant depending only on m and k, and ‖h‖k,2 is the weighted Sobolev norm defined

by ‖h‖2k,2 =
∑
|α|≤k ‖Dαh‖2L2(Rm,p0) with Dαh = ∂|α|

∂
α1
x1
···∂αmxm

h. For the remainder of this paper we

assume enough regularity of h, so that ‖h− hN‖L2(Rm,p0) converges quickly with N .
In PCE-based sampling for Bayesian inverse problems, one replaces the model h in (1) by its

truncated PCE hN , and obtains the surrogate posterior

pN (θ|d) =
1

γN (d)
p0(θ)pη(d− hN (θ)), (4)

where γN (d) =
∫
p0(θ)pη(d− hN (θ))dθ. This surrogate posterior converges to the posterior at the

same rate as ‖h − hN‖L2(Rm,p0) converges to zero as N → ∞ (see equation (3)) in the Kullback-
Leibler divergence (KLD) [19] and in the Hellinger metric [25].

In practice, PCEs of small to moderate order are used because otherwise PCEs become expensive
(see e.g. [15,31] and section 4). This truncation introduces error unless the problem is linear or well
represented by a low-order polynomial. If the truncation error is large, then the surrogate posterior
may be very different from the posterior. The samples one draws with PCE-based sampling methods
approximate the surrogate posterior, which implies that the applicability of PCE-based sampling
for inverse problems depends on how well the surrogate posterior approximates the posterior, i.e. on
the accuracy of the surrogate posterior.

3 Accuracy of the surrogate posterior

We wish to study the effects of inaccuracies of a truncated PCE on PCE-based sampling methods
for inverse problems. Inaccuracies in the PCE are caused by interaction of two mechanisms:

1. The error due to truncation is large if the physical model h(θ) in (1) is poorly represented by
a low-order polynomial.

2. The surrogate posterior must be constructed based on the prior (see above). However, the
posterior can put significant probability mass in parameter regions which are unlikely with
respect to the prior. Thus, if the model is nonlinear, the PCE may be a poor approximation
in the region of large posterior probability. In this case, the surrogate posterior is a poor
approximation of the posterior in the region where significant posterior probability mass is
located.

We assume throughout that h(θ) is nonlinear with high-order polynomials in its PCE, so that
a truncated PCE (of moderate order) is only locally accurate. What we want to find are the
conditions under which the lack of global accuracy of the PCE causes PCE-based sampling in
inverse problems to be inaccurate.
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Our analysis tool is the KLD of the posterior (2) and the surrogate posterior (4):

DKL(pN ||p) :=

∫
pN (θ|d) ln

pN (θ|d)

p(θ|d)
dθ.

Since the posterior and the surrogate posterior depend on the data, DKL(pN ||p) also depends on
the data. We fix the data, as well as the order N of the truncation (assuming non-zero truncation
error), and show that the surrogate posterior is inaccurate if the data are informative, i.e. if the
likelihood moves the posterior away from the prior. We consider the small noise regime introduced
in [28, 29], where the variance of the prior and the likelihood are small. The small noise regime
is important in data assimilation because it corresponds to a case where the posterior probability
mass localizes in a “small” region of the parameter space. Moreover, the small noise regime allows
for a rigorous analysis and the results can be indicative of more general situations. Specifically, we
pick a prior p0,ε with mean zero and variance ε and set η ∼ N (0, σ2εI). These choices give the
small noise posterior

pε =
1

γε(d)
exp

(
−1

ε
F (θ)

)
,

where

F (θ) =
||d− h(θ)||2

2σ2
+
||θ||2

2
,

and where γε(d) =
∫

exp (−F (θ)/ε) dθ is the normalizing constant; here, and for the remainder of
this paper || · || is the Euclidean norm. We now state our two main results.

Claim 1. The KLD of the posterior and the prior grows as ε becomes smaller and smaller.
More precisely, we have

DKL(p0,ε||pε) =
1

ε
(F (0)−min

θ
F (θ)) + o(

1

ε
), (5)

which grows to infinity as ε → 0 when F (0) > minθ F (θ); here we use the standard notation
f(ε) = o(1/ε) for lim supε→0 εf(ε) = 0.

Claim 2. The KLD of the surrogate posterior to the posterior

DKL(pN,ε||pε) =
1

ε
(F (θ∗N )−min

θ
F (θ)) + o(

1

ε
), (6)

grows to infinity as ε→ 0 if F (θ∗N ) > minθ F (θ); here, θ∗N = arg minθ FN (θ) with

FN (θ) =
||d− hN (θ)||2

2σ2
+
||θ||2

2

and we assume that the minimizer θ∗N is unique.

Derivations of these two results are provided in the appendix. The interpretation of the above
results is as follows. Claim 1 shows that, under our assumptions of small noise, the data become
more informative as ε → 0, because the data shifts the probability mass away from the prior.
Claim 2 thus shows that the surrogate posterior diverges from the posterior as the data become
more informative. The two claims combined show that the surrogate posterior may not be useful
when the data are informative. We will study the effects of these inaccuracies on the solution of
Bayesian inverse problems with numerical examples in the next section.
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Our results can also be interpreted geometrically. As ε is getting smaller, the posterior is getting
more sharply peaked around its mode, since, from (3) and (13) one obtains

pε(θ|d) = exp

(
−1

ε
(F (θ)−min

θ
F ) + o(

1

ε
)

)
. (7)

Similarly, one can show that the surrogate posterior is also sharply peaked around its maximum.
Thus, when the maxima of the posterior and the surrogate posterior are different, the surrogate
posterior is (almost) singular with respect to the posterior.

4 Efficiency of the PCE for inverse problems

We have shown that, for a fixed N , the KLD of the surrogate posterior from the posterior can be
large, i.e. the PCE is not very accurate. To make it accurate one can increase the order N of the
truncated PCE (in fact, for N →∞, the PCE is exact everywhere). What we must find out is the
rate at which N must be increased to ensure sufficient accuracy. If this rate is too rapid, the PCE
becomes increasingly expensive. For example, a stochastic collocation routinely requires (at least)
N + 1 quadrature points per parameter to compute the coefficients of the PCE, so that the cost of
constructing a PCE of order N is about (N + 1)m. If accuracy requires large N , then PCE may
no longer be a cost effective approach to the inverse problem.

We can estimate the rate at which N must increase from (6), which indicates that the minimizer
θ∗N of FN must be close to the minimizer θ∗ of F , or else the KLD, and, hence, the errors are
large. Thus, point-wise accuracy of the truncated PCE is needed at least up to θ∗, i.e. making
supx∈B |h(x)− hN (x)| small for a ball B ∈ Rm centered at zero and containing θ∗. The estimate

sup
x∈Rm

exp

(
−||x||

2

4

)
||h(x)− hN (x)|| ≤ CN

m
4
− k

2 ‖h‖k,2.

from [32] indicates that this point-wise accuracy can require that

N > C exp

(
||θ∗||2

(2k −m)

)
. (8)

Recall that h is smooth, so that 2k > m (i.e. the exponent is positive). Moreover, since the mean
of the prior is zero, a large θ∗ (in Euclidean norm) is far from where the prior probability mass
is. Thus, large θ∗ indicates that the data are informative. Equation (8) thus shows that the
order required to maintain accuracy in the PCE grows quickly as the data become increasingly
informative.

We now investigate the effects of the inaccuracy of the surrogate posterior on the efficiency
of PCE-based sampling for inverse problems, using numerical experiments with an elliptic inverse
problem. We choose an elliptic inverse problem because it is a popular tool for testing algorithms
for parameter estimation and it is also theoretically well understood [11,17–19,25,27]. The example
is not very realistic, however it is sufficient to help us make our points.

4.1 Numerical experiments

Consider the random elliptic equation{
−∇.(eY (x)∇u) = f(x), x ∈ D;
u(x) = 0, x ∈ ∂D, (9)
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where x = (x1, x2), D = [0, 1] × [0, 1], f(x) = π2 sin(πx1) sin(πx2), and where Y (often called the
log-permeability) is a square integrable stochastic field we wish to estimate from data (e.g. noisy
measurements of u at some locations in D). Equation (9) is a simplified model for flow in porous
media [11, 27]. We consider a Gaussian log-permeability with mean zero and squared exponential
covariance function (see, e.g. [22])

R(x1, x2, y1, y2) = σ21σ
2
2 exp

(
−(x1 − y1)2

l1
− (x2 − y2)2

l2

)
. (10)

In our numerical experiments we set σ1 = σ2 = 1 and the correlation lengths l1 = l2 = 1.
We discretize (9) by a standard finite element method on a uniform (M + 1)× (M + 1) mesh of

triangular 2-D elements [4], with M = 15. Solving the PDE is thus equivalent to solving the linear
system

A(θ)û(θ) = f̂ ,

where A(θ) is a M2 × M2 symmetric positive definite matrix, û(θ) is a M2-dimensional vector
approximating the continuous solution u, and where f̂ is a discrete version of f . We evaluate inte-
grals by Gaussian quadrature. We solve these equations with a preconditioned conjugate gradient
method. The infinite dimensional random field Y is discretized by a Karhunen–Loève expansion
(see, e.g. [12, 15])

Ŷ = Uθ,

where θ = (θ1, . . . , θm) and where U = (U1(x), . . . , Um(x)) is a matrix whose columns are the first
m eigenvectors of the squared exponential covariance function, multiplied by their corresponding
eigenvalue. Since the squared exponential covariance function has a rapidly decaying spectrum, we
can capture 96.66% of the variance with m = 3, and this is the choice we make for the following
numerical experiments.

This set-up implies a Gaussian prior for θ, with mean zero and variance I. We expand the
solution û(θ) of (4.1) in a PCE and approximate it by the truncated PCE, ûN (θ), of order N . We
use stochastic collocation with N +2 (N even) Gaussian–Hermite quadrature points per parameter
to compute the coefficients of the PCE. Thus, (N + 2)m PDE solutions are required to construct
the PCE. This approach is only efficient if N or m are small. Here, m = 3 is small, and we study
the effects of the order N of the truncation, i.e. we will vary N in our numerical experiments.

The example therefore corresponds to a situation in which PCE could be useful, because the
number of dimensions is small (it is equal to 3). If we decrease the correlation length, which is
perhaps more realistic, we would need to increase m to capture the variance and PCE becomes
impractical. However, our goal is to show how inaccuracies in the surrogate posterior can be caused
by a PCE which is locally a good approximation, but which lacks global accuracy.

Figure 1 shows our finite element solutions and their PCE approximations of order N = 4 and
N = 8, for two different values of the parameter θ. The first parameter, θ = (−2,−1, 1), is close
to the mean of the prior and we observe that both PCE approximations are accurate (see the top
row of Figure 1). As we move the parameter further away from the mean of the prior, e.g. choose
θ = (−8,−1, 1), we observe that the accuracy of the PCE requires that N ≥ 8 (see the bottom row
of Figure 1).

We study the accuracy of the PCE approximation further by focusing attention on the grid
point x = (0.5, 0.5625), which is the point on our grid where the first eigenvector of the squared
exponential covariance function is maximum. We vary θ1 between −8, . . . , 2 and fix θ2 = −1 and
θ3 = 1 as before, i.e. one parameter, θ1, may be far from its value assumed by the prior, while
the other two are within two standard deviations of the mean of the prior. We restrict θ1 ≤ 2
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Figure 1: The finite element solutions (left column), and their PCE approximations of order N = 4
(middle column) and of order N = 8 (right column) for two different parameters: θ = (−2,−1, 1)
(top row) and θ = (−8,−1, 1) (bottom row).

Order Parameter θ1
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2

N = 4 81.1 69.4 53.2 33.4 13.5 0.26 2.56 2.68 1.71 7.72 85.3
N = 8 21.2 10.6 3.51 0.39 0.13 0.03 0.02 0.01 0.02 0.04 0.02

Table 1: Relative error in percent as a function of of θ1 at the grid point x = (0.5, 0.5625).

because the finite element solution is very small otherwise (less than the standard deviation of the
noise in the data), which corresponds to a situation in which no inference can be successful since
there is almost no information in the signal. The results of our calculations are shown in table
1, where we show the relative error as a function of θ1 for PCEs with N = 4 and N = 8. The
relative error is defined by the absolute value of the difference of the finite element solution and
the PCE approximation, divided by the absolute value of the finite element solution (all evaluated
at x = (0.5, 0.5625)).

We find that the PCE approximation of order N = 4 is accurate (in the sense that the error
less than 10%) if θ1 is within a standard deviation of the mean of the prior (i.e., roughly between
-2 and 1). One can extend the region where the PCE is accurate by increasing its order, e.g. a
PCE with N = 8 is accurate (with errors less than 10%) for −6 ≤ θ1 ≤ 2. However, for finite m,
the PCE is always inaccurate for large enough θ1, as is indicated by large errors in Table 1 (global
accuracy can only occur if h(θ) is a low-order polynomial).

With the PCE in place, we solve the inverse problem of estimating the log-permeability θ
from noisy measurements of the solution u at several locations in the domain D. The data are
“synthetic”, i.e. we generate data using our numerical model. This has the advantage that the
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Figure 2: Errors in the solution of the inverse problem: norm of the error as a function of θ1 for
implicit sampling (blue dots), PCE-based implicit sampling with N = 4 (turquoise squares), and
PCE-based implicit sampling with N = 8 (purple triangles).

sampling algorithms operate under ideal conditions (since the model is compatible with the data).
We collect data in n = 16 locations in the center of the domain, i.e.

d = Gû(θ) + η,

where G is an n ×M2 matrix which projects the finite element solution to the n observed com-
ponents, and where η is an n–dimensional random vector with distribution N (0, 0.052I). More
precisely, data are collected 3 steps away from the top and right boundary and five steps away from
the bottom and left boundaries, and two steps away from each other. The prior and likelihood
define the posterior

p(θ|d) ∝ exp (−F (θ)) ,

where

F (θ) =
1

2
||θ||2 +

1

2σ2
(d−Gû(θ))T (d−Gû(θ)). (11)

For PCE-based MC sampling we replace h with its truncated PCE (we consider N = 4 and N = 8)
and compute the surrogate posterior

pN (θ|d) ∝ exp (−FN (θ)) ,

where

FN (θ) =
1

2
||θ||2 +

1

2σ2
(d−GûN (θ))T (d−GûN (θ)).

We generate synthetic data sets in which we vary θ1 = −10,−9, . . . , 2, while θ2 = −1, θ3 = 1 are
kept fixed so that the data become increasingly informative as θ1 increases in magnitude and use
implicit sampling [1,8,9,20] for each data set to sample the surrogate posterior. Implicit sampling
is an importance sampling method that generates samples close to the mode of the posterior by first
locating the mode via numerical optimization, and then solving data dependent algebraic equations
to generate samples in the vicinity of the mode. The weights of the samples are then computed
from the importance density which is implicitly defined by these algebraic equations. For further
details, also about the implementation of implicit sampling, see [1, 8, 9, 20].

Figure 2 summarizes the results of our numerical experiments. We plot the error one makes
when solving the inverse problem for three different sampling schemes. The error is defined as the
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Figure 3: The log-permeability (left), its approximation via implicit sampling (middle) and its
approximation via PCE-based MCMC sampling with order N = 8.

Euclidean norm of the difference between the parameter θ and its approximation by the conditional
mean (the minimum mean square error estimator) obtained via sampling. We use implicit sampling
with 20 particles, and vary the accuracy of the PCE from N = 4, to N = 8, to N = ∞, i.e. we
sample the posterior directly (without using PCE). The latter is the reference solution.

The figure illustrates that PCE-based sampling with N = 4 can only be accurate where the
PCE itself is accurate, i.e. only if the parameter is within 2 standard deviations of the mean of the
prior. The error increases steeply as the parameter becomes larger (in magnitude). The figure also
indicates that the region of applicability of PCE-based sampling can be increased by increasing the
order of the PCE, since we obtain much better results with a surrogate posterior when N = 8. In
this case, the parameter can be far from what is assumed by the prior, however ultimately, one can
not guarantee the accuracy of this approach due to the lack of global accuracy of the PCE.

We have obtained the same results with a random walk Metropolis MCMC algorithm (see
e.g. [16]), which also shows that the failure of PCE we observe here is independent of the sampling
method one uses for sampling the (surrogate) posterior.

In Figure 3 we indicate what the errors in Figure 2 mean for the physics of this inverse problem.
In the left panel we plot the log-permeability, in the middle panel its approximation obtained via
implicit sampling of the posterior (N = ∞), and in the right panel we plot the estimated log-
permeability obtained with PCE-based sampling N = 8. The parameter θ1 = −15, i.e. far from
what is assumed in the prior, while θ2 = −1 and θ3 = 1 are within the range predicted by the prior.
This is a scenario in which the data are informative and move the posterior away from the prior.
It is evident from this figure that using the surrogate posterior gives catastrophically large errors.
However, it is feasible to solve this inverse problem by sampling the posterior (without constructing
a surrogate posterior).

Finally, we compare the computational costs of MC sampling with and without a PCE-based
surrogate posterior. The cost of solving the inverse problem is dominated by the cost of the required
PDE solutions. Constructing a PCE with stochastic collocation with N + 2 Gaussian–Hermite
quadrature points for each parameter dimension, requires (at least) (N +2)m PDE solutions. Since
m = 3 and N = 4 or N = 8, between 216 and 1000 PDE solutions are required for constructing the
PCE. Implicit sampling of the posterior requires 153 evaluations of the posterior, which amounts to
153 PDE solutions (most of them occur during the optimization to find the mode of the posterior,
since 20 samples appear sufficient to accurately describe it). Neglecting the cost of evaluation of
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the surrogate posterior, this is a larger cost than implicit sampling of the posterior, however the
results we obtain are less accurate. Since PCE-based sampling is more costly, but less accurate,
we conclude that sampling the posterior (without constructing a surrogate posterior) is a better
method for this problem.

4.2 Discussion

In the small noise regime, the approximation of the posterior in (7) indicates that significant
information resides in the neighborhood of the maximum of the posterior. Hence a successful
sampling method should generate samples around this maximum, otherwise information will be
lost. Implicit sampling is such a sampling method and therefore is efficient in the above example
which corresponds to a small noise scenario. In other situations, other sampling schemes may show
a better performance in terms of balancing computational cost and accuracy.

Our simulations also suggest that a successful sampling scheme could result from an adaptive
construction of a PCE so that the surrogate posterior is close to the posterior near the maximizer
of the posterior. For instance, one could compute a PCE with respect to N (µ,H−1), where µ is the
maximizer of the posterior and H is the Hessian of F in (11) at the maximum. This construction
can gain efficiency and accuracy over the prior-based surrogate, since PCEs with low to moderate
order may be locally sufficiently accurate. However, such a scheme adds the cost of the optimization
to the cost of the PCE construction (neglecting the cost of using the PCE during sampling). It is
not clear to us that this strategy will be more efficient than sampling the posterior directly, since
e.g. implicit sampling can generate samples close to the mode of the posterior at a low cost once
the mode is located [1, 8, 9, 20].

Last, we wish to point out that one can anticipate similar problems and modes of failure with
other reduced order modeling techniques for sampling and inverse problems, since the failures we
describe are due to the lack of global accuracy, which is common to all reduced order models.

5 Conclusions

We have suggested possible mechanisms of failure of PCE-based sampling in Bayesian inverse
problems. In particular, we showed that if the data contain information beyond what is assumed
in the prior, then PCE-based sampling can lead to catastrophically large errors or require excessive
computational cost. The reason is that PCEs of finite order are not globally accurate (unless the
model itself is a low-order polynomial). We presented a rigorous analysis of the failure in the small
noise limit, which is characterized by a prior and a likelihood that have “small” variances. We
also investigated the efficiency of PCE-based sampling in numerical experiments with an elliptic
inverse problem. We observed that a sufficiently accurate PCE for this problem requires a high
order, which makes the approach impractical compared to directly sampling the posterior (without
constructing a PCE). Moreover, even at a low accuracy, PCE-based sampling was found to be more
costly than sampling the posterior without a PCE.
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Appendix

Derivation of Claim 1

To prove (5), note that

DKL(p0,ε||pε) =

∫
(2πε)−

m
2 exp

(
−||θ||

2

2ε

)
ln

(
γε(d)

(2πε)
m
2

exp

(
||d− h(θ)||2

2εσ2

))
dθ,

= ln
γε(d)

(2πε)
m
2

+
1

ε
E

[
||d− h(Xε)||2

2σ2

]
, (12)

where Xε ∼ N (0, εIm). The normalizing constant γε(d) can be written as

γε(d) =

∫
exp

(
−1

ε
F (θ)

)
dθ = (2πε)

m
2 E

[
exp

(
−1

ε

||d− h(Xε)||2

2σ2

)]
. (13)

Laplace’s principle (see e.g. [30]) indicates that

lim
ε→0

lnE

[
exp

(
−1

ε

||d− h(Xε)||2

2σ2

)]
= min

θ
F (θ),

which can be written as

E

[
exp

(
−1

ε

||d− h(Xε)||2

2σ2

)]
= exp

(
−1

ε
min
θ
F (θ) + o(

1

ε
)

)
.

Substituting this equality into (13), we have

γε(d) = (2πε)
m
2 exp

(
−1

ε
min
θ
F (θ) + o(

1

ε
)

)
. (14)

Since

E

[
||d− h(Xε)||2

2σ2

]
→ ||d− h(0)||2

2σ2
= F (0)

as ε→ 0, we can write the second term in (12) as

1

ε
E

[
||d− h(Xε)||2

2σ2

]
=

1

ε
F (0) + o(

1

ε
).

Then (5) follows by substituting the above equality and (14) into (12).

Derivation of Claim 2

To prove (6), express the surrogate posterior as

pN,ε =
1

γN,ε(d)
exp

(
−1

ε
FN (θ)

)
,

where γN,ε(d) :=
∫

exp (−FN (θ)/ε) dθ. The definition of the KLD then gives

DKL(pN,ε||pε) =

∫
pN,ε(θ) ln

(
γε(d)

γN,ε(d)
exp

(
1

ε
(F (θ)− FN (θ))

))
dθ,

= ln
γε(d)

γN,ε(d)
+

1

ε

∫
pN,ε(θ) (F (θ)− FN (θ)) dθ. (15)
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As before (see (14)), we have that

γN,ε(d) = (2πε)
m
2 exp

(
−1

ε
min
θ
FN (θ) + o(

1

ε
)

)
. (16)

Thus,

pN,ε = exp

(
−1

ε
(FN (θ)−minFN ) + o(

1

ε
)

)
,

converges to the delta function δθ∗N (θ) as ε→ 0. It follows that

lim
ε→0

∫
pN,ε(θ) (F (θ)− FN (θ)) dθ = F (θ∗N )−min

θ
FN (θ),

which implies that the second term in (15) can be written as (F (θ∗N ) − minθ FN (θ))/ε + o(1/ε).
Then equation (6) follows by substituting (14) and (16) into (15).

References

[1] E. Atkins, M. Morzfeld, and A. J. Chorin. Implicit particle methods and their connection with
variational data assimilation. Mon. Wea. Rev., 141(6):1786–1803, 2013.

[2] S. Balakrishnan, A. Roy, M.G. Ierapetritou, G.P. Flach, and P.G. Georgopoulos. Uncer-
tainty reduction and characterization for complex environmental fate and transport models:
an empirical Bayesian framework incorporating the stochastic response surface method. Water
Resour. Res., 39(12):1350–1362, 2003.

[3] I. Bilionis and N. Zabaras. Solution of inverse problems with limited forward solver evaluations:
a Bayesian perspective. Inverse Problems, 30(1):015004 (32pp), 2014.

[4] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cam-
bridge University Press, 1997.

[5] M. Branicki and A.J. Majda. Fundamental limitations of polynomial chaos for uncertainty
quantification in systems with intermittent instabilities. Comm. Math. Sci., 11(1):55–103,
2013.

[6] A.J. Chorin. Gaussian fields and random flow. J. Fluid Mech., 63:21–32, 1974.

[7] A.J. Chorin and O.H. Hald. Stochastic Tools in Mathematics and Science. Springer, 3rd
edition, 2013.

[8] A.J. Chorin, M. Morzfeld, and X. Tu. Implicit particle filters for data assimilation. Commun.
Appl. Math. Comput. Sci., 5(2):221–240, 2010.

[9] A.J. Chorin and X. Tu. Implicit sampling for particle filters. Proc. Nat. Acad. Sc. USA,
106:17249–17254, 2009.

[10] S.C. Crow and G.H. Canavan. Relationship between a Wiener-Hermite expansion and an
energy cascade. J. Fluid Mech., 41:387–403, 1970.

[11] M. Dashti and A.M. Stuart. Uncertainty quantification and weak approximation of an elliptic
inverse problem. SIAM J. Numer. Anal., 49(6):2524–2542, 2011.

12



[12] R. Ghanem and P. Spanos. Stochastic Finite Elements: A Spectral Approach. Dover Publica-
tions, 2003.

[13] T. Hou, W. Luo, B. Rozovskii, and H.M. Zhou. Wiener chaos expansions and numerical
solutions of randomly forced equations of fluid mechanics. J. Comput. Phys., 217:687–706,
2006.

[14] J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems. Springer, 2005.
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