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Abstract

A sampling method for spin systems is presented. The spin lattice is
written as the union of a nested sequence of sublattices, all but the last
with conditionally independent spins, which are sampled in succession
using their marginals. The marginals are computed concurrently by a
fast algorithm; errors in the evaluation of the marginals are offset by
weights. There are no Markov chains and each sample is independent of
the previous ones; the cost of a sample is proportional to the number of
spins (but the number of samples needed for good statistics may grow
with array size). The examples include the Edwards-Anderson spin glass
in three dimensions.
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1 Introduction.

Monte Carlo sampling in physics is synonymous with Markov chain Monte Carlo
(MCMC) for good reasons which are too well-known to need repeating (see e.g.
[2],[17]). Yet there are problems where the free energy landscape exhibits multi-
ple minima and the number of MCMC steps needed to produce an independent
sample is huge; this happens for example in spin glass models (see e.g. [13],[16]).
It is therefore worthwhile to consider alternatives, and the purpose of the present
paper is to propose one.

An overview of the proposal is as follows: Consider a set of variables (“spins”)
located at the nodes of a lattice L with a probability density P that one wishes
to sample. Suppose one can construct a nested sequences of subsets L0 ⊃
L1 ⊃ · · · ⊃ Ln with the following properties: L0 = L; Ln contains few points;
the marginal density of the variables in each Li is known, and given values of
the spins in Li+1, the remaining variables in Li are independent. Then the
following is an effective sampling strategy for the spins in L: First sample the
spins in Ln so that each configuration is sampled with a frequency equal to its
probability by first listing all the states of the spins in Ln and calculating their
probabilities. Then sample the variables in each Li−1 as i decreases from n− 1
to zero using the independence of these variables, making sure that each state
is visited with a frequency equal to its probability. Each state of L = L0 is then
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also sampled with a frequency equal to its probability, achieving importance
sampling; the cost of each sample of L is proportional to the number of spins
in L, and two successive samples are independent. This can be done exactly in
a few uninteresting cases (for example in the one-dimensional Ising model, see
e.g. [15]), but we will show that it can often be done approximately. The errors
that come from the approximation can then be compensated for through the
use of sampling weights. The examples shown below include spin glass models.

The heart of the construction is the fast evaluation of marginals, of which
a previous version was presented in [9]; this is the subject of section 2. An
example of the nested sets needed in the construction above is presented in sec-
tion 3. The construction is in general approximate, and the resulting errors are
to be compensated for by weights, whose calculation is explained in section 4;
efficiency demands a balance between the accuracy of the marginalization and
the variability of the weights, as explained in sections 4 and 6. The fast evalu-
ation of marginals requires a sampling algorithm but the sampling algorithm is
defined only once the marginalization is in place; this conundrum is resolved by
an iteration which is presented in section 5; two iteration steps turn out to be
sufficient.

The algorithm is applied to the two-dimensional Ising model in section 6; this
is a check of self-consistency. Aspects of the Edwards-Anderson (EA) spin glass
model three dimensions are discussed in section 7. Extensions and conclusions
are presented in a concluding section.

A Monte Carlo scheme without chains for spin systems has been previously
considered in [6], and used to examine the neighborhood of a critical point in
[20]. The construction of marginals explained below and in the earlier paper
[9] is a renormalization in the sense of Kadanoff (more precisely, a decimation)
[15]; renormalization has been used by many authors as a tool for speeding
up MCMC, see e.g. [3],[6],[14] . A construction conceptually related to the
one here and also based on marginalization, but with a Markov chain, was
presented in [25]. An alternative construction of marginals can be found in
[21]. There is some kinship between the construction here and the decimation
and message passing constructions in [7],[12]. The specific connection between
marginalization and conditional expectation used here originated in work on
system reduction in the framework of optimal prediction, see [10],[11].

The results in this paper are preliminary in the sense that the marginalization
is performed in the simplest way I could imagine; more sophisticated versions
are suggested in the results and conclusion sections. Real-space renormalization
or decimation and the evaluation of marginals are one and the same, and the
present work could be written in either physics or probability language; it is the
second option that has been adopted.

All the examples below are of spin systems with two-valued spins and near-
neighbor interactions in either a square lattice in two dimensions or a cubic lat-
tice in three dimensions. The Hamiltonians have the formH = −

∑
si,j,k

∑′
Ji,j,k,`si′,j′,k′

(with one subscript less in two dimensions), where the summation
∑′ is over

near neighbors. In the Ising case the Ji,j,k,` are independent of the indices, in
the spin glass case Ji,j,k,` are independent random variables; the index ` labels
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the direction of the interaction.

2 Fast evaluation of approximate marginals.

In this section we present an algorithm for the evaluation of marginals, which
is an updated version of the algorithm presented in [9]. For simplicity, we
assume in this section, as in [9], that the spins live on a two-dimensional lattice
with periodic boundary conditions (the generalization to three dimensions is
straightforward except for the geometrical issues discussed in section 3). We
show how to go from L0, the set of spins at the points (i, j) of a regular lattice
whose probability density is known, to L1, set of spins at the points such that
(i+ j) is even, and whose marginal is sought. The probability density function
(pdf) of the variables in L1 can be written in the form P0 = eW

(0)
/Z, where

W (0) = −βH, β is the inverse temperature, Z is the normalization constant,
and the Hamiltonian H has the form specificed in the introduction. To simplify
notations, write J̃i,j,` = −βJi,j,` and then drop the tildes, so that

W (0) =
∑

si,j (Ji,j,1si+1,j + Ji,j,2si,j+1) . (1)

The si,j take the values ±1.
Let the marginal density of the spins in L1 be P1. One can always write

P1 = eW
(1)
/Z, where Z is the same constant as in the pdf of P0. Call the set of

spins in L1 “Ŝ”, and the set of spins in L0 but not in L1 “S̃”, so that S = Ŝ ∪ S̃
is the set of spins in L0. By definition of a marginal,

P1(Ŝ) = eW
(1)

=
∑
S̃

eW
(0)(S)

or

W (1) = log
∑
S̃

eW
(0)(S), (2)

where the summation is over all the values of the spins in S̃. Extend the range of
values of the spins in Ŝ (but not S̃) to the interval [0,1] as continuous variables
but leave the expression for the Hamiltonian unchanged (this device is due to
Okunev [19] and replaces the more awkward construction in [9]). Differentiate
equation (2) with respect to one of the a newly continuous variables s = si,j
(we omit the indices (i, j) to make the formulas easier to read):

∂W (1)

∂s
= W (1)′ =

∑
S̃
∂W (0)

∂s eW
(0)(S)∑

S̃ e
W (0)(S)

,

or

∂W (1)

∂s
= E

[
∂W (0)

∂s
| Ŝ
]
, (3)
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where E[· | Ŝ] denotes a conditional expectation given Ŝ. A conditional expec-
tation given Ŝ is an orthogonal projection onto the space of functions of Ŝ, and
we approximate it by projecting onto the span of a finite basis of functions of
Ŝ.

Before carrying out this projection, one should note the following property
of W (1)′ = ∂W (1)

∂s : take two groups of spins distant from each other in space, say
S1 and S2. The variables in these groups should be approximately independent
of each other, so that their joint pdf is approximately the product of their
separate pdfs. The logarithm of their joint pdf is approximately the sum of
the logarithms of their separate pdfs, and the derivative of that logarithm with
respect to a variable in S1 should not be a function of the variables in S2. As
a result, if one expands ∂W

∂s at s = si,j , one needs only to project on a set of
functions of si,j and of a few neighbors of the point (i, j). It is this observation
that makes the algorithm in the present section effective, and it is implied in
the Kadanoff construction of a renormalized Hamiltonian, see e.g. [15].

As a basis on which to project, consider, following Kadanoff, the polynomials
in Ŝ of the form: ψp,q =

∑
i,j si,jsi+p,j+q for various values of p, q, as well as

polynomials of higher degree in the variables Ŝ. Define ψ′p,q = ∂ψp,q/∂si,j ;
the functions ψ′p,q involve only near neighbors of si,j (for example, if ψ1,1 =∑
`,k s`,ks`+1,k+1, then ψ′1,1 = 2(si+1,j+1 +si−1,j−1) (no summation). Write the

approximate conditional expectation of W (1)′ as a sum:

E[W (1)′ | Ŝ] =
∑

ap,qψ
′

p,q + · · · . (4)

Each function ψp,q embodies an interaction, or linkage, between spins (p, q)
apart, and this is an expansion in “successive linkages”. The functionsW (0),W (1),
are invariant under the global symmetry s → −s, and only polynomials hav-
ing this symmetry need to be considered (but see the discussion of symmetry
breaking in section 6). For the reasons stated above, this series should converge
rapidly as p, q increase. Evaluate the coefficients in (4) by orthogonal projection
onto the span of the ψ′p,q. This produces one equation per point (i, j) (unless
the system is translation invariant, like the Ising model, in which case all these
equations are translates of each other). Assume furthermore that one has an
algorithm for sampling the pdf P0 = eW

(0)
/Z (this is not trivial as the goal

of the whole exercise is to find good ways to sample P0; see section 5). The
projection can then be carried out by the usual method: reindex the basis func-
tions with a single integer, so that they become ψ1, ψ2, . . . , say ψ1 = ψ1,1 etc.;
at each point (i, j) estimate by Monte Carlo the entries ap,q = E[ψpψq] of a
matrix A, and the entries bp = E[W (0)′ψp] of a vector b, where E[·] denotes an
expectation. The projection we want is

∑
apψ

′
p, where the coefficients ap are

the entries of the vector A−1b (see e.g. [11]). In the current paper we use only
the simplest basis with ψ1,1, ψ1,−1, ψ−1,1, ψ−1,−1 (functions such as ψ0,1 or ψ1,0

do not appear because they involve spins not in Ŝ). In three dimensions also
we use basis functions of the form

∑
si,jksi′,j′k′ where (i′, j′, k′) is a near neigh-

bor of (i, j, k) on a reduced lattice. The locality of the functions ψ′ make the
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algorithm efficient; more elaborate bases for the Ising case can be found in [9]
and in section 6 below. We have not invoked here any translation invariance, in
view of later applications to spin glasses. For the Hamiltonian (1), the quantity
W (0)′ = ∂W (0)

∂s for s = si,j is

∂W (0)

∂s
|i,j= Ji,j,1si+1,j + Ji−1,j,1si−1,j + Ji,j,2si,j+1 + Ji,j−1,2si,j−1. (5)

The marginal density of the variables in L2 (the set of points (i, j) such that both
i and j are odd), is obtained by projecting on the basis functions ψ0,2, ψ0,−2,
ψ2,0, ψ−2,0, etc. A single sample of all the spins in L0 can be used to generate
samples of the inner products needed to find the coefficients in the projections on
all the sublattices; it is not a good idea to use the marginal of L1 to evaluate the
marginal of L2, etc., because this may lead to a catastrophic error accumulation
[9],[22]; it is the original W 0′ = ∂W (0)

∂s that is projected in the expansions at the
different levels.

The last step is to reconstruct W (1) from its derivatives W (1)′ . In the Ising
(translation invariant) case, this is trivial: W (1)′ =

∑
apψ

′

p implies W (1) =∑
apψp. In the spin glass case, there is a minor conceptual (thought not prac-

tical) difficulty. For the various computed functions W (1)′ to be derivatives of
some W (1) their cross derivatives must be equal. However, this equality requires
an equality between coefficients evaluated at different points (i, j) of the lattice.
For example, if ψ1 after renumbering is ψ1,1 before the renumbering in the no-
tations above, and ψ3 is ψ−1,−1 before the renumbering, then the coefficient
a3 at the point (i, j) should equal the coefficient a1 at the point (i − 1, j − 1),
and indeed these coefficients describe the same interaction between the spins
at (i, j) and (i− 1, j − 1). However, these coefficients are computed separately
by approximate computations, and therefore, though closely correlated (with a
correlation coefficient typically above .95), they are not identical. This is not a
practical difficulty, because the replacement of one of these coefficients by the
other, or of both by some convex linear combination of the two, does not mea-
surably affect the outcome of the calculation. The conceptual issue is resolved
if one notices that (i) for every lattice Lj , except the smallest one Ln, one needs
the coefficients ap at only half the points, and using the coefficients calculated
at these points is unambiguous, and (ii) allowing these coefficients to differ is
the same as writing the Hamiltonian W as (s,Ms) where s is the vector of spins
and M is an asymmetric matrix. However, the values of W are the same if M
is replaced by its symmetric part, which means replacing each of the two values
of a coefficient by the mean of the two values. If this is done everywhere the
cross derivatives become equal.

Finally, a practical comment. One may worry about a possible loss of accu-
racy due to the ill-conditioning of a projection on a non-orthogonal polynomial
basis. I did develop an approximate Monte Carlo Gram-Schmidt orthogonaliza-
tion algorithm and compared the resulting projection with what has just been
described; I could see no difference.
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3 The nested sublattices.

In this section we construct nested sequences of sublattices L = L0, L1, . . .
such that the spins in Lj are independent once those in Lj+1 are determined.
There is nothing unique about this construction; the nested sequences should
have appropriate independence and approximation properties while leading to
efficient programs.

The two-dimensional case was already discussed in the previous section:
assume L = L0 is the set of nodes (i, j), i, j, integers. We can choose as the next
smaller array of spins L1 the set of spins at the location (i, j) with i + j even;
then the spins in L0 are independent once in L1 are known. The next lattice L2

is the one where i, j are both odd; if the marginal on L1 is approximated with
the four basis functions described in the previous section, then the spins in L1

are independent one those in L2 are given. From then on the subsets Li can be
constructed by similarity. If periodic boundary conditions are imposed on L0,
they inherited by every successive sublattice.

If one wants to carry out an expansion in a basis with more polynomials, the
requirement that the spins in Li be independent once those in Li+1 are known
places restrictions on the polynomials one can use; for example, the polynomial∑
si,jsi+2,j for i, j such that i + j is even is a function of only the spins in L1

but it cannot be used, because the spins at points where i+ j is even while each
of i, j is odd would not be independent once the spins in L2 are known, given
the linkage created by this added polynomial. This places creates a restriction
on the accuracy of the various marginals; see also the discussion in section 6.
However, the point made in the present paper is that significant inaccuracy in
the marginals can be tolerated.

The analogous construction in three dimensions is neither so simple nor
unique. Here is what is done in the present paper: L0 = L consists of all the
nodes on a regular cubic lattice, i.e., the set of points (i, j, k) where i, j, k are
integers between 1 and N and N is a power of 2.

L1 consists of the points(i, j, k) where i+j is even for k odd and odd when k is
even; the neighbors of (i, j, k) in L1 are the 8 points (i, j±1, k±1), (i±1, j±1, k).

L2 consists of the points (i, j, k) where i is even, j is odd and k is even. The
neighbors of a point (i, j, k) in L2 are the 12 points (i ± 1, j, k ± 1), (i ± 1, j ±
2, k ± 1).

L3 consists of the points (i, j, k) where i, j, k are all odd; the neighbors of
(i, j, k) are (i± 2, j, k), (i, j ± 2, k), (i, j, k ± 2). This sublattice is similar to the
original lattice with the distance between sites increased to 2; the next lattices
up can then be obtained by similarity.

This process of constructing sublattices with ever smaller numbers of spins
stops when one reaches a number of spins small enough to be sampled directly,
i.e., by listing all the states, evaluating their probabilities, and picking a state
with a frequency equal to its probability. One has to decide what the smallest
lattice is; the best one could do in this sequence is a lattice similar to L2 with
the points (i, j, k) where i − 1 = 2`, j − 1 = 2`, and k = 2` for an integer `
chosen so that there are 16 points in this smallest lattice. Here too each lattice
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inherits periodic boundary conditions from the original lattice; on the smallest
lattice one notes that due to periodicity i+2` = (i−2`)mod(N) so that some of
the neighbors of a points (i, j, k) are not distinct and this must be reflected in
the evaluation of the last Hamiltonian, or else all the linear systems one solves
in the last projection step are singular.

The polynomial basis used in this paper, except in the diagnostics sections,
consists at every level of polynomials of the form ψm =

∑
si,j,ksim,jm,km , where

(i, j, k) is a point in the sublattice Lm and (im, jm, km) is one of its near neigh-
bors on that sublattice.

4 Sampling strategy and weights.

If the marginals whose computation has just been described were exact, the algo-
rithm outlined in the introduction would be exact. However, the marginals are
usually only approximate, and one has to take into account the errors in them,
due both to the use of too few basis functions and to the errors in the numerical
determination of the projection coefficients. The idea here is to compensate for
these errors through appropriate weights.

Suppose one wants to compute the average of a function h(S) of a random
variable S, whose pdf is P (x), i.e., compute E[f(S)] =

∫
h(x)P (x)dx. Suppose

one has no way to sample S but one can sample a nearby variable S0 whose pdf
is P0(x). One then writes∫

h(x)P (x)dx =
∫
h(x)

P (x)
P0(x)

P0(x)dx

= E

[
h(S0)

P (S0)
P0(S0)

]
∼=

1
Zs

∑
h(S0i)wi,

where the S0i are successive samples of S0, i = 1, . . . , Ns, wi = P (S0i)/P0(S0i)
are sampling weights, and Zs =

∑
wi (see e.g. [17]). In our case, P is the true

probability density eW
(0)
/Z and P0 is the probability density of the sample S0i

produced by the algorithm we describe, whose pdf P0 differs from P because
the marginals used are only approximate.

The probability P0 of a sample S0 = (si,j , . . . , sN,N ) has to be computed
as the sample is produced: the probability of each state of the spins in Ln is
known and therefore the probability of the starting sample of Ln is known; each
time one samples a spin in Lj , j < n, one has choices whose probabilities can be
computed. As a practical matter, one must keep track not of the probabilities
themselves but rather of their logs, or else one is undone by numerical underflow.
Note that in the evaluation of P/P0 the factor Z−1 remains unknown, but as
Z is common to all the samples, this does not matter. (and this remark can be
made into an effective algorithm for evaluating Z and hence the entropy). In
practice I found it convenient to pick a value for Z so that E[log(P/P0)] = 0.

In practice, for lattices that are not very small, there is a significant range
of weights, and there is a danger that the averaging will be dominated by a few
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large weights, which increase the statistical error. This issue has been discussed
before (see e.g.[17]) where it is suggested that one resort to “layering”; this is
indeed what we shall do, but more cautiously than suggested in previous work.
Suppose one caps all weights at some value W , i.e., replace the weights wi by
w′i = min(wi,W ). The effective number of samples in the evaluation of the
variance is NW +

∑
(wi/w), where NW is the number of samples with wi ≥W ,

and the summation is over the samples with wi < W . Define the fraction f as
the fraction of the samples such that wi > W (so that w′i = W ); as W increases
the fraction f tends to zero. The averages computed by the algorithm here
depend on f (or W ) and so does the statistical error; one has to ascertain that
any result one claims is independent of f . Typically, as the size of the lattice
increases, the range of weights increases, and therefore the effective number of
samples decreases for a given number of samples Ns. What one has to do is
check that the results converge to a limit as f decreases while the number of
samples is still large enough for the results to be statistically significant. This
may require an increase in Ns as N increases.

5 Bootstrapping the sampling.

So far it has been assumed that one can sample the density eW
(0)
/Z well enough

to compute the coefficient in the Kadanoff expansion (4) of the marginals. How-
ever, these coefficients are needed to make the sampling efficient when it would
not otherwise be so, and the sampling has to be “bootstrapped” by iteration so
it can be used to determine its own coefficients.

First, make a guess about the coefficients in (4 ), say, set a`,mi,j = a`,m,0i,j for
the `−the coefficient at the point i, j in the sublattice Lm, where the numbers
a`,m,0i,j are some plausible guesses. My experience is that it does not much matter
what these guesses are; I typically picked them to be some moderate constant
independent of i, j,m, `. Use these coefficients in a sampling procedure to find
new coefficients a`,m,1i,j , and repeat as necessary. An iteration of this kind was
discussed in [8], where it was shown that as the number of samples increases the
error in the evaluation can be surprisingly small and that the optimal number
of polynomials to use for a given overall accuracy depends on the number of
samples. In the present work I found by numerical experiment that convergence
is faster if, after one evaluates a new coefficient a`,m,r+1

i,j , one sets in the next
round a`,m,r+1

i,j = (a`,m,ri,j + a`,m,r+1
i, )/2. I found experimentally that there is no

advantage in computing these coefficients very accurately, indeed a relatively
small number of samples is sufficient for each iteration, and two iterations have
been sufficient for all the runs below.

6 Example 1: The two-dimensional Ising model.

To check the algorithm and gauge its performance, we begin by applying it to
the two-dimensional Ising model. I did not write a special program for this case
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and did not take advantage of the simplifications which arise when the coupling
constants in the Hamiltonians are independent of location and one could replace
four basis functions by the single function consisting of their sum, and the single
expansion coefficient is the same at all points so that the projection can be
averaged in space as well as over samples. Once expansion coefficients have
been determined, they can be used to generate as many samples as one wants.

First, I computed the mean magnetization E[µ], where µ = 1
N2

∑
si,j , 1 ≤

i, j ≤ N , as a function of the temperature T . To calculate such means near T =
Tc one needs a way to break the symmetry of the problem; this is usually done
by adding a small asymmetric term ε

∑
si,j to the Hamiltonian, for example

with ε = ε0/N , ε0 ∼ 0.2. Adding such a field here works for small N , but as
N increases, a value of ε0 small enough not to disturb the final result may not
suffice to bias the smallest lattice Ln in one direction. The remedy is to assign
positive weights to only to those spin configurations in Ln (where weights are
explicitly known) such that

∑
Ln
si,j ≥ 0.

It may be tempting to introduce a symmetry breaker into the initial Hamil-
tonian W (0), add terms odd in the si,j to the series of linkages, and attempt
to compute appropriate symmetry-breaking terms for the smaller lattices by a
construction like the one above. This is not a good idea. The longer series
is expensive to use and the computation of higher Hamiltonians is unstable to
asymmetric perturbations, generating unnecessary errors.

In Table 1 we present numerical results for T = 2.2 and different values of N
compared with values obtained by Metropolis sampling with many sweeps of the
lattice. Ns = 1000 samples were used in each of two iterations to calculate the
approximate marginals; once these are found one can inexpensively generate
as many samples of of the spins as wanted; here 1000 were used. The Table
exhibits the dependence of the computed E[µ] on the fraction f of weights
which have been capped; the statistical error in the estimates of E[µ] grows as
f decreases, but more slowly than one would expect. For N = 16, 32, 64 the
results converge as f → 0 before the statistical error becomes large, but not
when N = 128, and one should conclude that this value of N is too large for the
present algorithm with so small a basis in the computation of marginals and so
few samples. Even with N = 128 one obtains a reasonable average (E[µ] = .80)
if one is willing to use enough samples. Note also that the weights become large,
and the calculations must be performed in double precision.

We now turn to the determination of the critical temperature Tc. This can
be obtained from the intersection of the graphs of E[µ] vs. T for various values
of N (see e.g. [17],[16]); it is more instructive here to apply the construction in
[9], based on the fact that if one expands the “renormalized” Hamiltonians in
successive linkages, ie., if one finds the functions W (i) such that the marginals on
Li are exp(W (i))/Z, using the series (4), then the sums of the coefficients in the
series increase when T < Tc and decrease when T > Tc. For this construction to
work, one needs enough polynomials for convergence, i.e., so that the addition
of more polynomials leaves the calculation unchanged. In the present case, this
is achieved with the following 7 polynomials: ψ1, ψ2, ψ3, ψ4 =

∑
si,jsi±1,j±1 (as

above), ψ5 =
∑
si,j(si+2,j + si,j+2 + si−2,j + si,j−2), ψ6 =

∑
si,jσ

3
i,j/10, ψ7 =
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Table 1

Ising magnetization at T = 2.2

size of no. of samples logW f E[µ] Metropolis
array Ns

16× 16 1000 2 .33 .74±0.01 .81± .01
4 .08 .80±0.01
6 .00 .80±0.01

32× 32 1000 5 .17 .76±0.01 .81± .01
7 .10 .80±0.01
9 .04 .81±0.015

64× 64 1000 15 .134 .74±.01 .801± .001
20 .042 .77±.01
25 .009 .80±.01
30 .001 .80±.015

128× 128 1000 25 .074 .67±.01 .798± .001
35 .023 .70±.01
45 .002 .74±.02
50 .001 .75±.05

no convergence

∑
si,jσ

5
i,j/100, where σi,j = si+1,j + si,j+1 + si,j+1 + si,j−1. The use of polyno-

mials with higher powers of the si,j is essential (see e.g.[4]), and it is the more
surprising that the approximate marginals calculated without them are already
able to produce usable samples. The constant divisors in ψ6, ψ7 are there to
keep all the coefficients within the same order of magnitude. No advantage is
taken here of the symmetries of the Ising model. In Table 2 I present the sums
of the coefficients in the expansion as a function of the temperature T for the
levels i = 2, 4, 6 (where the lattices are mutually similar) in a N2 lattice with
N = 16 (N is chosen small for reference in the next section). From Table 2 one
can readily deduce that 2.25 < Tc < 2.33; for the value of T between these two
bounds the sum of the coefficients oscillates as i increases. Taking the average
of the two bounds (which are not optimal) yields Tc ≡ 2.29 (the exact value is
Tc = 2.269...). A more careful analysis improves the result and so does a larger
value of N . All the coefficients have the same sign, except occasionally when a
coefficient has a very small absolute value.

For the sake of completeness I plotted in Figure 1 a histogram of the log-
arithms of the weights wi for the Ising model with N = 32 and 104 samples;
the zero of logw is chosen as described above. The cost per sample of an op-
timized version of this program for N = 32, 64 is competitive with the cost
of a cluster algorithm [23] and is significantly lower than that of a standard
Metropolis sampler. It is not claimed that for the Ising model the chainless
sampler is competitive with a cluster algorithm: as N increases the complexity
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Table 2

Sums of coefficients of Kadanoff expansion
as a function of T for Ising model

T i = 2 i = 4 i = 6
2.20 1.63 2.16 2.71
2.25 1.50 1.77 1.88
2.26 1.49 1.73 1.50
2.28 1.45 1.65 1.40
2.30 1.41 1.50 1.30
2.32 1.36 1.40 1.13
2.33 1.35 1.34 1.15
2.35 1.30 1.27 0.95

of the present algorithm grows because one has to add polynomials and/or put
up with a decrease in the number of effective samples, and one also has to do
work to examine the convergence as f → 0. The present sampler is meant to
be useful when MCMC is slow, as in the next section.

7 Example 2: The Edwards-Anderson spin glass
in three dimensions

We now use the chainless construction to calculate some properties of the EA
spin glass [1, 13, 16, 18, 24], and in particular, estimate the critical temperature
Tc. The three dimensional Edwards-Anderson spin glass model is defined by
equation (1), where the Ji,j,k,` = βξi,j,k,`, the ξi,j,k,` are independent Gaussian
random variables with mean zero and variance one, and β = 1/T is the inverse
temperature. Periodic boundary conditions are imposed on the edge of the N3

lattice.
Let the symbol < · >T denotes a thermal average for a given sample of

the Js, and [·]Av denote an average over the realizations of the Js. Given two
independent thermal samples of the spins S1,2 = {s1,2

i,j,k}, we define their overlap
to be q = N−3

∑
s1
i,j,ks

2
i,j,k, where the summation is over all sites in the lattice.

The Binder cumulant [3],[16] is g = 0.5(3 − [< q4 >T ]Av/[< q2 >T ]2Av). The
function g = g(T ) is universal, and the graphs of g as a function of T for various
values of the lattice size N should intersect at T = Tc.

The method presented above is applied to this problem. The only additional
comment needed is that at every point of the lattice one has to invert a matrix
generated by a random process, and occasionally one of these matrices will be
singular or nearly so, and will produce unreliable coefficients, particularly for
small samples sizes and low temperatures. As long as there are few such cases,
there is no harm in jettisoning the resulting coefficients and replacing them by
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Figure 1: Histogram of weights for the Ising model, N = 32, 104 samples.

zeroes.
In Figure 2 I display the results obtained for this problem. The numerical

parameters are: 2000 realizations of the Js, for each one of them 1000 samples
for estimating the expansion coefficients and then 5000 samples for evaluating
q and its moments. I used the bound logW = 30, which produces a fraction of
modified weights f = 0 for N = 4, f = 0.015 for N = 8 and f = .05 for N = 16.
The statistical error was hard to gauge; one can readily estimate the standard
deviations of the numerical estimates of [< q4 >T ]Av and [< q2 >T ]Av but these
estimates are correlated and one therefore cannot use their separate standard
deviations to estimate that of g. I simply made several runs for some of these
computations and used the scatter of the results to estimate the statistical error.
I concluded that the statistical error is around 1% for N = 4 and 2 − 3% for
N = 8, 16.

These three graphs taken separately approximate well the ones in the de-
tailed computations of [16]. The graphs for N = 4 and N = 16 intersect at
T = .93, which is the value of Tc deduced from the Binder cumulant computa-
tion in [16] (and which differs from the value Tc = .95 deduced in the same paper
from other considerations and which is likely to be right from the accumulated
previous wisdom, as reported in that paper). The graph for N = 8 is a little off
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Figure 2: The Binder cumulant g as a function of the temperature T in the
three-dimensional AE model.

from what one may expect, but again previous calculations, for example Figure
7 in [16], also display comparable symptoms of unexpected waywardness. If one
compares Figure 2 with Figure 4 of [16], one sees other small discrepancies; for
example, the values of g I obtained, in particular for N = 4, are smaller than
those in [16] by a small but statistically significant amount; this cannot be the
effect of “layering” (i.e., the use of a bound W ) because for N = 4 layering plays
no role; it is hard to see how it can be produced the statistical error in either
paper because the sample sizes are large enough. These small discrepancies are
comparable to the ones observed in the best earlier computations. I have no
explanation, except the general orneriness of the EA spin glass, as illustrated by
the widely varying results for various exponents and thresholds summarized in
[16]. These vagaries do not alter the fact that the algorithm of the present paper
produces worthy results in a very difficult problem. A more detailed exploration
of spin glasses will be published separately.

It is of interest in the present context to see how the coefficients in the
Kadanoff expansion, used in the previous section to estimate Tc for the Ising
model, behave in the three-dimensional spin glass. Now one needs more poly-
nomials (20; the three-dimensional analogs of the ones in the preceding section
plus others following the same pattern). The sums of all the coefficients add up
to small numbers statistically indistinguishable from zero, as one may expect,
so in Table 3 I display the sums of the absolute values of these coefficients for
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Table 3

Sums of absolute values of Kadanoff
coefficients for EA spin glass model

T i = 2 i = 5 i = 8
0.6 3.07 3.95 3.73
0.9 2.70 3.90 3.42
1.0 2.43 3.34 2.76
2.00 6.20 8.51 8.87

N = 16 on self-similar lattices, which in the Ising case are equally able to exhibit
Tc for this value of N . No bifurcation between growing and decreasing sums
can be detected near Tc, illustrating differences between the phase transitions
in the Ising and spin glass cases. Note the results for T = 0.6, a temperature
hard to reach by a MCMC process.

The real question here is the efficiency and speed of the algorithm. What are
needed are timing comparisons between an optimized version of it and optimized
version of alternatives, such as the parallel tempering construction of [16]. This
is not available. The least one can say is that the chainless sampler is highly
competitive with others. Most of the computations in this paper (all but the
ones for g at N = 16) were first run on a single serial desktop machine.

8 Conclusions

A Monte Carlo sampling technique that relies on a fast marginalization rather
than a Markov chain has been introduced, tested, and applied to a challenging
test problem. The results demonstrate that it is a good alternative, especially
for problems where the free energy has many minima and MCMC algorithms
may be slow. Various improvements to this constructions readily suggest them-
selves, based on more polynomials, better polynomials, and renormalization
schemes other than decimation. Related ideas, such as the parallel marginaliza-
tion scheme proposed in [25], are also worth further investigation in the context
of spin problems.

The construction of the sequence of lattices above assumed that the origi-
nal Hamiltonian involve only near-neighbor interactions; the lifting of this re-
striction requires a more elaborate renormalization process and will be pursued
elsewhere.
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