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Abstract

The Mori-Zwanzig formalism of statistical mechanics is used to estimate
the uncertainty caused by underresolution in the solution of a nonlinear
dynamical system. A general approach is outlined and applied to a sim-
ple example. The noise term that describes the uncertainty turns out to
be neither Markovian nor Gaussian. It is argued that this is the general
situation.

1 Introduction

There are many problems in science where it is impractical to find fully
resolved numerical solutions of the problems of interest, and one needs to
estimate the resulting uncertainty. For example, there are situations, e.g.
in geophysics and in economics, where one wants to estimate the state of
a system on the basis of noisy underresolved equations supplemented by a
stream of noisy data (see e.g. [4, 7]); this is the “filtering” or “data assim-
ilation” problem, which requires that a probability density of the noise be
provided. There are similar problems in turbulence calculations, where one
wants to model the impact of the motion at one set of scales on the motion
at another scale (see e.g [1, 16]), i.e. one wants to estimate the difference
between a full system and one in which a given set of components is absent.
In such settings, one often makes the assumption that the missing informa-
tion can be represented as white noise, though it is well understood that
this is justifiable only where the scales are separated, i.e., when the com-
ponents that are not computed are faster and smaller than the ones that
one is solving for (see e.g. [20]), and that separation of scales fails to hold
in many problems of interest. Here we present a construction that does not
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rely on separation of scale, and use it to illustrate the intrinsic features of
the problem.

It is important to note that what one needs is an estimate of the uncer-
tainty in the equations, not in the results. For example, in data assimilation,
it is the uncertainty in the equations that is combined with the uncertainty
in the data to produce an estimate of the overall uncertainty in the state.
Consider for example a system of ordinary differential equations of the form

d

dt
φ = R(φ), (1)

with initial data φ(0) = x. Assume that φ has components φ1, φ2, . . . , φK ,
only the first k < K of which can be effectively computed. Define φ̂ =
(φ1, . . . , φk) and φ̃ = (φk+1, . . . , φK). Similarly, partition the right-hand side
of the equation as R = (R̂, R̃) and the data as x = (x̂, x̃). The underesolved
equations that we are able to solve have the form

d

dt
ψ = R(ψ), (2)

where ψ is an approximation of φ̂, R is an approximation of R̂, and ψ(0) = x̂
(when one underresolves, one approximates functions of many variables by
functions of fewer variables, as when one uses k Fourier components to
approximate a differential operator when K > k are needed). The estimate
of the uncertainty is a function n(t), the “noise”, which, added to R, would
make the solution of equation (2) approximate the first k components of the
solution of equation (1); i.e., we are hoping that approximately, in a sense
to be determined, one would have:

d

dt
φ̂ = R(φ̂) + n(t), (3)

with initial data φ(0) = x̂. The term n(t) would be the estimate of the
uncertainty in the underresolved system (2). Equation (3) obviously holds
if one sets

n(t) = R̂(φ)−R(φ̂). (4)

So that, if one can find φ, one can estimate n(t). But if one has φ, there is
no need to find ψ or n.

The problem becomes more interesting if it is randomized as in [11, 27]
and in the Mori-Zwanzig theory (see e.g. [3, 6, 9, 10,28]). Equations (1) and
equations (2) need initial data of different dimension; to compare their so-
lutions one has to decide what to do with the extra components x̃ of the
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initial vector x. In practical problems x̃ is unknown, and we assume that
it is sampled from some suitable known probability density, maybe deduced
from previous knowledge, for example, if the problem comes from weather
forecasting, ample records of previous weathers can be put to use. The func-
tion φ(t) becomes a stochastic process φ(t) = φ(t, ω) where ω is an element
of a probability space, and similarly n = n(t, ω). The advantages of this
probabilistic setting are: (i) in practical problems one is typically interested
in a range of possible missing data, rather than in some specific missing
datum; (ii) in data assimilation problems a probabilistic formulations is
essential; and, most important, (iii) it is often possible to say something
general and useful about the probability density of missing data when one
cannot say anything useful about any particular missing datum (an example
will be given in the present paper). A further discussion of the merits of
this formulation will be given in the concluding section of this paper.

In the present paper we assume in addition that enough information
about the the statistics of φ is available (for specifics, see section 4). Of
course one wishes to eventually solve problems where this information is
not available, but looking at what happens when it is available is already
instructive. We disregard here all sources of uncertainty other than under-
resolution, except for a comment in the conclusions section, though they too
can be handled by the our formalism.

It is of course desirable to make n(t) as small as possible. In the present
paper a low noise intensity is reached by using the Mori-Zwanzig formalism
of statistical mechanics [3, 6, 9, 10, 28], which draws as much information as
possible into the resolved part of the calculation.

In the next section we summarize the Mori-Zwanzig formalism in the
version we need. In section 3 we present our example. In section 4 we
present numerical results. Conclusions are drawn at the end of the paper.

There is a large literature on noise modeling. A general theoretical
overview can be found in [23]. Related numerical work is summarized in [12].
Powerful techniques aimed at geophysical problems can be found in [14,17].
A particularly interesting approach, for situations where the problem can be
approximately viewed as linear, can be found in [18]. The work in the present
paper has a kinship with proposals for stochastic parametrization [24], see
also [8,13], though the mathematical and statistical tools differ, and we are
estimating the noise rather than parametrizing, i.e., estimating the variance
rather than trying to improve the calculation of the mean. The technical
difficulties discussed below make us doubt that the latter goal is achievable,
but if it is, the Mori-Zwanzig formalism could be useful there as well.

The use of the Mori-Zwanzig formalism for estimating uncertainty was
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pioneered in [21, 22] where a much more sophisticated implementation was
used to quantify the uncertainty in a differential equation, without assuming
that the full solution of the problem was already available. However, the
simpler analysis in the present paper lends iself well to the particular purpose
here, which is to demonstrate the persistence of memory in underresolved
dynamics.

2 The Mori-Zwanzig (MZ) formalism

We largely follow here the exposition in [3] with suitable modifications ;
see also [2]. Note that our main tool, equation (11) below, can be derived
without the full MZ formalism, as indicated there; we provide the more
general formalism because it is needed for some comparisons later.

Consider again the system (1) above,

d

dt
φ = R(φ(t)), φ(x, 0) = x. (5)

Denote the solution of this equation by φ(x, t), making its dependence on
the initial conditions explicit. Partition the vector φ as above into resolved
variables φ̂ and unresolved variables φ̃, and similarly set x = (x̂, x̃) and
R = (R̂, R̃). Form the Liouville partial differential equation

ut = Lu, (6)

where u = u(x, t) satisfies the initial condition u(x, 0) = g(x), g is a given
function and

L =
∑

Rj(x)
∂

∂xj
. (7)

One can show that the solution of this equation is u(x, t) = g(φ(x, t)), where
φ(x, t) is the solution of equations (1). In particular, if g(x) = xj , it follows
that u(x, t) = φj(x, t), where xj , φj are the j−th components of respectively
x and φ. Denote the solution of the Liouville equation with datum g(x)
by u = etLg(x) (this is the “semigroup notation”). In this notation, the
identity u(x, t) = g(φ(x, t)) becomes

etLg(x) = g(etLx). (8)

This identity shows that that the Liouville equation, which is linear, is equiv-
alent to the (generally nonlinear) system of ordinary differential equations
(1); the solution of equations (1) provides the solution of the Liouville equa-
tion, and conversely, if the Liouville equation can be solved for any initial
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function g(x), one obtains the i − th component φi of (1) by solving the
Liouville equation with g(x) = xi. One can also prove the identity:

etLL = LetL. (9)

At time t = 0 assign to the initial data x̂ specific fixed values, and
sample the initial data x̃ from a suitable probability density, as described in
the introduction. The conditional expectation E[h(x)|x̂] of a function h of
x given x̂ is well-defined, and is an orthogonal projection of h on the space
of functions of x̂. Define the conditional expectation operator at the initial
time P by Ph = E[h|x̂] for any function h, and define and Q = I−P , where
I is the identity operator. Clearly P, Q are both orthogonal projections and
P +Q = I.

Pick as an initial datum for the Liouville equation the vector x̂, i.e.,
consider only the first k equations in equation (1). Using the notation u =
etLx̂, the Liouville equation becomes:

∂

∂t
etLx̂ = LetLx̂ = etLLx̂ = etL(P +Q)Lx̂, (10)

where the commutation relation (9) has been used. One can readily check
that Lxj = Rj , so that

PLx̂ = E[R̂|x̂],

which is a function of x̂ only; call this function R̄ = R̄(x̂). It follows that
etLQLx̂ = R̂(φ)− R̄(φ̂). Equation (10) is equivalent to the equation

d

dt
φ̂ = R̄(φ̂) +

(
R̂(φ)− R̄(φ̂)

)
. (11)

We propose to set R = R̄ in equation(2) which defines the underresolved
approximation, so that

d

dt
ψ = R̄(ψ). (12)

The noise, as defined in equation (4), is n(t) = R̂(φ)− R̄(φ̂). Equation (11)
is the main tool used in this paper; note that one can get to it by simply
setting R = R̄ in equation (3); the full MZ development is presented because
it is needed in the discussion.

The derivation of the Mori-Zwanzig generalized Langevin equation re-
quires several more steps. Any two linear operators A and B satisfy the
following identity (the Dyson or Duhamel formula):

et(A+B) = etA +
∫ t

0
e(t−s)(A+B)BesA ds. (13)
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Substituting A = QL and B = PL, this becomes:

etL = etQL +
∫ t

0
e(t−s)LPLesQL ds. (14)

Substituting into (11), one finds:

∂

∂t
etLx̂ = etLPLx̂+ etQLQLx̂+

∫ t

0
e(t−s)LPLesQLQLx̂ ds, (15)

where etLx̂ = φ̂. This is the Mori-Zwanzig (MZ) generalized Langevin equa-
tion. The evaluation of the last two terms is in general difficult; an algorithm
was proposed in [2] but it is too laborious for practical use. Equation (15)
is in general not Markovian, and the memory term is in general non-zero, so
that one cannot expect the noise n(t) in equation (11) to have zero mean.

The MZ equation can be simplified by approximating the operator etQL

in the integrand of the third term by etL (see [2, 3]). With this approxima-
tion, the integral term simplifies to:∫ t

0
etLPLQLx̂ds = tetLLQLx̂.

The memory term has been reduced to a differential operator multiplied by
the time t; the time starts at t = 0 when the initial values are assigned and
when there is no uncertainty in the resolved variables.

If one is interested only in the conditional expectations of φ̂(t), one can
premultiply equation by the conditional averaging operator P ; the noise
term then drops out, so that the MZ equation with the simplified integral
term becomes

∂

∂t
Pφ(t) = PetLPLx̂+ tPetLPLQLx̂. (16)

In the absence of the noise term the conditional expectation of a nonlinear
function of φ cannot be ascertained without approximation; we resort here
to “mean field” closure PH(φ) = H(Pφ) for any function H = H(φ), in
particular for the functions G(φ) = PLQL(φ̂) and F (φ) = PL(φ̂), so that

∂

∂t
Φ = F (Φ) + tG(Φ), (17)

where Φ = Pφ. This is the t-model approximation of the MZ equations
(see [2, 3]).
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3 A model problem

The dynamical system to which the theory of the preceding section will be
applied is now presented. It is a Hamiltonian system with m + 1 particles,
one of which is resolved, or “tagged”, and the others are unresolved. The
Hamiltonian is

H = (1/2)(p2 + q2 +
m∑
1

p2
i /gi + (

m∑
1

q2i )/ε+ αq2
m∑
1

q2i ), (18)

where q, p are the position and the momentum of the tagged particle, qi, pi

are the positions and momenta of the m other particles, α, ε, and gi, i =
1, . . . ,m are parameters; ε quantifies the amount by which the unresolved
particles are faster that the tagged particle; α quantifies the strength of the
interaction between the tagged and unresolved particles, the parameters gi

control the periods of the unresolved particles; in the examples below, α =
ε = m−1 and g1 =

√
5/2, g2 =

√
3/2. Except when stated otherwise, m = 2.

The underresolved system is one in which only the tagged particle is solved
for, so that in the notations of the introduction, k = 2 and K = 2m + 2.
Note that the notation for the variables has changed from φ to q, p, the
latter being more transparent for a Hamiltonian system. This system of
equations is a generalization of the example used in [2,3] to demonstrate the
properties of the MZ formalism; it resembles the model problems studied
in [11, 27] but is more strongly nonlinear. This system is not ergodic; to
demonstrate this, figure 1 shows the projection of a single trajectory of the
system on the (q, p) plane; if the system were ergodic, there would be no hole
in the donut. A non-ergodic system is studied because of the expectation
that the constructions below will be used in problems with persistent states,
as in weather forecasting (see e.g. [26]).

A time t = 0 one specifies initial values for q(0), p(0) for the tagged
variable, and one samples the qi, pi from the canonical density e−H/T /Z
conditioned by q(0), p(0); here T is a “temperature” (which will be set equal
to 1 for simplicity) and Z is the partition function. The equations of motion
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Figure 1: Ergodicity check.

are:

d

dt
q =p,

d

dt
p =− q(1 + α

m∑
1

q2i ),

d

dt
qi =pi/gi, i = 1, . . . ,m,

d

dt
pi =− qi(1 + εαq2)/ε, i = 1, . . . ,m. (19)

The Liouville operator L is:

L = p
∂

∂q
−q(1+α

m∑
1

q2i )
∂

∂p
+
∑

(pi/gi)
∂

∂qi
−

m∑
1

(qi(1+εαq2)/ε)
∂

∂pi
. (20)

Elementary calculations yield:

E[q(1 + α

m∑
1

q2i )|q, p] = q

(
1 +

mαε

1 + αεq2

)
, (21)
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while of course E[p|q, p] = p. The equations d
dt φ̂ = E[R̂|φ̂] reduce to a

two-component Hamiltonian system with Hamiltonian

Ĥ = (1/2)(p2 + q2 +m log(1 + αεq2)).

Similarly, the vector R̂(φ)− E[R(φ)|φ̂] has components (0, n(t)) where

n(t) = −q

(
mαε

1 + αεq2
− α

m∑
1

q2i

)
. (22)

In doing these calculations, it was assumed that:

E[f(q, qi, p, pi)|q, p] =
∫
f(q, qi, p, pi)e−H dqi dpi∫

e−H dqi dpi

for an arbitrary function f , where qi stands for q1, q2, . . . , qm, similarly for
pi; dqi stands for dq1 · · · dqm, and similarly for dpi; the Hamiltonian H is a
function of all the variables. The integrations are over the whole hyperplane
where q and p are constant; the non-ergodicity of the system is not taken
into account.

Suppose one wants to calculate the conditional expectation of the re-
solved variables q, p given their initial values q(0), p(0). In the low-dimensional
example here this calculation can be done from first principles. Given q, p at
time t = 0, one can repeatedly sample the coordinates and momenta of the
unresolved particles from the initial probability density e−H/Z; for each set
of initial data, one can solve the full system of equations up to a time t; one
can then average the values of q(t), p(t) in these solutions; the result is, by
definition, the conditional expectations E[q(t)|q(0), p(0)], E[p(t)|q(0), p(0)].

On the other hand, one can derive and solve the MZ equations in the
t−model approximation. Elementary calculations show that these equations
reduce to:

d

dt
Q =P, (23)

d

dt
P =−Q(1 +

mαε

1 + αεQ2
)− 2mα2ε2Q2Pt

(1 + αεQ2)2
, (24)

where Q = E[q(t)|q(0), p(0)], P = E[p(t)|q(0), p(0)]. (For a related example
where the intermediate steps in the derivations are presented in detail, see
[3]).

In figure 2 the values of Q = E[q(t)|q(0), p(0)] computed from first prin-
ciples, with no approximations other than use of the law of large numbers,
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Figure 2: Time decay of conditional expectations: t-model (thick line) vs.
the truth (thin dashed line).

are compared with the results of t-model, with m = 2. It should be obvious
that the MZ formalism would give less noisy solutions when m, the number
of unresolved particles, increases, because then the instantaneous average of
their effects on the tagged particle approaches its average with respect to the
invariant measure, making the problem less interesting. We list again the
approximations used in deriving the t−model results: (i) the substitution
etQL = etL in the memory term; (ii) the mean field approximation; (iii) no
account taken of the nonergodicity of the dynamics; in addition, (iv), the
measure with density e−H/Z is invariant at equilibrium, but since at t = 0
the location and momentum q, p of the tagged particle are fixed, the system
is not in equilibrium. One cannot expect the agreement in figure 2 to be
perfect.

The conditional expectations decay in time because, in the presence of
noise, the predictive value of initial data decays in time. The uncertainty
in the unresolved data affects the resolved variables, each random solution
goes its own way, and while each preserves the Hamiltonian, the average of
the solutions converges to the equilibrium average, which here is zero. The
decay in the expected value is due entirely to the uncertainty.
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4 Numerical analysis of the noise

The program outlined in section 2 will now be implemented in the special
case described in the preceding section. The first step is the analysis of
the noise term n(t) described in equation (22). We have assumed that the
noise is known in principle– if the solutions of the full system are known,
formula (22) above represents the noise. To be useful, for example in data
assimilation, one needs an explicit representation of the noise in terms of a
small number of parameters, and the goal in the present section is to derive
such a representation approximately.

The function q(t) is resolved and therefore available at every step, so the
function one has to represent is:

z(t) = n(t)/q(t) = − mαε

1 + αεq2
+ α

m∑
1

q2i , (25)

The system (1) is stationary with an invariant canonical probability
density e−H/Z. Initial data (including data for the tagged variable) were
sampled from this invariant density repeatedly; for each initial vector, the
differential equations (19) were solved numerically, the function z(t) was
evaluated, and the covariance function C(τ) = E[z(0)z(τ)] was computed.
We observed that as τ → ∞, C(τ) converged to a constant A. We exhibit
this convergence in table 1, where we list values of C(τ) for various values
of τ , as well as values of the integrated covariance C∗(τ) = τ−1

∫ τ
0 C(s)ds

which, in this oscillatory system, converge to their limit faster than C(τ) as
τ increases. We then decomposed C(τ) in the form:

C(τ) = β(τ) +A, (26)

where β(τ) tends to zero as τ increases. Furthermore, for each set of initial
data, the quantity τ−1

∫ τ
0 z(0)z(s)ds, whose expected value is C(τ), individ-

ually converged to a limit, say a, which is a function of the random initial
values, so that a = a(ω), with

A = E[a], (27)

where A is the constant in equation (26). The parameter a is a “persistence
parameter”, embodying the fact that in a non-ergodic system the initial
values are never fully forgotten. It was pointed out in section 2 that one
cannot expect n(t) to have a zero mean. The variable a is roughly log-
normal; in figure 3 we display a histogram of log a. The calculations that
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Table 1: Convergence of C(τ) to a limit
τ C(τ) C∗(τ)
0 0.1967 0.1967
1 0.0046 0.1018
2 0.1771 0.0961
3 0.0289 0.0999
4 0.1398 0.0943
5 0.0621 0.0971
6 0.1072 0.0940
7 0.0863 0.0949
8 0.0909 0.0941
9 0.0927 0.0935
10 0.0922 0.0941
11 0.0860 0.0928
12 0.1009 0.0937
13 0.0783 0.0926
14 0.1054 0.0932
15 0.0765 0.0926
16 0.1062 0.0928
17 0.0787 0.0926
18 0.1041 0.0926
19 0.0828 0.0927

produced these figures were performed with a fourth-order Runge-Kutta
method with time step k = 0.05, repeated 20000 times to get the statistics.

The stochastic process n(t) was modelled as the sum of a stationary time
series b(t, ω), with a discrete step k and with a covariance that approximates
β(τ), to which, at each step, was added the square root of a sample of the
persistence parameter a, sampled at time t = 0 and left constant during
each time evolution; this satisfies equation (26). The covariance of the time
series was approximated by a covariance of the form C(`k) = β0 d

|`|, where
` is an integer, the coefficient β0 is read from table 2, and the parameter
d is obtained by a least-squares fit of C(`k) to the the computed function
β(τ) in the interval [0, τ0], where τ0 is the first zero of β(τ). In the case
where k = 0.05 and n = 2, this gave the value d = .902; if one changes the
numerical time step from k = 0.05 to k = k∗, d becomes d∗ = d(k∗/0.05).
With this representation of C(`k), the time series b(`k) becomes a two-step
recursion, so that if b(jk) has been sampled at time jk and its value was
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Table 2: Computed covariances
τ C(τ) β(τ)

0.00 0.1967 0.1008
0.05 0.1953 0.0994
0.10 0.1917 0.0958
0.15 0.1860 0.0901
0.20 0.1782 0.0823
0.25 0.1686 0.0727
0.30 0.1574 0.0615
0.35 0.1449 0.0490
0.40 0.1313 0.0354
0.45 0.1170 0.0212
0.50 0.1024 0.0065
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Figure 3: Histogram of log a.

B(jk), then at time (j+1)k the sample value is B((j+1)k) = d ·B(jk)+ ξ,
where ξ is sampled from an independent Gaussian distribution with mean
zero and variance β0(1−d2) (see e.g. [3,25]). The values of a, one per sample
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of the initial data, were sampled using the histogram above.
The modeled stochastic process is the estimate of the uncertainty in the

underresolved system we propose to use when an explicit representation of
the noise is needed, for example in data assimilation. Note that an equilib-
rium distribution of n(t) is used though the system (19) is solved with some
of the data having fixed values, i.e., it is not in equilibrium. This parallels
the approximations made in the application of the MZ formalism in section
2.

As a check on the validity of this representation, consider the solution of
the system (3) with n(t) sampled with the help of this representation. The
system d

dtψ = R̄(ψ) is Hamiltonian, so that the decay of the solutions of

d

dt
ψ = R̄(ψ) + n(t), (28)

which should match the true decay, is due entirely to the presence of the
noise n(t) = p(t)z(t). In figure 4 we compare the average of the solutions of
equation (28), with fixed initial values but random forcing n(t), to the exact
average computed in section 3.
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Figure 4: Time decay of conditional expectations: the noise model (thick
line) vs. the truth (thin dashed line).

In figure 5 we compare the histogram of the values of q(t) at time t = 20
(a long time) obtained by solving repeatedly the full system (19), with the
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histogram obtained by solving the reduced system (28) where the noise is
sampled from the representation above. The random equations (28) were
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Figure 5: Histograms of q(t) at time t=20: the noise model vs. the truth.

solved by the Klauder-Petersen scheme [15]; a rationale for this choice can
be found in [19]. The time step was k = 0.01. Note that equations (28)
can be interpreted as a numerical implementation of the full MZ Langevin
equation (15).

These comparisons validate the representation of the noise; indeed, the
conditional expectations here are significantly closer to the truth than the
one obtained with the t-model approximation.

5 Conclusions

In subsequent publications we expect to demonstrate the use of the for-
malism presented in this paper in more interesting cases. We think that
the features of the noise seen in the particular case discussed above– the
fact that it is non-Gaussian and non-Markovian – are general, and that the
practice of data assimilation should take this into account.

The non-Gaussianity is not surprising. The equations solved are non-
linear and their invariant measure is non-Gaussian, so that there can be no
expectation that the uncertainty in their solution is Gaussian. The strongly
non-Markovian nature of the noise is more interesting. It has been built
into the model by the assumption that the only randomness is in the the
initial data, while the time evolution is deterministic. This is the right as-
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sumption for the assessment of the uncertainty due to underresolution in
differential equations. The fully resolved true solution of the problem sat-
isfies a differential equation, one whose solution one may be unable to find,
but a differential equation none-the-less. The underresolved system one can
solve approximates a differential equation. The difference between solutions
of differential equations cannot be memoryless. These comments remain
valid if the equations are chaotic- the size of the uncertainty may grow,
but chaotic dynamics described by differential equations are not memory-
less either. The same is true if one chooses to model unresolved inputs as
stochastic processes; they may modify the memory but not cancel it out.

The present paper complements the work in [5], where it was shown
that in physically reasonable vector-valued data assimilation problems, the
various one-time components of the noise must be correlated; in particular,
they must be spatially correlated if the several components describe physical
variables estimated at different spatial points. In the present paper we show
that the noise components must be correlated in time as well.
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