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Abstract The implicit particle filter is a sequential Monte Carlo method for data
assimilation. The idea is to focus the particles onto the high probability regions of
the target probability density function (pdf) so that the number of particles required
for a good approximation of this pdf remains manageable, even if the dimension
of the state space is large. We explain how this idea is implemented, discuss special
cases of practical importance, and work out the relations of the implicit particle filter
with other data assimilation methods. We illustrate the theory with four examples.

1 Introduction

In many problems in science and engineering, e.g. in statistics, statistical signal pro-
cessing, oceanography, meteorology, geomagnetics, econometrics, or finance, one
wants to identify the state of a system from an uncertain model supplemented by a
stream of noisy and incomplete data. The model is typically a Markovian state space
model (often a discretization of a stochastic differential equation) and describes the
state sequence {xn; n∈N}, where xn is a real, m-dimensional vector. For simplicity,
we assume that the noise is additive, so that the model equations are

xn = f n(xn−1)+ vn−1, (1)
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where f n is an m-dimensional vector function, and {vn−1, n ∈ N} is a sequence
of independent identical distributed (i.i.d.) m-dimensional random vectors which,
in many applications, are Gaussian vectors with independent components. One can
think of the xn as values of a process x(t) evaluated at times nδ , where δ is a fixed
time increment. The probability density function (pdf) of the initial state x0 is as-
sumed to be known.

The model (1) is supplemented by an observation (or measurement) equation,
which relates observations {bn; n ∈ N}, where bn is a real, k-dimensional vector
and k ≤ m, to the states xn; we assume the observation equation is

bn = hn(xn)+wn, (2)

where hn is a k-dimensional vector function, and {wn, n ∈ N} is a k-dimensional
i.i.d. process, independent of vn. The model and the observation equations together
constitute a hidden Markov state space model (HMM). To streamline our notation,
we denote the state and observation sequences up to time n by x0:n = {x0, · · · ,xn}
and b1:n = {b1, · · · ,bn}, respectively.

Our goal is to estimate the state sequence x0:n, based on (1) and (2) and we
propose to use the minimum mean square error estimator E

[
x0:n|b1:n

]
(see e.g. [1]).

If f n and hn are linear functions and if, in addition, vn and wn are Gaussian random
variables, this conditional mean can be computed by the Kalman filter (KF) [2–4].
The ensemble Kalman filter (EnKF) [5] uses the KF formalism, but updates the
covariance matrix using an “ensemble of particles,” i.e. by Monte Carlo simulations
of the model (1). Because EnKF uses this ensemble approach, it can give good
results even with nonlinear models (1), provided the nonlinearity is not too strong.
Variational data assimilation methods find the mode of the target pdf, i.e. the most
likely state given the data, and often use linearizations and Gaussian approximations
to streamline the computations (see e.g [6–13] and Section 4 for more details on KF,
EnKF and variational data assimilation).

In nonlinear, non-Gaussian situations, one can approximate the conditional mean
using sequential Monte Carlo methods, called particle filters. Particle filters follow
replicas of the system (called particles), whose empirical distribution weakly ap-
proximates the pdf p(x0:n | b1:n) (called the target density), and approximate the
conditional mean by the weighted sample mean [14–16]. A standard particle filter,
also called the sequential importance sampling with resampling (SIR) filter, first
generates a set of particles {xn

i } from the model equation (1) [16–18] and then
weighs these particles by the observation equation (2). The empirical distribution
of the weighted particles forms a weak approximation of the target density at the
current time step. One then removes particles with small weights (which contribute
very little to the approximation of the target density) by “resampling”, (see [14, 16]
and the references therein for efficient resampling algorithms). The SIR filter is
easy to implement, however after several time steps, often only a few of the par-
ticles carry a significant weight, which means that the weak approximation of the
target density is poor. A cure here is to increase the number of particles (so that at
least some carry a significant weight), however it has been shown that the number
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of particles required can grow catastrophically with the state dimension m [19, 20].
Various strategies have been proposed to ameliorate this difficulty, and most of them
focus on finding a better way to generate the samples [16, 21–24].

In what follows, we explain how implicit particle filters [25–29] tackle this prob-
lem. The basic idea is to first look for regions of high probability in the target density
and then focus the particles onto these regions, so that only particles with signifi-
cant weights are generated and the number of particles required remains manageable
even if the state dimension is large. The high probability regions are identified by
particle-by-particle minimizations, and the samples are obtained by solving data-
dependent algebraic equations. The solutions of these equations define a high prob-
ability sample from the target density. Related work can be found in [30, 31].

The remainder of this paper is organized as follows. In section 2 we present the
mathematical formulation of implicit particle filters and highlight special cases of
interests. Several implementations of implicit particle filters are discussed in Sec-
tion 3. In Section 4, the relations with other data assimilation methods are studied.
We present four examples in Section 5 to demonstrate the efficiency and applicabil-
ity of the implicit particle filter. Conclusions are offered in Section 6.

2 Implicit particle filters

The implicit particle filter is a sequential Monte Carlo method for data assimilation
that uses importance sampling. In importance sampling one wants to find a weak
approximation of the pdf, f , of a continuous random variable (called the target pdf),
by generating weighted samples from a known density f0 (called the importance
function), see e.g. [1,33,34]. The weight of the sample X j (obtained by sampling f0),

w(X j) =
f (X j)
f0(X j)

,

is the ratio of the target pdf and the importance function. The N samples X j, j =
1, . . . ,N, with their weights w j normalized so that their sum equals 1, form a weak
approximation of the target pdf f such that

E f [g(x)] =
∫

∞

−∞

g(x) f (x)dx≈
N

∑
j=1

g(X j)w(X j),

for all sufficiently smooth, scalar functions g, and where E f [g(x)] denotes the ex-
pected value of the function g with respect to the pdf f . The key to making im-
portance sampling efficient is choosing a suitable importance function f0, such that
the weights vary little from one sample to the next. In data assimilation, the target
density is the conditional pdf p(x0:n | b1:n). We now present the importance function
generated by the implicit particle filter and describe why it produces samples with a
small variance in the weights.
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For simplicity of presentation, we assume that the model equation (1) is synchro-
nized with the observations (2), i.e. observations bn are available at every model step
(it is not hard to drop this assumption, see Section 2.2). Using Bayes’ rule and the
Markovian property of the model, we obtain the recursive expression:

p(x0:n+1 | b1:n+1) = p(x0:n | b1:n)p(xn+1 | xn)p(bn+1 | xn+1)/p(bn+1 | b1:n). (3)

At the current time n+1, the first term in (3) can be assumed to be known, because
it is the result of our calculations at time n. The denominator is common to all
particles and thus drops out in the importance sampling scheme (where the weights
are normalized so that their sum equals 1).

Suppose that at time n, we have M samples X j = X0:n
j with weights wn

j , j =
1, . . . ,M, whose empirical distribution weakly approximates p(x0:n | b1:n). For each
sample (particle), define a function Fj by

Fj(Xn+1
j ) =− log

(
p(Xn+1

j | Xn
j )p(bn+1 | Xn+1

j )
)

, (4)

where we obtain the first term from the model equation (1), and the second from the
observation equation (2). Note that the arguments of the functions Fj are the state
variables of the jth particle at time n + 1. The previous state of the jth particle, Xn

j

and the current observation bn+1 are merely parameters.
By definition of the Fj’s, the high probability region of the target density corre-

sponds to the region around the global minimum of Fj. Thus, searching for the high
probability region in the target density is equivalent to minimizing the functions Fj.
We first assume that the functions Fj are convex, and carry out this minimization
with standard techniques (e.g. Newton’s method, quasi Newton methods, gradient
descent, see [35, 36]) and obtain samples within these regions by solving the data
dependent equations

Fj(Xn+1
j )−φ j =

1
2

ξ
T
j ξ j, (5)

where
φ j = minFj(Xn+1

j ),

and where ξ j is a realization of an easy-to-sample Gaussian reference variable
ξ ∼ N(0, I), where N(µ,Σ) denotes a Gaussian pdf with mean µ and covariance
matrix Σ , and I is the m-dimensional identity matrix. A Gaussian reference variable
is chosen for simplicity of presentation and is by no means necessary (it may be
suboptimal in some applications). More importantly, a Gaussian reference variable
does not imply a Gaussianity or linearity assumption. All that is needed here is a
reference variable with a high probability close to the origin, so that (5) maps the
high probability region of the reference density to the high probability region of the
target pdf.

The solutions of equation (5) define the samples Xn+1
j , however the solutions are

not unique because (5) connects the m dimensional samples Xn+1
j to the m dimen-
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sional reference variable ξ j. The samples we find thus depend on the map ξ j→Xn+1
j

we chose to solve (5). To obtain a high probability sample Xn+1
j , we chose maps that

satisfy the following conditions (see [26] for detailed explanation): the map should
be (i) one-to-one and onto with probability one (so that the whole sample space is
covered); (ii) smooth near the high-probability region of ξ (so that the weights do
not vary unduly from particle to particle); and (iii) there should be an easy way to
evaluate the Jacobians J =

∣∣∣det
(

∂Xn+1
j /∂ξ j

)∣∣∣ (for efficient implementation).
We will present specific choices for these maps in Section 3, but for now assume

that we can compute these Jacobians. The probability of the sample we obtain is:

p(Xn+1
j ) =

p(ξ j)
J

∝
exp(−ξ T

j ξ j/2)
J

=
exp(φ j−Fj(Xn

j ))
J

=
exp(φ j)

J
p(Xn+1

j | Xn
j )p(bn+1 | Xn+1

j ).

Here we used (5) and (4) to obtain the third and the last equalities, respectively. The
weight of the sample is thus

wn+1
j ∝ wn

j
p(Xn+1

j | Xn
j )p(bn+1 | Xn+1

j )

p(Xn+1
j )

= wn
j exp(−φ j)J. (6)

With these M samples Xn+1
j and the samples X j = X0:n

j from the previous time step,
we can form a sample X̂ j = X0:n+1

j from p(x0:n+1 | b1:n+1) with weight wn+1
j as

in (6). Once one has samples and weights, one can resample the pdf they define so
as to remove some of the low probability particles and reset all the weights to 1/M,
see e.g. [14].

If the functions Fj are not convex, one can use the degeneracy of equation (5) to
replace these functions by convex functions F0

j in (5) in such a way that the focusing
effect is maintained; the weights have to be recomputed so that there is no bias, see
e.g. [26].

Before focusing our attention on implementing the implicit particle filter (see
Section 3), we give more details on the functional form of Fj for some cases of
interest.

2.1 Linear observation function and Gaussian noise

To illustrate the method on a simple example, we assume that the observation equa-
tion is linear, i.e. hn(x) = Hx, where H is a k×m matrix, and that the noise pro-
cesses wn and vn in (1) and (2) are Gaussian with zero mean and known covariance,
i.e vn ∼ N(0,G), wn ∼ N(0,Q), where G is an m×m, real, symmetric positive defi-
nite (SPD) matrix and Q is a k× k SPD matrix. The functions Fj in (4) can now be
written as
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Fj(Xn+1
j ) =

1
2

(
Xn+1

j −µ j

)T
Σ
−1
(

Xn+1
j −µ j

)
+φ j, (7)

where

Σ
−1 = G−1 +HT Q−1H, (8)
K = HGHT +Q, (9)
µ j = Σ

(
G−1 f n(Xn

j )+HT Q−1bn+1) , (10)

φ j =
1
2
(
bn+1−H f n(Xn

j )
)T

K−1 (bn+1−H f n(Xn
j )
)
. (11)

It is clear that φ j = minFj(Xn+1
j ), so that equation (5) becomes(

Xn+1
j −µ j

)T
Σ
−1
(

Xn+1
j −µ j

)
= ξ

T
j ξ j. (12)

We can solve (12) by computing the Cholesky factorization Σ = LLT , and putting

Xn+1
j = µ j +Lξ j. (13)

The Jacobian J = |det
(

∂x
∂ξ

)
| = |detL| is constant (the same for all particles) and

thus needs not be computed. By equation (6), the weights are

wn+1
j ∝ wn

j exp(−φ j). (14)

Moreover, a simple calculation shows that

wn+1
j ∝ wn

j p(bn+1 | Xn
j ).

The above weights are the same as those of a filter that uses the optimal importance
function q̂ = p(xn+1|xn,bn+1) (see [18, 37] and the references therein) . “Optimal”
here refers to “having minimum variance in the weights per particle,” i.e. for a fixed
Xn+1

j , the variance of wn+1
j is zero. The implicit particle filter produces minimum

variance weights in this sense if the observation equation (2) is linear and the obser-
vations are in sync with the model (see Section 4.2 for more details on the optimal
importance function).

2.2 Sparse observations

The assumption that the observations are available at every model step can be re-
laxed. Let r ≥ 1 be the number of model steps between observations (it is an easy
exercise to adjust Fj for the case when the number of model steps between observa-
tions is not constant). The recursive formula (3) becomes

p(x0:r(n+1) | b1:n+1) = p(x0:rn | b1:n)p(xrn+1 | xrn) · · · p(xr(n+1) | xr(n+1)−1)
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×p(bn+1 | xr(n+1))/p(bn+1 | b1:n).

Again, suppose we have M weigthed samples X j = X0:rn
j , j = 1, . . . ,M, from

p(x0:rn | b1:n) and, for each sample, we define a function Fj by

Fj(X rn+1
j , . . . ,X r(n+1)

j ) = − log(p(X rn+1
j | X rn

j ) · · · p(X r(n+1)
j | X r(n+1)−1

j )

×p(bn+1 | X r(n+1)
j )).

With this Fj, one can follow the steps starting with equation (5) to obtain a sample
from p(x0:r(n+1) | b1:n+1). Note that the functions Fj depend on rm variables (the
components of X rn+1:r(n+1)

j ), so that we need to choose an rm-dimensional reference
density. However, the general procedure for generating samples does not change
when the observations are sparsely available in time.

2.3 Models with partial noise

Following [29], we consider the case of “partial noise,” i.e. the model noise,
vn ∼ N(0,G), is Gaussian with singular covariance matrix G. Such models appear
frequently, for example in the discretization of a stochastic partial differential equa-
tion (SPDE) driven by spatially smooth noise (see. e.g. [29, 38]). Another class of
models with partial noise are stochastic dynamical equations supplemented by con-
servation laws. There is typically zero uncertainty in the conservation laws (e.g. the
conservation of mass), so that the model is subject to partial noise [13]. This sit-
uation is similar to that of second-order (in time) stochastic differential equations
(SDE), that appear, for example, in robotics. The second-order equation is often
converted into a set of first-order equations, some of which are trivial (e.g. u′′ = f
is converted into v = u′,v′ = f ) and it is unphysical to inject noise into these trivial
equations.

We use a linear coordinate transformation to diagonalize the state covariance
matrix G [39] to obtain a canonical form of a model with partial noise from (1)
and (2):

x̂n+1 = f̂ (x̂n, ŷn)+ v̂n+1, v̂n+1 ∼ N(0, Ĝ), (15)
ŷn+1 = g(x̂n, ŷn), (16)
bn+1 = ĥ(x̂n, ŷn)+ ŵn. (17)

Here x̂n is a p-dimensional column vector, p < m is the rank of the state covariance
matrix G, and f̂ and ĥ are p-dimensional, respectively k-dimensional vector func-
tions; Ĝ is a non-singular, diagonal p× p matrix, ŷn is a (m− p)-dimensional vector,
and g is a (m− p)-dimensional vector function. For ease of notation, we drop the
hats and, for convenience, we refer to the set of variables xn and yn as the “forced”
and “unforced variables” respectively.
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The key to filtering a model with partial noise is observing that the unforced
variables at time n+1, given the state at time n, are not random. To be sure, yn is
random for any n due to the nonlinear coupling g(xn,yn), but the conditional pdf
p(yn+1 | xn,yn) is the delta-distribution. For a given initial state x0, y0, the target
density is

p(x0:n+1,y0:n+1 | b1:n+1) ∝ p(x0:n,y0:n | b1:n)
× p(bn+1 | xn+1,yn+1)p(xn+1 | xn,yn)

and the corresponding functions Fj as in (4) for models with partial noise are defined
by

Fj(Xn+1
j ) =− log

(
p(bn+1 | Xn+1

j ,Y n+1
j )p(Xn+1

j | Xn
j ,Y

n
j )
)

.

With this Fj, we can use the implicit particle filter as described above.
The difference in filtering models with partial noise is that Y n+1

j is fixed for each
particle, because its previous state, (Xn

j ,Y
n
j ), is known, and because there is no noise

in the equation for the unforced variables yn. That means that the filter only updates
the forced variables Xn+1

j when the observations bn+1 become available. The un-
forced variables Y n+1

j are moved forward in time using the model, as they should
be, since there is no uncertainty in yn+1 given xn,yn. Because the functions Fj de-
pend on the forced variables only, the implicit particle filter reduces in dimension
from m to p (the rank of the state covariance matrix G). This fact makes the implicit
particle filter particularly effective for models with partial noise, because other fil-
tering techniques, e.g. SIR, struggle to make direct use of the structure of the model.

2.4 Combined state and parameter estimation

Next, we consider models with unknown parameters, say θ ∈ Rl , so that the model
equation (1) becomes

xn = f n(xn−1,θ)+ vn−1.

The goal is to estimate both the states and the parameters, i.e. compute the condi-
tional mean E

[
x0:n,θ |b1:n

]
. We approximate the conditional mean by the sample

mean, using weighted samples from p(x0:n,θ |b1:n). A relatively simple way of esti-
mating the parameters is to append a state equation for the parameters of the form

θ
n = gn(xn−1,θ n−1)+ vn−1

θ
.

where gn is a l-dimensional vector function, and vn
θ

is a l-dimensional i.i.d. ran-
dom process. Defining an “extended” state x̂ = (x,θ), the implicit particle filter as
described above can be applied to estimate x̂0:n given the data b1:n. The difficulty
here lies in how to choose the dynamics gn of the parameters θ . In particular, this
approach is questionable if the parameters are known to be constant in time.
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Alternatively, one can use the Markov property of the model and Bayes’ rule to
derive the recursive formula

p(x0:n+1,θ | b1:n+1) = p(x0:n,θ | b1:n)p(xn+1 | xn,θ)p(bn+1 | xn+1)/p(bn+1 | b1:n).

Following the now familiar steps and assuming that we have M samples from
p(x0:n,θ | b1:n), we can define the functions Fj by

Fj(Xn+1
j ,θ j) =− log

(
p(Xn+1

j | Xn
j ,θ j)p(bn+1 | Xn+1

j )
)

.

With these Fj, we can again apply the implicit particle filter as described above.
The details and numerical tests for this method applied to ecological models can be
found in [40].

3 Implementations of the implicit particle filter

The set-up for the implicit particle filter as presented in the previous section is
rather general, i.e. we have a lot of freedom in how we execute the various steps
of the method. The crucial steps are (i) to find the minima of the functions Fj; and
(ii) choose a map that solves the implicit equation (5). In practice, any one of the
standard numerical optimization algorithms, e.g. Newton’s method, quasi-Newton
methods, trust-region methods, or gradient descent, can be used for the minimiza-
tions. However the applicability and efficiency of the minimization algorithms are
problem dependent. For example, it may be very difficult to compute the Hessians
of the functions Fj (for which the derivatives of the model equations are needed),
so that Newton’s method is not applicable but a quasi-Newton method can be used.
If the state dimension is large, and memory limitations become an issue, then a
gradient descent method may be the method of choice for minimization of Fj. We
explain the minimization algorithms we use in the examples in Section 5. In the
present section, we present two efficient ways of solving the implicit equation (5).

3.1 Solution of the implicit equation via quadratic approximation

Inspired by the simplicity of the case for which linear observations are available at
each model step, one can try solving a quadratic equation, rather than the implicit
equation (5). This idea was presented in [26], and is related to the quadratic ex-
pansion construction in [18] (see Section 4.2 for more details). To find a suitable
quadratic equation, expand Fj to second order accuracy around its minimum:

F0
j = φ j +

1
2
(Xn+1

j −µ j)T H j(Xn+1
j −µ j),
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where H j is the Hessian of Fj, evaluated at the minimizer µ j = argmin Fj. With this
F0

j , define the equation

F0
j (Xn+1

j )−φ j =
1
2

ξ
T
j ξ j, (18)

which can be solved efficiently using a Cholesky decomposition of the Hessian H j.
Let L j be a Cholesky factor of H j = L jLT

j . It is easy to verify that

Xn+1
j = µ j +L jξ

j,

solves (18) and that the Jacobian, J =
∣∣det(L j)

∣∣, of this map is easy to calculate,
since it is the product of the diagonal elements of L j. To avoid introducing any bias,
one needs to account for the error we made by solving (18) rather than the true
equation (5) in the weights. With this importance function, we obtain the weights

wn+1
j = wn

j
exp(−Fj(Xn+1

j ))

exp(−ξ T
j ξ j/2)

J,

= wn
j exp(−φ j)

∣∣det(L j)
∣∣exp(F0

j (Xn+1
j )−Fj(Xn+1

j )).

This method of sampling has a geometric interpretation: the target pdf is approx-
imated locally by a Gaussian centered at the mode of the target pdf, and with a
covariance matrix that depends on the curvature of the target pdf at the minimum.
Instead of finding samples from the target pdf, we obtain samples from the local
Gaussian approximation, and account for this error in the weights through the fac-
tor exp(F0

j (Xn+1
j )−Fj(Xn+1

j )). If a Newton or quasi-Newton method is used for
the minimization of Fj, then H j, and often even L j, are already available and this
sampling method is easy to code and numerically efficient.

However, if the Gaussian approximation is not valid, for example, because the
skewness in the target density is significant, the variance of the weights is increased,
which should be avoided. In such cases, exact solution of (5) is advisable and we
present an efficient method for doing so in the next subsection.

3.2 Solution of the implicit equation via random maps

Here we review the approach presented in [28] which solves (5) by the random
change of variables (random map)

Xn+1
j = µ j +λ jLT

j η j, (19)

where λ j is a scalar and η j = ξ j/
√

ξ T
j ξ j is uniformly distributed on the unit

m-sphere (or rm-sphere if the observations are sparse in time), and where µ j =
argmin Fj. The square matrix L j contains all prior information we have about Fj
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and is deterministic and invertible. We will discuss the choice of L j in more detail
below.

By substitution of (19) into (5), we obtain a single algebraic equation in a single
variable λ j:

Fj(µ j +λ jLT
j η j)−φ j =

1
2

ξ
T
j ξ j.

The solution of the above equations defines Xn+1
j through (19). The geometric inter-

pretation of this approach is that we choose a direction η j at random, and then solve
for λ j, which tells us how far we need to search in this direction to hit the level set
of Fj that is defined by the sample from the reference variable ξ .

To compute the weights in (6), we need to compute the Jacobian of the random
map (19), which is:

J = 2|detL j| ρ1−m/2
j

∣∣∣∣λ m−1
j

∂λ j

∂ρ j

∣∣∣∣ ,
where ρ j = ξ T

j ξ j, and m is the dimension of the state space (if the observations
are sparse, m in the above formula is to be replaced by rm). We refer to [28] for
the details of this calculation, however note that the Jacobian is easy to evaluate,
since the scalar derivative ∂λ j/∂ρ j can be computed efficiently by either using finite
differences, or by evaluating

∂λ j

∂ρ j
=

1
2(∇Fj)LT η j

,

where ∇Fj is the gradient of Fj. The weight of the sample we obtained by solving (5)
with the random map (19) is thus

wn
j ∝ wn−1

j exp(−φ j)|detL j| ρ1−m/2
j

∣∣∣∣λ m−1
j

∂λ j

∂ρ j

∣∣∣∣ . (20)

We now discuss the choices of the matrix L j. Suppose we apply our random
map method to the special case we discussed in Section 2.1, i.e. the observation
equation (2) is linear and in-sync with the model. With L j = I, we find that

λ j =
√

ρ j√
ηT

j Σ−1η j

where Σ is given in (8). The weights of the particles become

wn+1
j ∝ wn

j exp(−φ j)(ηT
j Σ
−1

η j)−m/2,

and, since Σ is symmetric, are bounded above and below by the eigenvalues of Σ .
The Jacobian J can vary dramatically from one sample to another, especially if the
largest and smallest eigenvalues of Σ j are separated by a large gap. If we choose L j
such that Σ = LT

j L j, we find λ j =
√

ρ j and J = |detL j|. This Jacobian is constant and
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need not be computed, and with this choice of L j, we sample the optimal importance
function, by solving (5) with the random map (19), see [28].

In the general case, we can use the information on the curvature of Fj we have
in its Hessian H j, by choosing L j to be a Cholesky factor of this Hessian, i.e. H j =
LT

j L j. This choice should speed up the solution of (5), especially if Fj is quadratic or
nearly so. This choice of L j also suggests a “good” initialization for the numerical
computation of the parameter λ j in the random map. One can expect λ to be on the
order of

√
ρ and so that the iterative solution of (5) is initialized with λ 0

j =√ρ j.

4 Comparison with other sequential Monte Carlo schemes

We wish to compare the implicit particle filter with other data assimilation methods,
and point out differences and similarities between these methods and the implicit
particle filter.

4.1 Comparison with the SIR filter

The SIR filter [16] uses the model (1), i.e. p(xn+1|xn), as the importance function,
so that the weights are

wn+1
j,SIR ∝ wn

j,SIRp(bn+1|xn+1). (21)

The SIR filter can be formulated as an implicit particle filter with a different choice
of φ j in (5). Recall that for the implicit particle filter φ j = minFj in (5). If we replace
φ j by

φ j,SIR =− log(p(bn+1|Xn+1
j )), (22)

then (5) becomes

− log(p(Xn+1
j |Xn

j )) =
1
2

ξ
T
j ξ j.

For Gaussian model noise with covariance matrix Q, we thus have

(Xn+1
j −Xn

j )
T Q−1(Xn+1

j −Xn
j ) = ξ

T
j ξ j, (23)

which can be solved by
Xn+1

j = Xn
j +LT

ξ j, (24)

where L is a Cholesky factor of Q = LLT . Note that the Jacobian of this map is con-
stant for all particles (it is the determinant of L), and thus needs not be determined
for computation of the weights. Moreover, computing Xn+1

j by (24) is equivalent to
running the model forward for one time step, so that this implicit particle filter uses
the same importance function as the SIR filter. The weights of the particles of this
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implicit particle filter, given by (6), are therefore also the same as the weights of the
SIR filter in (21).

The SIR filter is thus an implicit particle filter with φ j in (5) replaced by φ j,SIR
in (22). This observation illustrates why the SIR filter requires significantly more
particles than the implicit particle filter (with φ j = minFj): choosing φ j to be the
minimum of Fj in (5) maps the high probability region of the reference variable ξ to
the neighborhood of the minimum of Fj, which corresponds to the high probability
region of the target pdf. Choosing φ j as in (22) on the other hand maps the high
probability region of the reference variable to the high probability region of the
model (1). The overlap of the high probability region of the model with the high
probability region of the target pdf can be very small, and in these cases, the SIR
filter requires a large number of particles to provide accurate state estimates.

4.2 Comparison with optimal importance function filters

A crucial step in designing an efficient sequential Monte Carlo method is “a good
choice” of the importance function. In the context of data assimilation, an “optimal”
importance function can be found in [18, 37] and the references therein:

q̂ = p(Xn+1
j |bn+1,Xn

j ). (25)

Here, “optimal” means that the variance of the weights of a given particle is zero
(but not the variance of the weights of all the particles), and a particle filter which
uses the optimal importance function is often called an optimal importance function
filter. The weights of the optimal particles can be shown to be

ŵn+1
j ∝ ŵn

j p(bn+1 | Xn
j ).

If observations are available at every model step and if, in addition, the model and
observation noise are Gaussian and the observation function hn in (2) is linear, then
the optimal importance function q̂ is Gaussian with mean µ and covariance Σ as in
(10) and (8) [18]. It was shown in Section 2.1 that in this case the implicit particle
filter uses exactly this density as the importance function and that its weights are
proportional to p(bn+1 | Xn

j ). Thus, for this special case, the implicit particle filter
samples the optimal importance function and represents a convenient implementa-
tion of the optimal importance function filter.

In the general case, the optimal importance function is not readily available. One
can rewrite (25) as

q̂ =
p(bn+1|Xn+1

j )p(Xn+1
j |Xn

j )

p(bn+1|Xn
j )

, (26)

and try to compute the denominator e.g. by Monte Carlo using
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p(bn+1|Xn
j ) =

∫
p(bn+1|Xn+1

j )p(Xn+1
j |Xn

j )dXn+1
j .

which is often hard to do. However, even if p(bn+1|Xn
j ) is available, sampling di-

rectly from the optimal importance function may be hard. In this case, one can define
the function

l j = log p(Xn+1
j |bn+1,Xn

j ),

find its maximum λ j = max l j, and expand l j around its maximum:

l j = λ j +
1
2

(
Xn+1

j − γ j

)T
H j

(
Xn+1

j − γ j

)
,

where γ j = argmax l j and H j is the Hessian of l j, evaluated at the maximum. The
quadratic expansion suggests the (suboptimal) Gaussian importance function

q = N(γ j,H−1
j ).

This approach has many similarities to the implicit particle filter when Fj in (5)
is approximated by its quadratic expansion, also see Section 3.1. Specifically, both
method require the solution of an optimization problem (to search for the high prob-
ability regions in the target pdf), and sampling from a multivariate Gaussian density.
However, the implicit particle filter avoids the difficulties which arise in the optimal
importance function filter from the need to compute p(bn+1|Xn

j ) in (26). Since the
computation of this term can be expensive, the implicit particle filter seems to be
more efficient and easier to implement.

4.3 Comparison with the Kalman filter and with variational data
assimilation methods

The Kalman filter (KF) is, strictly speaking, only applicable to linear systems ( f and
h are linear in (1) and (2)), driven by Gaussian noise (both vn and wn in (1) and
(2) are Gaussian) [3, 4]. In this special case, the KF is widely used and efficient
implementations are available for large, linear models. The implicit particle filter
(with one particle) implements the KF for linear dynamics and Gaussian noise, be-
cause (8) and (10) become, upon rearrangement of the terms, the KF formulas.

For nonlinear, non-Gaussian HMM models, the extended Kalman filter (EKF)
uses a linearization of the model and observation equation along with the standard
KF formalism [41]. The ensemble Kalman filter (EnKF) implements the KF step
using a covariance matrix that is approximated by Monte Carlo, i.e. by the sample
covariance of many model runs. This step avoids the often costly computation of
the covariance matrix in the KF formalism, and the EnKF can outperform the KF
in linear systems with a very large state dimension [5]. Moreover, the EnKF injects
the nonlinearity of the model into the KF formalism through the sample covariance
matrix, but relies on a linearization of the observation equation. For this reason, both
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EKF and EnKF can give good results if the nonlinearity is not too strong and if the
number of model steps between observations is not too large. The implicit particle
filter on the other hand tackles the full nonlinear problem and can outperform EnKF
in nonlinear problems [29].

Variational data assimilation finds the most likely state given the data by finding
the mode of the target pdf [6–13]. This mode can be found by minimizing a suitable
cost function which is very similar to the functions Fj used in the implicit particle
filter. Specifically, the cost function in weak constraint 4D-Var is the function Fj,
with Xn

j being a variable (in the context of the filter, Xn
j is a parameter), and with

an additional quadratic term, that corresponds to a Gaussian approximation of prior
information on the state Xn

j (see e.g. [12]). Thus, the computational cost of the im-
plicit particle filter is roughly the cost of a variational method, times the number of
particles required (which should be a relatively small number), since the sampling
can be carried out very efficiently once the minima of the Fj are obtained (see [47]
for a detailed comparison of the implicit particle filter with variational data assimi-
lation). It is also important to note that the minimization of the functions Fj and the
sampling for the different particles can be carried out in parallel.

The main benefits of investing the additional effort and using the implicit par-
ticle filter rather than a variational method are: (i) a variational method computes
the maximum a posteriori estimate (MAP), while the implicit particle filter approx-
imates the minimum mean square error estimate (MMSE); in many situations, e.g.
if the skewness in the target density is significant, the MMSE is a better estimator
than the MAP [1]; (ii) the implicit particle filter provides a quantitative measure
of the uncertainty of its state estimate (e.g. sample covariance or higher moments),
while variational methods only provide a state trajectory, but no error bounds; and
(iii) the implicit particle filter is a sequential method and thus it is relatively easy to
assimilate more observations as they become available, while there are theoretical
and practical issues with the sequential continuation of variational methods.

5 Applications

We demonstrate the applicability and efficiency of the implicit particle filter on four
examples and provide details about the implementation in each of the examples.
The first two examples demonstrate the applicability of the implicit particle filter
to models that exhibit chaotic behaviors. We then consider data assimilation for a
simplified model of the geomagnetic field coupled to the core velocity. Finally, we
consider an ecological model and use the implicit particle filter to assimilate ocean
color data obtained by NASA’s SeaWiFS satellite.
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5.1 The stochastic Lorenz attractor

This example is taken from [28]. We follow [42–44] and consider the stochastic
Lorenz attractor [45]

dx = σ(y− x)dt +g1dW1, (27)
dy = (x(ρ− z)− y)dt +g2dW2, (28)
dz = (xy−β z)dt +g3dW3, (29)

with the standard parameters σ = 10, ρ = 28, β = 8/3, and initial conditions x(0) =
−5.91652, y(0) = −5.52332, z(0) = 24.5723. The noise is chosen equally strong
for all variables, so that g1 = g2 = g3 = g =

√
2. We discretized the continuous

equations by the Klauder-Petersen (KP) scheme [46]

xn+1,∗ = xn +δ f (xn)+gv1,

xn+1 = xn +
δ

2
(

f (xn)+ f (xn+1,∗)
)
+gv2,

where δ is the time step, v1,v2 ∼N(0,δ I) and where f (·) can be read off the Lorenz
attractor (27) - (29). We are content here with an approximation with time step
δ = 0.01 (see [28] for more details on the discretization). Observations of all three
state variables, corrupted by noise with variance 0.1, became available every 0.48
dimensionless time units (every 48 steps). This is a hard data assimilation prob-
lem and some filters miss transitions from one wing of the Lorenz butterfly to the
other [43].

The minimization of the functions Fj was done using Newton’s method, initial-
ized by a free model run without noise (a larger gap between observations can cause
problems here, however a more sophisticated initialization and a more robust min-
imization provide a cure, see [47]). Note that the argument of the Fj’s are the state
variables Xn

j , as well as the intermediate model steps Xn,∗
j . The problem is thus of

dimension 288: 3 dimensions for the Lorenz attractor, times 2 for the intermediate
step x∗ of the KP scheme, times 48 for the gap between observations. If the covari-
ance matrix of the reference variable ξ is the identity matrix I, we are expressing
a vector variable of small variance as a function of a unit reference variable, and
this produces very small Jacobians J which can lead to underflow. One solution is to
rescale ξ which, after all, is arbitrary. What we did instead is keep track of the log-
arithms of the weights rather than the weights themselves wherever we could; this
solved the problem. At each assimilation step, we thus sampled a 288 dimensional
standard normal variate xi j (the reference variable) and computed the random direc-

tion η j = xi j/
√

ξ T
j ξ j to be used in the random map (19). Because we used Newton’s

method for the minimization of Fj, the Cholesky factor L j of the Hessian evaluated
at the minimum was available and we used it in (19). Substitution of the map (19)
into the algebraic equation (5) gave the required equation for λ j, which we solved
by Netwon’s method. The iteration was initialized by choosing λ 0

j =√ρ j and typ-
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ically converged within 4-6 steps. Finally, we computed the weight of the particle
using (20) and the numerical derivative ∂λ/∂ρ , with a perturbation ∆λ = 10−5√ρ .
We repeated this process for each particle and resample with “algorithm 2” in [16].
We decided to resample at every time an observation became available.

To compare the implicit particle filter with an SIR filter, we ran 1000 twin exper-
iments. That is, we ran the model for 960 time steps and produced artificial observa-
tions (corrupted by the assumed noise). This model run was the reference we wished
to reconstruct using the SIR and the implicit particle filters. For each experiment,
the error at time tN = 9.6, is measured by

e = ||xN
re f − xN ||,

where the norm is Euclidean, xN
re f is the reference state, and xN is the reconstruction

by a filter. We computed this error for each twin experiment, and, after running
1000 twin experiments, we computed the mean value of the error norms (mean
error, for short) and the mean of the variance of the error norms (mean variance of
the error, for short). The mean of the error norm is a better estimate for the errors
than the mean error because it does not allow for cancellations. The mean variance
of the error is not the variance of the mean, it is a fair estimate of the error in each
individual run. Our results are in table 1.

Table 1 Filtering results for the Lorenz attractor.

# of Particles Mean error / mean variance of the error
Implicit particle filter SIR

5 0.2192/0.3457 - / -
10 0.2317/0.4905 0.9964/1.9970
20 0.1927/0.1646 0.5352/0.7661
50 - / - 0.4271/0.5445

100 - / - 0.2336/0.1229

The implicit particle filter yielded good results with 20 particles, while an SIR
filter required about 100 particles for comparable accuracy (the results obtained
for the SIR filter are in agreement with those previously reported in [43, 44]). The
reason for the large difference in the number of particles required for these two filters
is as follows. The large gap between observations implies that the SIR importance
function and the target density become nearly mutually singular [19, 20, 26]. The
“unguided” SIR particles are therefore very likely to become unlikely, and only very
few of them carry a significant weight. The particles of the implicit particle filter on
the other hand are guided towards the high probability regions because they are
generated by solving (5), which incorporates information from the data. The larger
number of particles required by the SIR filter thus indicates that the “focusing” of the
particles towards the high probability regions of the target pdf was indeed achieved
by the implicit particle filter.
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The computational cost of these two filters is comparable in this example. The
implicit particle filter requires fewer particles, but the computations for each particle
are more expensive when compared with the SIR filter.

5.2 The stochastic Kuramoto-Sivashinsky equation

We follow [28] and consider data assimilation for the stochastic Kuramoto-Sivashinksy
(SKS) equation

ut +uux +uxx +νuxxxx = g W (x, t)

where ν > 0 is the viscosity, g is a scalar and W (x, t) is a space-time white noise pro-
cess. The SKS equation is a chaotic SPDE that models laminar flames or reaction-
diffusion systems [48, 49] and recently has been used as a large dimensional test-
problem for data assimilation algorithms [44, 50].

We consider the m-dimensional Itô-Galerkin approximation of the SKS equation

dU = (L (U)+N (U))dt +g dW m
t ,

where U is a finite dimensional column vector whose components are the Fourier
coefficients of the solution and where dW m

t is a truncated cylindrical Brownian mo-
tion (BM) [38], obtained from the projection of the noise process W (x, t) into the
Fourier modes. Assuming that the initial conditions u(x,0) are odd with Ũ0(0) = 0
and that dW m

t is imaginary, all Fourier coefficients Uk(t) are imaginary for all t ≥ 0.
Writing Uk = iÛk and subsequently dropping the hat gives

L (U) = diag(ω2
k −νω

4
k )U,

{N (U)}k =−ωk

2

m

∑
k′=−m

Uk′Uk−k′ ,

where ωk = 2πk/L, k = 1, . . . ,m and {N (U)}k denotes the kth element of the vector
N (U). We choose a period L = 16π and a viscosity ν = 0.251, to obtain SKS
equations with 31 linearly unstable modes. This set-up is similar to the SKS equation
considered in [50]. With these parameter values there is no steady state as in [44].
We chose zero initial conditions U(0) = 0, so that the solution evolves solely due
to the effects of the noise. To approximate the SKS equation, we keep m = 512 of
the Fourier coefficients and use the exponential Euler scheme [51], with time step
δ = 2−12 for time discretization (see [28] for details).

We are solving the SKS equations in Fourier variables, but we choose to observe
in physical space (as is maybe physically reasonable). Specifically, we observe the
solution u(x, t) at m/2 equidistant locations and at every model step through the
nonlinear observation operator h(x) = x + x3 . The solution of the algebraic equa-
tion (5) is easiest when the functions Fj is nearly diagonal, i.e., when its lineariza-
tions around a current state are nearly diagonal matrices; this requires in particular
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that the variables that are observed coincide with the variables that are evolved by
the dynamics. Observing in physical space while computing in Fourier space cre-
ates the opposite situation, in which each observation is related to the variables one
computes by a dense matrix. This problem can be overcome using the random map
algorithm presented in section 3.2.

The minimization of Fj was done using Newton’s method, initialized by a free
model run without noise. The Choleksy factor of the Hessian of Fj at the minimum
was used as the matrix L j in (19), and (5) was solved using this random map and a
Newton iteration on λ j. To test the implicit particle filter we ran twin experiments
as in section 5.1. The error at time tn is defined as

en = ||Un
re f −Un

F ||

where the norm is the Euclidean norm and where Un
re f denotes the set of Fourier

coefficients of the reference run and Un
F denotes the reconstruction by the filter,

both at the fixed time tn. Results of 500 twin experiments are shown in figure 1.
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Fig. 1 Filtering results for the SKS equation: the error statistics are shown as a function of the
number of particles for SIR (blue) and implicit particle filter (red). The error bars represent the
mean of the errors and mean of the standard deviations of the errors.

We observe from figure 1 that the implicit particle filter requires far fewer parti-
cles than the SIR filter. Again, the example confirms that the implicit particle filter
focuses its particles on the high probability regions of the target pdf. The focusing
effect is more pronounced in the SKS equation than in the Lorenz attractor (see sec-
tion 5.1), because the dimension of the state space of the SKS equation is 512, and
therefore much larger than the dimension of the Lorenz attractor (dimension 3).
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5.3 Application to geomagnetic data assimilation

The following example is taken from [29]. We wish to apply the implicit particle
filter to a test problem in geomagnetic data assimilation, defined by two SPDE’s

∂tu+u∂xu = b∂xb+ν∂
2
x u+gu∂tW (x, t),

∂tb+u∂xb = b∂xu+∂
2
x b+gb∂tW (x, t),

where, ν = 10−3, gu = 0.01, gb = 1 are scalars, and where W is a spatially smooth
stochastic process [29,52]. We consider the above equations on the strip 0≤ t ≤ 0.2,
−1≤ x≤ 1 and with given boundary and initial conditions. Physically, u represents
the velocity field at the core, and b represents the magnetic field of the earth. The
model is essentially the model proposed in [52], but with additive noise

W (x, t) =
∞

∑
k=0

αk sin(kπx)w1
k(t)+βk cos(kπ/2x)w2

k(t).

where w1
k ,w

2
k are independent BMs and where

αk = βk =
{

1, if k ≤ 10,
0, if k > 10.

(30)

This simple noise model represents a spatially smooth noise which decreases in
amplitude near the boundaries. The continuous equations are discretized using Leg-
endre spectral elements in space, and an implicit-explicit first order scheme in time
(see [29, 53–55]). We are content with an approximation that uses one Legendre
element of order 300 for u and one for b, and a time step δ = 0.002.

The data are the values of the magnetic field b, measured at 200 equally spaced
locations in [−1,1] and corrupted by noise:

zl = Hbq(l) + sV l ,

where s = 0.001 and where H is a k×m-matrix that maps the numerical approxi-
mation b to the locations where data is collected. We consider data that are available
every 10 model steps.

For our choice of αk,βk in (30), the state covariance matrices of the discrete
equations are singular, i.e. the model is subject to partial noise (see section 2.3).
Upon linear coordinate transformation, that diagonalizes the state covariance matrix,
we obtain a model of the form (15)-(17). Because the second derivatives of the
functions Fj are hard to calculate, we use a simple gradient descent algorithm with
line search to carry out the minimization. As in previous examples, the minimization
is initialized by a free model run. Since no information on the curvature of Fj is
available, we set L j in the random map (19) to the identity matrix. Equation (5) is
then solved by a Newton iteration, initialized with λ j = 0 (i.e. we start close to the
minimum of Fj).
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To assess the performance of the implicit particle filter, we ran 100 twin experi-
ments. For each twin experiment, we calculate and store the error at t = T = 0.2
in the velocity, eu = ||u(x,T )− uFilter(x,T ) ||, and in the magnetic field, eb =
||b(x,T )−bFilter(x,T ) ||. After running the 100 twin experiments, we calculate the
mean of the error norms and the variance of the error norms and scale the results by
the mean of the norm of u and b respectively. Figure 2 shows the results.
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Fig. 2 Filtering results for the geomagnetic test problem. The errors of the implicit particle filter
(red), EnKF (purple) and SIR filter (green) are plotted as a function of the number of particles. The
error bars represent the mean of the errors and mean of the standard deviations of the errors.

It is evident from this figure that the implicit particle filter requires few particles
to yield accurate state estimates with less than 1% error in the observed magnetic
field b and less than 15% error in the unobserved velocity u. The SIR filter with
1000 particles gives significantly larger errors (about 10% in the observed variables
b and 20% in the unobserved variable u) as well as much larger variances in the
errors. The EnKF requires about 500 particles to achieve the accuracy of the implicit
particle filter with only 4 particles. These examples thus provide further numerical
evidence that the implicit particle filter can achieve the desired focusing effect and,
as a consequence, is applicable to large dimensional data assimilation problems.

5.4 Assimilation of ocean color data from NASA’s SeaWiFS
satellite

We apply the implicit particle filter in its iterative implementation [27] (which is
not discussed in this review) to a prototypical marine ecosystem model described
in [56]. The model involves four state variables: phytoplankton P (microscopic
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plants), zooplankton Z (microscopic animals), nutrients N (dissolved inorganics),
and detritus D (particulate organic non-living matter). At the initial time t = 0 we
have P(0) = 0.125, Z(0) = 0.00708, N(0) = 0.764, and D(0) = 0.136. The system
is described by the nonlinear ordinary differential equations

dP
dt

=
N

0.2+N
γP−0.1P−0.6

P
0.1+P

+N (0,σ2
P),

dZ
dt

= 0.18
P

0.1+P
Z−0.1Z +N (0,σ2

Z)

dN
dt

= 0.1D+0.25
P

0.1+P
Z− γP

N
0.2+N

+0.05Z +N (0σ
2
N)

dD
dt

= −0.1D+0.1P+0.18
P

0.1+P
Z +0.05Z +N (0,σ2

D).

The variances of the noise terms are σP = P(0), σZ = 0.01Z(0), σN = 0.01N(0), and
σD = 0.01D(0). We discretize the above equations with the stochastic Euler method
(see [46]) with time step δ = 1 day. The growth rate at time step t, γt , follows the
recursion

γt = 0.14+3∆γt , where ∆γt = 0.9∆γt−1 +N (0,σ2
γ ),

with σγ = 0.01. The observations were obtained from NASA’s SeaWiFS satellite
ocean color images and provide a time series (190 data points from late 1997 to mid
2002) for the phytoplankton P by

logb(t) = logP(t)+N (0,σ2
b ),

where σb = 0.3. We apply the implicit particle filter and the standard SIR filter to
find a trajectory of the system consistent with the data. We observe that the implicit
particle filter with only 10 particles does better than the SIR filter with 10 particles,
in the sense that the filtered output matches the data better (see Figure 3). In fact the
SIR filter requires about 100 particles to achieve the accuracy of the implicit particle
filter with only 10 particles. This example thus provides further numerical evidence
that the implicit particle filter can provide accurate state estimates with only a few
particles. Moreover, the example shows that the implicit particle filter can work well
with real data.

6 Conclusion

One of the barriers to the successful application of sequential Monte Carlo methods
is sample impoverishment, i.e. the fact that the number of samples (particles) re-
quired can grow dramatically with the state dimension. The implicit particle filter is
an attempt to overcome this problem. The main idea is to focus the particles so that
they remain within the high probability regions of the target pdf. We have described
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Fig. 3 The concentration of photoplankton as a function of time. Top: data and reconstruction by
the implicit particle filter with 10 particles. Bottom: data and reconstruction by the SIR filter with
10 particles.

the mathematical background of this idea in detail and have showed that the regions
of high probability can be identified by particle-by-particle minimization. Samples
within these regions are obtained by solving data-dependent algebraic equations.
We presented two effective algorithms for solving these equations and discussed the
advantages of various numerical minimization algorithms in three examples. We
have considered special cases of interest (e.g. partial noise), in both theory and in
examples, and made connections with several other data assimilation methods (SIR,
EnKF, and variational methods). Four numerical examples have been given to il-
lustrate the theory and demonstrate the applicability and efficiency of the implicit
particle filter. The examples indicate that the implicit particle filter indeed achieves
the desired focusing effect, and that this focusing effect keeps the number of parti-
cles manageable even if the dimension of the state space is large.
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