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ABSTRACT6

The implicit particle filter is a sequential Monte Carlo method for data assimilation that7

guides the particles to the high-probability regions via a sequence of steps that includes8

minimizations. We present a new and more general derivation of this approach and extend9

the method to particle smoothing as well as to data assimilation for perfect models. We10

show that the minimizations required by implicit particle methods are similar to those one11

encounters in variational data assimilation, and we explore the connection of implicit particle12

methods with variational data assimilation. In particular, we argue that existing variational13

codes can be converted into implicit particle methods at a low additional cost, often yielding14

better estimates that are also equipped with quantitative measures of the uncertainty. A15

detailed example is presented.16
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1. Introduction17

The goal in data assimilation is to estimate the state of a system by combining informa-18

tion from incomplete and noisy observations of this state with information from a possibly19

uncertain numerical model. This can be done by analyzing the conditional probability den-20

sity function (pdf) for the state given the observations (Doucet et al. 2001; Kalnay 2003;21

Evensen 2006; Chorin and Hald 2006). If the model is linear and the observations are linear22

functions of the state and if, in addition, all error statistics are Gaussian, then the state23

conditioned on the data is also Gaussian. In this case, all one needs to know is the mean24

and covariance of the state and both can be computed by the Kalman filter (Kalman 1960;25

Kalman and Bucy 1961). However, many problems are nonlinear and non-Gaussian, and26

methods that assume a nearly linear model or nearly Gaussian errors, such as the ensemble27

Kalman filter (Evensen 2006, 1994), can perform poorly if these assumptions are violated28

(Miller et al. 1999).29

For that reason we focus on variational data assimilation and particle methods, which30

do not require Gaussianity or linearity approximations. In variational data assimilation one31

finds the most likely state given the observations, i.e. the mode of the conditional pdf,32

through minimization of a suitable cost function (Talagrand and Courtier 1987; Dimet and33

Talagrand 1986; Tremolet 2006; Bennet et al. 1993). While there is no guarantee that the34

most likely state is found (the minimization may not converge to the global minimum),35

variational methods have proven effective in many applications and they are widely used in36

geophysical data assimilation, e.g. in numerical weather prediction.37

Particle methods assimilate the data via Monte Carlo importance sampling (Doucet et al.38

2001; Arulampalam et al. 2002; Gordon et al. 1993). Most particle methods first sample a39

given importance function and then use the data to assign weights to each sample, so that40

the weighted samples, called particles in this context, form an empirical estimate of the41

conditional pdf. The difficulty is that the importance function and the conditional pdf can42

become nearly mutually singular, which leads to a representation of the conditional pdf by43
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a single and often uninformative particle (Bickel et al. 2008; Snyder et al. 2008). This effect44

is known as sample impoverishment, is often severe in nonlinear, large-dimensional models45

and, thus, has been an obstacle to the application of particle methods to geophysical data46

assimilation, where the state dimension is typically large.47

Sample impoverishment can be delayed or even prevented if the overlap between the im-48

portance function and the conditional density is increased, and much effort has been invested49

to find an importance function that can work in large dimensional problems, particularly in50

geophysical applications (Doucet et al. 2000; Johansen and Doucet 2008; van Leeuwen 2010,51

2011; Carpenter et al. 1999). The problem of sample impoverishment was also considered52

in the context of other applications, and many promising importance sampling methods,53

which make use of an importance density that is informed by the data and, therefore, can54

delay sample impoverishment, have been invented (Cappé et al. 2008; Cornebise et al. 2008;55

Doucet et al. 2000; Pitt and Shephard 1999; Smı́dl and Hofman 2012)56

The implicit particle filter (Chorin et al. 2010; Chorin and Tu 2009; Morzfeld et al. 2012)57

attempts to prevent sample impoverishment by focusing the particles to regions of high58

probability. These regions are identified through particle-by-particle minimizations. Since59

the minimization for each particle of an implicit particle filter is similar to the minimizations60

one encounters in variational data assimilation, one can expect a link between these two61

approaches. We will describe this link in this paper.62

The paper is structured as follows. In section 2, we review how to sample a given pdf using63

implicit sampling by first finding the mode of the pdf and then generating samples in the64

neighborhood of this mode. In section 3, we apply implicit sampling to the conditional pdf65

for data assimilation to derive the implicit particle smoother that assimilates all available66

data in one sweep, and the implicit particle filter that assimilates data sequentially. In67

section 4, we make the connection between these implicit particle methods and variational68

data assimilation, and show how existing variational codes can be used for the efficient69

implementation of implicit particle methods. In section 5 we present an application of70
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implicit particle methods and discuss their variational aspects. Conclusions are offered in71

section 6.72

2. Implicit sampling73

Importance sampling is a Monte Carlo method that generates samples from a hard-to-74

sample pdf p using an easy-to-sample pdf p0 (Hammersley and Handscomb 1964; Kalos and75

Whitlock 1986; Chorin and Hald 2006; Doucet et al. 2001; Geweke 1989). In this context, the76

density p we want to sample, but cannot sample easily, is called the target density and the77

density p0 we actually use to obtain a sample is called the importance density (or importance78

function). Suppose we are interested in the pdf p of a d-dimensional, continuous random79

variable x. One can get a sample of x by generating a sample X ∈ Rd (we use capital letters80

for realizations of random variables) from the importance density p0 and assigning to it the81

weight82

w(X) =
p(X)

p0(X)
. (1)

The weighted samples {X,w} form an empirical estimate of the target pdf p. This empirical83

estimate approximates the target pdf weakly. That means that we can approximate the84

expected value, Ep [u(x)] =
∫
u(x)p(x)dx, of a function u with respect to the density p, by85

ÊM =

∑M
j=0 u(Xj)w(Xj)∑M

j=0w(Xj)
, (2)

and this approximation converges almost surely to the expected value Ep [u(x)] as the number86

of samples, M , approaches infinity. Moreover, a weighted histogram of the weighted samples87

resembles the pdf of x. It should be clear that the support of p0 must include the support of88

p (otherwise the weights can be infinite). Moreover, importance sampling works even if the89

target pdf is known only up to a multiplicative constant, because this constant is eliminated90

by scaling the weights so that their sum equals one.91

The efficiency of importance sampling depends on the choice of the importance func-92
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tion. For example, samples with a small weight contribute very little to the approximation93

of the expected value in (2), so that the computational effort spent on generating these94

low-probability samples is mostly wasted. To avoid spending computation time on low-95

probability samples, one needs to find an importance function p0 such that the variance96

of the weights in (1) is small, i.e. all samples contribute equally to the sum in (2). This97

means in particular that the importance function must be large in the regions where the98

target density is large. Implicit sampling is an importance sampling method that defines99

the importance function implicitly by an algebraic equation. We will now show that this100

importance function is large where p is large, i.e. that the samples we obtain have a high101

probability.102

We write the pdf we are interested in p = e−F (x) (this is natural in data assimilation, see103

section 3a) and, for a moment, assume that104

F (x) = − log p(x), (3)

is convex (we will relax this assumption later on). The region where p is large, and where105

the high-probability samples lie, is the neighborhood of the mode of p. Using the log-106

transformation (3), we can identify this region through minimization of F , and define107

φF = minF.

To obtain a sample in the high-probability region, we pick a reference variable ξ ∼ g, with108

a known pdf g ∝ e−G(ξ), and which is easy to sample. We then map the high-probability109

region of the reference variable ξ to the high-probability region of X. This can be done by110

solving the algebraic equation111

F (X)− φF = G(ξ)− φG, (4)

where G = − log g is chosen to be convex and φG = minG. Note that the above scalar112

equation is underdetermined (it connects the d elements of X to the d elements of ξ) and113

solvable since F and G are infinite at ±∞, so that the left and right hand sides of (4) both114
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range from [0,∞). We can thus find a sample X by solving (4) with a one-to-one and onto115

mapping116

ψ : ξ → X. (5)

A sample of the reference density ξ is likely to lie near the mode of g, so that the right hand117

side of (4) is likely to be small. Equation (4) and the mapping ψ thus imply that, for a118

high-probability sample of ξ, the function F (X) is close to its minimum φ, which implies119

that X is in the region where p is large. The map ψ thus maps the high-probability region of120

the reference variable ξ to the high-probability region of X, so that, with a high probability,121

we obtain a high-probability sample.122

The reference variable ξ and the map ψ in (5) define the importance function123

p0(X(ξ)) ∝ exp(−G(ξ))

|J(ξ)|
,

where J = det(∂X/∂ξ) is the Jacobian of ψ. Using (4), the importance function can be124

written in terms of X = ψ(ξ)125

p0(X) ∝ exp(−F (X) + φF − φG)

|J(X)|
, (6)

and, by using (1), we find that the weight of the sample X is126

w(X) ∝ e−φF +φG |J(X)| . (7)

The variability in the weights is induced by the Jacobian of the map (the term involving the127

φ’s is constant among the samples and can be removed by scaling the weights so that their128

sum equals one). The only requirement on ψ is that it solves the undetermined equation129

(4). We thus have a lot of freedom in choosing this map and we can use this freedom to130

construct a map that keeps the variance of the weights small, and whose Jacobian is easy131

to compute. Various ways of doing this have been presented in (Chorin et al. 2010; Chorin132

and Tu 2009; Morzfeld et al. 2012) and we will review two of these maps below.133

Before construction of a map we need to choose a reference variable ξ. Equation (6)134

implies that the closer the pdf of the reference variable resembles the target density p, the135
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more the importance function p0 also resembles the target density. It is thus desirable to136

choose such a reference variable, however that might be impractical (because we typically do137

not know the target pdf in advance). In practice one should choose a reference density that138

is easy to sample and easy to minimize. For example, in (Chorin et al. 2010; Chorin and Tu139

2009; Morzfeld et al. 2012), a Gaussian reference variable, ξ ∼ N (0, I), was used and yielded140

good results (we denote a Gaussian variable with mean µ and covariance matrix Σ byN (µ,Σ)141

and use I for the identity matrix of appropriate dimensions). It is important to realize that142

a Gaussian reference variable does not imply that the target density is approximated by a143

Gaussian, since it is clear from (6) that the importance density is generally not Gaussian144

even if ξ is. Instead, each sample X is a function of a Gaussian reference sample.145

We give two examples of a map ψ to show that our construction is easy to implement.146

(a) A random map. With a Gaussian reference variable, equation (4) becomes147

F (X)− φF =
1

2
ξT ξ, (8)

where the superscript T denotes a transpose. We can solve this equation by looking for148

solutions in a given, but random, direction η = ξ/(ξT ξ), i.e. we use a mapping ψ such that149

X = µ+ λη,

where µ = argmin F is the minimizer of F and λ is a scalar that depends on ξ. Substitution150

of the above mapping into (8) gives a scalar equation in one variable (regardless of the151

dimension of the state space). This equation can be readily solved and the Jacobian is also152

easy to calculate (see Morzfeld et al. (2012)).153

(b) Quadratic approximation of F . Alternatively, one can expand F around its minimum154

F0(x) = φ+
1

2
(x− µ)TH(x− µ),

where H is the Hessian of F , evaluated at the minimizer. To obtain a sample, we then solve155

the quadratic equation156

F0(x)− φ =
1

2
ξT ξ, (9)
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instead of (8). This can be done, for example, by using the Cholesky factor L of H:157

X = µ+ L−T ξ. (10)

The expansion of F as well as the above equation to obtain samples are familiar from158

Laplace’s method (Kass et al. 1990; Kass and Raftery 1995). However, we weigh the samples159

to remove the bias and to obtain samples from the target distribution (not its Gaussian160

approximation as in Laplace’s method). For the weights, we need to compute the Jacobian161

of the linear mapping (10), which is the inverse of the determinant of L (the product of162

its diagonal entries). Thus, the Jacobian is a constant for all particles and drops out after163

normalization of the weights. Further, we need to account for the error we made by solving164

(9) rather than (8) by attaching the weight165

wk ∝ e−(F (X)−F0(X)),

to the samples. This “approximate” map is very efficient if the Hessian of F is available and166

was presented in Chorin et al. (2010). The construction is also related to the “importance167

distribution obtained by local linearization” in Doucet et al. (2000). There, the authors168

approximate the optimal importance function by a Gaussian centered at the mode of the169

optimal importance function and with a covariance matrix equal to the Hessian of this pdf.170

However, implicit sampling can be more efficient, because it does not make direct use of the171

optimal importance function, which is, in general, hard to compute.172

Further constructions of suitable mappings ψ are presented in (Chorin et al. 2010); we173

note that generating samples is “easy,” (numerically inexpensive) compared to finding the174

minimum F .175

We now relax the assumption that F is convex. If F is U -shaped, then the above176

construction works without modification. A scalar function F is called U -shaped if it is177

at least piecewise differentiable, its first derivative vanishes at a single point which is a178

minimum, F is strictly decreasing on one side of the minimum and strictly increasing on the179

other, and F (X) → ∞ as |X| → ∞; in the d-dimensional case, F is U -shaped if it has a180
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single minimum and each intersection of the graph of the function y = F (X) with a vertical181

plane through the minimum is U -shaped in the scalar sense. If F is not U -shaped, but has182

only one minimum, one can replace it by a U -shaped approximation, say F0, and then apply183

implicit sampling as above. The error one makes by this approximation can be accounted184

for through reweighting (Chorin et al. 2010). If F has multiple minima (the target pdf p185

has more than one mode), then one can find local U -shaped approximations at each local186

minimum and apply implicit sampling to each local approximation. The errors one makes187

can be accounted for by reweighting of the samples.188

3. Implicit sampling for data assimilation189

We now apply implicit sampling to the conditional pdf for data assimilation and derive190

three implicit particle methods. Our derivation is more general than the ones presented191

in Chorin and Tu (2009); Chorin et al. (2010); Morzfeld et al. (2012) and highlights the192

variational aspects of the implicit particle methods.193

a. Problem formulation194

We start with a review of the data assimilation problem to set up notation and termi-195

nology. In data assimilation, one is given an uncertain numerical model of a system and a196

stream of noisy data about its state, and one wants to use both to estimate the state of the197

system. The numerical model is a Markovian state space model198

xj+1 = Rj(xj) +Gj(xj)Zj, (11)

where j = 0, 1, 2, . . . can be thought of as discrete time; the state, xj, is a d-dimensional real199

vector, Rj is a d-dimensional vector function, Gj is a real d × d matrix and the Zj’s are d-200

dimensional random variables. In geophysical applications, the numerical model often comes201

from discretizations of stochastic differential equations, in which case the Zj’s are random202

9



vectors whose elements are independent normal variates (Kloeden and Platen 1999), and we203

assume the Zj’s to be Gaussian with mean zero and covariance S from now on. We assume204

further that at time j = 0 the pdf for the state x0 is known and that the matrices Gj have205

full-rank. How to relax the latter assumption is described in Morzfeld and Chorin (2012).206

The data207

yk = h(xnk
) + Vk, (12)

indexed by k = 1, 2, . . . , are regularly spaced, noisy measurements of the state, taken at208

times nk = kr, where r ≥ 1 is a positive integer (it is an easy exercise to consider also209

the case when observations are irregularly spaced in time). In the above equation, h is a b-210

dimensional vector function and Vk is a b-dimensional random variable with a known pdf. We211

assume that the random variables Vk are independent of each other and also independent of212

the model noise Zj. For notational convenience, we will write x0:k for the sequence of vectors213

x0, . . . , xk; we refer to a vector yk as an “observation” (in geophysical papers, yk is also often214

called an observation vector).215

At time nm = n ·m, m ≥ 1, we have collected m observations y1:m, and everything we216

know about the state trajectory x0:nm is contained in the conditional pdf217

p(x0:nm|y1:m) = p(x0)

∏nm

j=1 p(xj|xj−1)
∏m

j=1 p(yj|xnj
)

p(y1:m)
. (13)

Since we know p(x0), and can read p(xj|xj−1) and p(yj|xj) from equations (11) and (12), we218

know this pdf up to the normalization constant p(y1:m), which is hard to compute.219

b. The implicit particle smoother220

To assimilate the observations, we can apply implicit sampling to the conditional pdf221

in (13). Since an importance sampling scheme that uses the observations to estimate past222

and current states is often called a particle smoother (Doucet et al. 2001), we will call this223

method the implicit particle smoother.224
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The target pdf is the conditional pdf in (13), so that the function F of implicit sampling225

is226

F (x0:nm) = − log(p(x0:nm|y1:m)).

If Vk in (12) is Gaussian with mean zero and covariance matrix Q, then this F is227

F (x0:nm) = − log(p(x0))

+
1

2

nm−1∑
j=0

(xj+1 −Rj(xj))
TΣ−1

j (xj+1 −Rj(xj))

+
1

2

m∑
j=1

(yj − h(xnj
))TQ−1(yj − h(xnj

)) + C, (14)

where Σj = Gj(xj)
TSGj(xj), and where the value of the constant C is irrelevant (it will228

drop out in the normalization of the weights). We find the minimum φF of F using standard229

techniques, such as Newton’s methods, quasi Newton methods or gradient descent (see e.g.230

Conn et al. (2000); Fletcher (1987); Nocedal and Wright (2006)) and choose a Gaussian231

reference variable ξ ∼ N (0, I). In this case the algebraic equation (4) becomes (8), which we232

solve with a suitable mapping ψ (see Chorin et al. (2010); Chorin and Tu (2009); Morzfeld233

et al. (2012)) for M independent realizations of ξ to obtain M weighted samples (particles),234

with weights given by (7). The M particles form an empirical estimate of the conditional235

pdf p(x0:nm). We can use this approximation to compute a state estimate, for example, the236

weighted sample average. The weighted sample average approximates the conditional mean237

E(x0:nm|y1:m), which, under wide conditions, is the minimum mean squared error estimate238

of the state (see e.g. Chorin and Hald (2006)).239

c. The implicit particle filter240

Suppose we have assimilated m observations, for example by using the implicit particle241

smoother, and that a new observation ym+1 is now available. One can of course assimilate242

this observation by redoing the calculations of the previous section with p(x0:nm+1 |y1:m+1)243
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replacing p(x0:nm |y1:m), however this approach becomes impractical as we collect more and244

more data.245

Alternatively, we can assimilate the data sequentially using the recursive formula for the246

conditional pdf (see Doucet et al. (2001))247

p(x0:nm+1|y1:m+1) = p(x0:nm |y1:m)
p(xnm+1:nm+1|xnm)p(ym+1|xnm+1)

p(ym+1|y1:m)
.

Given a set of M weighted samples {Xk
0:nm

, wk} (particles), k = 1, . . . ,M , that form an248

empirical estimate of the conditional pdf p(x0:nm|y1:m) at time nm, the goal is to update each249

particle to time nm+1, by generating a sample Xnm+1:nm+1 using an importance function p0,250

and putting251

{Xk
0:nm+1

, wk} = {(Xk
0:nm

, Xk
nm+1:nm+1

), ŵk},

with updated weights252

ŵk = wk
p(Xk

nm+1:nm+1
|Xk

nm
)p(ym+1|Xk

nm+1
)

p0(Xk
nm+1:nm+1

)
. (15)

The assimilation of data using the above sequential importance sampling approach is known253

as particle filtering (as opposed to the particle smoother, which does not operate sequen-254

tially).255

For an efficient particle filter, we need to find an importance function p0 that closely256

resembles the functions p(Xk
ni+1:ni+1

|Xk
ni

)p(yi+1|Xk
ni+1

) for each particle. We can achieve this257

by applying implicit sampling to each particle, and we will call this approach the implicit258

particle filter. Thus, we define M functions F k by259

F k(xnm+1:nm+1) = − log(p(xnm+1:nm+1|Xk
nm

)p(ym+1|xnm+1)). (16)

For Gaussian observation noise, Vk ∼ N (0, Q), these functions F k become260

F k(xnm+1:nm+1) =
1

2
(xnm+1 −Rnm(Xk

nm
))TΣ−1

nm
(xnm+1 −Rnm(Xk

nm
))

+
1

2

nm+1−1∑
j=nm+1

(xj+1 −Rj(xj))
TΣ−1

j (xj+1 −Rj(xj))

+
1

2
(ym+1 − h(xnm+1))

TQ−1(ym+1 − h(xnm+1)) + C
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where C is a constant whose value is irrelevant. We find the minima φk of each of these Fk’s261

using standard techniques, such as Newton’s method, quasi Newton methods or gradient262

descent (see e.g. Conn et al. (2000); Fletcher (1987); Nocedal and Wright (2006)). We263

then pick a Gaussian reference variable ξ ∼ N (0, I) and obtain M samples, Xk
nm+1:nm+1

, by264

solving the M equations265

F k(Xk
nm+1:nm+1

)− φk =
1

2
ξT ξ, (17)

with a suitable mapping ψ (see Chorin et al. (2010); Chorin and Tu (2009); Morzfeld et al.266

(2012)). The update equation for the weights can be obtained by combining (7) with (15):267

ŵk = wke−φ
k ∣∣J(Xk

nm+1:nm+1
)
∣∣ (18)

where J is the Jacobian of ψ. We append the M samples Xk
nm+1:nm+1

to the M particles we268

already had, and replace their weight with the updated weight from (18). We thus obtain M269

updated particles that approximate the conditional pdf p(x0:nm+1|y1:m+1) at time nm+1. We270

can use this approximation to compute the weighted sample average as an approximation271

conditional mean as explained above.272

The weights are now removed by “resampling,” a process in which particles with a low273

weight are replaced by particles with a larger weight. There is an extensive literature on274

resampling algorithms (see e.g. Doucet et al. (2001); Liu and Chen (1995); Moral et al.275

(2012); Smith and Gelfand (1992)). We use algorithm 2 in (Arulampalam et al. 2002),276

which can be implemented in O(M) operations (M being the number of particles). The277

performance and efficiency of the overall sequential Monte Carlo method depends on the278

choice of the resampling algorithm. However, our goal here is to discuss how to reduce279

sample impoverishment by judiciously choosing the importance function. A discussion of280

how resampling comes into play is deferred to other papers.281

Note that the term exp(−φk) in (18) induces additional variability into the weights when282

compared to the implicit particle smoother in section 2b, where the variability of the weights283

is due to only the Jacobian. The additional factor appears here because we apply implicit284
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sampling to M different functions F k which arise because of the sequential problem for-285

mulation (for the implicit particle smoother, we applied implicit sampling to one function286

F ). The functions F k however differ only in the position of each particle, Xk
nm

, at time nm287

(see equation (16)). If the particles at time nm are in the high-probability region, and if288

this high-probability region has a (sharp) peak, then the functions F k are all “similar,” and289

the minima φk of these functions should not vary too much from particle to particle. In290

this case, the variance induced by the exponential term can be expected to be small. The291

numerical experiments in section 5, as well as those in Chorin et al. (2010); Morzfeld et al.292

(2012) confirm this statement, however a rigorous analysis of the variance of the weights of293

the implicit particle filter has not been reported.294

Finally we want to compare our construction with the particle method in van Leeuwen295

(2010). The idea there is to construct an importance function that focuses the particles296

on the high-probability region by use of a nudging term (i.e. by changing the underlying297

dynamics in (11)). In order to achieve the focusing effect, a significant amount of tuning is298

required. The implicit particle filter searches for the high-probability regions using numerical299

minimizations and, therefore, seems to be more methodical and more straightforward to300

implement.301

d. The implicit particle smoother for perfect models302

If model errors are small compared to observation errors, one can put303

Gj(xj) = 0,

in equation (11), so that the state trajectory, x1:nm , is a deterministic function of the initial304

condition x0. This assumption is often called the perfect model assumption and our goal is305

to find an initial state that is compatible with the available data yk, k = 1, . . . ,m.306

The implicit particle smoother in section 3b can be easily adapted to this situation by307

applying implicit sampling to the conditional pdf p(x0|y1:m). Note, however, that the implicit308
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smoother for a perfect model does not estimate the state at times t > 0, because the future309

states are determined by the model; the implicit smoother in section 3b however estimates310

the full state trajectory because the model is stochastic.311

Using Bayes’ theorem, the fact that the observations yk are independent of each other,312

and that x1:nm is a deterministic function of x0, we can rewrite this conditional pdf as313

p(x0|y1:m) ∝ p(x0)
m∏
j=1

p(yj|xnj
),

where the factors p(yj|xnj
) are specified by the observation equation (12). The pdf p(x0) is314

called the prior density and is often chosen to be Gaussian. However, the conditional pdf is315

generally not Gaussian, because h can be nonlinear and the xnj
’s are nonlinear functions of316

x0 (see (11)).317

For implicit sampling of p(x0|y1:m), we define318

F (x0) = − log (p(x0|y1:m)) ,

which for a Gaussian observation noise, Vk ∼ N (0, Q), becomes319

F (x0) = − log (p(x0)) +
m∑
j=1

(h(xnj
)− yj)TQ−1(h(xnj

)− yj) + C, (19)

where the value of the constant C is irrelevant. With this F , we can find M samples from320

p(x0|y1:nm) by first minimizing F and then solving (8) repeatedly for M realizations of ξ.321

We can solve this scalar equation efficiently using e.g. random maps as in Morzfeld et al.322

(2012), or one of the methods in Chorin et al. (2010). What is important to realize here is323

that sampling is fast, once the minimum of F has been found.324

Finally, we want to point out that the above implicit smoothing algorithm can be modified325

to assimilate data sequentially, i.e. assimilate k < m observations in one computation.326

We can assimilate the first k observations, y1:k, by implicitly sampling p(x0|y1:k) and use327

the results to construct an empirical approximation of a “prior” density for xnk
. With328

that prior, we repeat the same steps to assimilate the next set of observations yk+1:2k by329

implicitly sampling p(xnk
|yk+1:2k) etc. until all available observations are assimilated. Note330
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that the method naturally keeps track of the uncertainty, whereas 4D-Var codes often use331

ad-hoc approximations to update the covariance matrices (Kalnay et al. 2007). A sequential332

approach for data assimilation for perfect models is important in many applications with333

very large data sets, e.g. in numerical weather prediction or geomagnetics (Fournier et al.334

2010), however the details, as well as numerical tests for sequential implicit sampling for this335

problem are deferred to a future paper.336

4. Connection with variational data assimilation337

Variational data assimilation methods find the most likely state trajectory, given the338

available observations, i.e. the mode of the conditional pdf p(x0:nm|y1:m). Data assimilation339

schemes that combine the ensemble Kalman filter (EnKF) in with variational methods are a340

current research topic (see e.g. (Liu et al. 2008; Buehner 2005; Hunt et al. 2004; Fertig et al.341

2007)). The idea is to use the Monte Carlo simulations of the EnKF to update the covariance342

matrices required for the variational calculations. Here, we make the connection between343

variational methods and the implicit particle filter and smoother, and show how existing344

codes for variational data assimilation can be used for efficient implementation of these345

implicit particle methods. We distinguish between weak and strong constraint variational346

methods.347

a. Connection with strong constraint 4D-Var348

Strong constraint 4D-Var (see e.g. Dimet and Talagrand (1986); Rabier and Courtier349

(1992); Talagrand and Courtier (1987); Talagrand (1997); Courtier (1997); Courtier et al.350

(1994)), finds the mode of the conditional pdf p(x0|y1:nm), where x0 is the unknown initial351

condition of the discrete model (11), by minimization of a suitable cost function. If the pdf352

p(x0), which is often called the prior density, is Gaussian and if the observation noise is also353
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Gaussian, the strong constraint 4D-Var cost function is354

Js(x0) = (x0 − xb)TB−1(x0 − xb) +
m∑
j=1

(h(xnj
)− yj)TQ−1(h(xnj

)− yj), (20)

where xb ∈ Rd, called the background state, is the mean of p(x0) and B ∈ Rd×d is the355

covariance matrix of the background state.356

If the observation operator h is linear, the gradient of the cost function Js can be found357

using the adjoint method (see e.g. Talagrand and Courtier (1987)). With this gradient,358

we can minimize Js efficiently using e.g. gradient descent or quasi Newton methods. In359

the general case (h not linear), one can linearize h along a state trajectory and use this360

linearization along with the adjoint method to compute an approximate gradient of Js. The361

conditions under which a numerical minimization with an approximate gradient converges to362

the minimum of the cost function Js are not well understood. However the method seems to363

work in many applications. In fact, the use of the adjoint method makes the minimization of364

Js very efficient and, as a result, strong constraint 4D-Var a powerful method for nonlinear365

data assimilation.366

The strong constraint 4D-Var cost function Js in (20) is identical to F in (19) (up to367

irrelevant constants), provided we use the same, and not necessarily Gaussian, prior pdf p0.368

Turning a strong constraint 4D-Var code into an implicit particle smoother (see section 3d)369

thus amounts to adding a sampling and weighting step, which in turn amounts to solving the370

scalar equation (8), or more generally (4). Efficient methods for executing the sampling and371

weighting can be found in (Chorin et al. 2010; Morzfeld et al. 2012), so that the additional372

computational cost of implicit particle smoothing is small. For example, if the Hessian373

of F is available, then the approximate map (b) in section 2 amounts to a matrix vector374

multiplication (and this matrix can be sparse). If the Hessian is not available, one can use375

the random map (a) of section 2. In this case, one can use Newton’s method to solve (8) for376

which a few adjoint calculations are required (one for each step of the Newton method).377

The payoff is that the implicit particle smoother approximates the conditional mean and,378

thus, minimizes the mean square error, whereas 4D-Var computes the conditional mode,379
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which, in general, is a biased state estimate. Moreover, the implicit particle smoother natu-380

rally produces a quantification of the uncertainty, because it generates an empirical estimate381

of the conditional pdf. The implicit particle smoother therefore can easily deal with skew or382

multimodal posterior pdfs, whereas 4D-Var codes typically provide error estimates based on383

a Gaussian approximation of the posterior pdf (Rabier and Courtier 1992).384

When the data are sparse in space or time, the conditional pdf can have more than one385

mode so that the cost function Js has multiple minima. Strong constraint 4D-Var will find386

one of these minima and return it as the state estimate. Important information from the387

other modes is lost. The implicit particle smoother on the other hand can perform well388

in multimodal situations (see sections 2 and 5) and, in theory, represents all modes of the389

conditional pdf by its samples. In practice, there is no guarantee that the implicit particle390

smoother can sample all modes in all cases (because the numerical minimization may miss391

local minima), however the representation of a multimodal conditional pdf by the implicit392

particle smoother through at least some of its modes can be superior to the results of a393

4D-Var code that represents the conditional pdf by only one of its modes.394

b. Connection with weak constraint 4D-Var395

Weak constraint 4D-Var (see e.g. Bennet et al. (1993); Kalnay (2003); Kurapov et al.396

(2007)) relaxes the perfect model assumption made in strong constraint 4D-Var. There are397

several ways of doing so (Tremolet 2006), however we only consider here the “full” weak 4D-398

Var problem, i.e. we choose the model state x0:nm as the control vector. The weak constraint399

4D-Var method then computes the most likely state trajectory given the available data y1:m,400

i.e. the mode of the conditional pdf p(x0:nm |y1:m).401

The conditional mode is found by minimizing the weak constraint cost function402

Jw(x0:nm) = −2 log p(x0:nm|y1:m).

Specifically, for a Gaussian prior density p(x0) ∼ N (xb, B), the weak constraint 4D-Var cost403
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function is404

Jw(x0:nm) = (x0 − xb)TB−1(x0 − xb)

+
nm−1∑
j=0

(xj+1 −Rj(xj))
TΣ−1

j (xj+1 −Rj(xj))

+
m∑
j=1

(yjk − h(xnj
))TQ−1(yj − h(xnj

)). (21)

The adjoint method is not directly applicable to finding the gradient of Jw, but related405

approximate methods can be devised to streamline and accelerate the minimization (see e.g.406

Kalnay (2003); Zupanski (1997)).407

Note that the cost function Jw in (21) equals F in (14), the function that is minimized408

by the implicit particle smoother of section 3b (up to irrelevant constants). We can thus409

use a weak 4D-Var code for the implementation of an implicit particle smoother to minimize410

this F . Once the minimum is found, we can obtain M samples from the conditional pdf411

by solving (8) repeatedly. The cost of solving these equations is not large, compared to the412

computational cost of minimizing the cost functions, as was explained in section 4a. Thus,413

the additional cost for implementing the implicit particle smoother versus a weak constraint414

4D-Var method is not large. The implicit particle smoother has the advantage that it can415

compute the conditional mean, which can be a better state estimate than the conditional416

mode (the result of a weak 4D-Var calculation), because the conditional mean minimizes the417

mean square error, and is unbiased, whereas the conditional mode is a biased state estimate.418

Moreover, the state estimate of the implicit particle smoother is equipped with a quantitative419

measure of its uncertainty.420

Recall that the implicit particle filter of section 3c is an efficient sequential sampling421

method for the conditional pdf. The implicit particle filter requires at each assimilation and422

for each particle, the minimization of the function F k in (16). These F k’s are parameterized423

by the previous position of each particle and by the current observation. Moreover, for each424

particle, F k is nearly identical to the cost function Jw of weak constraint 4D-Var in (21).425

The differences are in the treatment of the background state. It is unnecessary to include the426
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background state in the functions F k because the implicit particle filter samples the prior427

directly, and without making a Gaussian assumption. Since the implicit particle filter is a428

sequential method, we set it up in section 3c to assimilate one observation at a time, so that429

the arguments of F k are xnm+1:nm+1 . We can thus obtain the F k’s from the weak constraint430

cost function Js in (21) by removing the background state, turning the variables x0 into431

parameters Xk
nm

(the position of the kth particle at time nm), and running the variational432

assimilation over one observation only. The particle-by-particle minimizations of F k for the433

implicit particle filter can thus be carried out by existing weak constraint 4D-Var codes434

with only minor modifications. Once the minimum of each F k is found, the sampling can435

be carried out efficiently using the methods in (Chorin et al. 2010; Morzfeld et al. 2012).436

As was explained above, the additional cost of generating the samples is small compared437

to finding the minimum of the F k’s. Moreover, the minimization for each particle is very438

easy to parallelize so that the the implicit particle filter can make use of modern computer439

architectures with multiple processors.440

The main benefits for the implicit particle filter are (i) the implicit particle filter tracks441

the time evolution of the conditional pdf and, thus, can compute the conditional mean,442

which minimizes the mean square error; (ii) the filter naturally produces a quantitative443

representation of the uncertainty (because it tracks the conditional pdf); and (iii) the implicit444

particle filter handles new observations (in time) naturally, because it is set up as a sequential445

method. The last point is particularly important when the data sets are large.446

We argued in the previous section that the improvement of strong constraint 4D-Var by447

the implicit particle smoother is particularly pronounced if the conditional pdf has more448

than one mode. The arguments presented towards the end of section 4a also hold for the449

weak constraint problem and we expect the implicit particle filter and smoother to perform450

better than weak constraint 4D-Var in such cases.451
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5. Application to the Lorenz attractor452

To illustrate the ideas of the previous sections, we follow (Miller et al. 1999; Evensen453

1997; Chorin and Krause 2004) and apply the implicit particle filter of section 3c and the454

implicit particle smoother of section 3d to the Lorenz attractor (Lorenz 1963). We distin-455

guish between the strong and weak constraint problem. The goal is to demonstrate the456

implementation of the implicit particle methods based on 4D-Var codes, and to show the457

benefits one can expect from turning a 4D-Var code into an implicit filter. However, the458

conclusions one can draw from this (simple) example about more realistic models in numeri-459

cal weather prediction (where the models can have millions of state variables) are somewhat460

limited.461

a. The strong constraint problem462

The Lorenz attractor is governed by the set of ordinary differential equations (ODE)463

dx1

dt
= σ(x2 − x1),

dx2

dt
= x1(ρ− x3)− x2,

dx3

dt
= x1x2 − βx3, (22)

where ρ = 28, σ = 10, β = 8/3 (see Lorenz (1963) who used the symbols σ, r and b). We464

discretize these equations using a fourth-order Runge-Kutta scheme with constant time step465

δ = 0.01. We observe that the errors of this discretization have converged (in the time-step)466

for the short integration times we consider, so that we expect that our numerical solution is467

a good approximation of the true solution of the Lorenz ’63 equations.468

We observe the variables x1 and x3, corrupted by Gaussian noise with mean zero and469

covariance matrix Q = 2I2 (Im is the m×m identity matrix), every r = 20 model steps, i.e.470

every 0.2 dimensionless time units. The observation equation (12) thus becomes471

yk =
(
x1(tnk

), x3(tnk
)
)T

+ Vk,

with Vk ∼ N (0, 2I2). Our goal is to update the prior knowledge about the initial state x0,472

which we assume to be Gaussian, so that p0 ∼ N (xb, B) with xb = (4.3735, 6.9590, 15.4321)T473
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and B = 0.5I3, based upon 4 observations y1, . . . , y4. We try to achieve this goal by using474

the implicit particle smoother of section 3d.475

Recall that the implicit particle smoother essentially consists of three steps: (i) minimize476

the function F in (19); (ii) obtain samples from the underlying conditional pdf by solving477

the algebraic equation (8); and (iii) weight the samples using (7). As pointed out in section478

4a, the first step can be carried out using adjoint codes and that is what we did for this479

example.480

1) Variational implementation of the implicit particle smoother481

We constructed the linear tangent adjoint of the continuous time ODE’s in (22) and482

discretized the adjoint equations using a fourth order Runge-Kutta scheme with time step483

δ = 0.01. We use these adjoint equations to compute the gradient of the function F , which484

in turn is used in a BFGS method (see e.g. Nocedal and Wright (2006); Fletcher (1987)) for485

the minimization of F . We can use the adjoint of the continuous equations here because our486

discretization is accurate enough to do so (in other applications however it may be necessary487

to compute the adjoint of the discrete-time equations).488

To initialize this BFGS method, we ran a few steps of a BFGS method on the “maximum489

likelihood” problem (i.e. we neglect the background term in F ), in which we could also use490

the adjoint equations for the gradient computations. The result of the BFGS iteration on the491

maximum-likelihood problem was used to initialize the BFGS method for the minimization492

of F . We found that this approach is quicker than using the BFGS method on F , initialized493

with the background state xb, because, for our choice of parameters, F seems to have a494

rather flat region around the background state which is not the minimum. Typically the495

minimization converged after a few steps. We observed occasionally that the minimization496

was trapped in very flat regions, in which case we re-started the whole process, using a fresh497

sample from the prior density p0 to initialize the minimization.498
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2) Implementation of the map ψ499

To generate samples, we follow Chorin et al. (2010) and choose the approximate map500

that makes use of a Gaussian reference variable and the quadratic expansion of F in (9)501

(see section 2). The Hessian of F in (9) is hard to compute, but, instead, we can use the502

approximate Hessian, which is available from the variational minimization using BFGS. To503

obtain a sample, we thus solve the quadratic equation (9), where H is the approximate504

Hessian of F , evaluated at the minimizer. This can be done efficiently using the Cholesky505

factor L of H:506

X = µ+ L−T ξ. (23)

The Jacobian of this map is easily calculated to be the determinant of L (the product of its507

diagonal entries) and is constant among the particles. We account for the error we made508

by solving (9) rather than (8) by attaching to each sample the weight (11). This map is509

very efficient for this problem, because L is easy to compute (and can be computed offline).510

In particular, the evaluation of (23) takes about 0.6% of the time it takes to carry out511

the variational minimization so that the cost of sampling is small compared to the cost512

of minimizing F . In general, the implementation of this approximate map requires a one-513

time calculation of the Cholesky factor of the approximate Hessian of F ; for each sample it514

requires a matrix-vector multiplication of a triangular matrix. If the (approximate) Hessian515

is not available (or the cost of storing it is too large), the random map approach in Morzfeld516

et al. (2012) can be used because it can be implemented without using second derivatives of517

F (see also section 2 and Morzfeld and Chorin (2012)).518

3) Numerical results519

Figure 1 illustrates the data assimilation with the implicit particle smoother. On the left520

(time t ≤ 0.8), we show the true state trajectory (teal), which was obtained by integrating521

the equations (22) starting from an initial condition which we got by sampling the prior pdf522
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p0. We also show the data (red dots) with error bars that represent two standard deviations523

(2
√

2 in our case) and the mean (red dot at time 0) of the prior pdf with the same error bars.524

The blue lines represent 30 samples from the prior pdf and the purple lines are 25 samples525

we obtained using the implicit particle smoother.526

The sample mean (obtained by using 100 particles) is not shown, because it practically527

coincides with the true state trajectory. We can observe in this figure that the implicit528

particle smoother generates samples within the high-probability region, because all samples529

are compatible with the data (most of them are within 2 standard deviations of the data).530

The samples from the prior (blue) are often not compatible with the data (they are too far531

away from the data points) and, therefore, are unlikely with respect to the posterior density.532

The computations spent on generating these samples is essentially wasted (which is why this533

method is computationally less effective than implicit sampling).534

We can use the implicit particle smoother to make and assess a forecast (for time t ≥ 0.8)535

as follows. We can approximate the pdf of the state at time 0.8 by a Gaussian whose mean536

and covariance matrix can be computed from the weighted samples. We can then integrate537

samples, say 50, from this Gaussian. The result is shown as purple lines on the right of538

figure 1, and we observe that the true state (teal) is well within the cloud of samples. We539

can also observe that the uncertainty grows dramatically for times larger than 1.4, i.e. a540

forecast should not be expected to be very accurate for times t ≥ 1.4. We could, of course,541

also integrate the particles (i.e. the initial conditions) up to the desired forecast time say542

t = 1.4. However, the point here is to indicate that the Gaussian approximation we obtained543

for the state at time t = 0.8 is compatible with the true state trajectory for times t ≥ 0.8.544

This indicates that this Gaussian approximation can be used as a prior pdf to assimilate545

data collected at t ≥ 0.8.546

We further assessed the accuracy and reliability of the implicit particle smoother by547

running 10,000 twin experiments. A twin experiment amounts to generating a “true” initial548

condition by sampling the prior pdf p0, integrating this initial condition forward in time and549
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collecting observations by perturbing the true state trajectory with appropriate noise. The550

data are passed to the implicit particle smoother, which then produces an approximation to551

the conditional mean, which in turn is the minimum mean square error estimate of the initial552

condition. We than compute the Euclidean norm of the difference between the true initial553

condition and its approximation by the implicit particle smoother. The mean and standard554

deviation of this error norm, scaled by the mean of the norm of the true initial conditions,555

indicate the errors one should expect in each run.556

We compare the implicit particle smoother to the variational data assimilation scheme557

(4D-Var) which is implemented as part of the implicit particle smoother. In order to check558

that our implementation of the implicit particle smoother is free of errors, we compare its559

errors to those we obtained with a Bayesian bootstrap method (Doucet et al. 2001). The560

Bayesian bootstrap method is an importance sampling method that uses the prior pdf p0 as561

the importance function, i.e. we obtain samples from the prior pdf and then assign a weight562

based on the observations to each sample. The conditional mean can be approximated by563

the weighted sample mean and, for a large number of particles, this method converges to564

the true conditional mean. The results of 10,000 twin experiments are shown in table 1565

We observe that the Bayesian bootstrap method and the implicit particle smoother give566

the same errors. Since both methods approximate the conditional mean, we can conclude567

that our implementation of the implicit particle smoother is correct. Moreover, the implicit568

particle smoother improved the estimate of the variational method through sampling, i.e.569

by computing the conditional mean instead of the conditional mode, at a relatively small570

additional computational cost (0.6%). Moreover, the implicit particle smoother delivers a571

quantitative measure of the uncertainty of the state estimate, which can be used to propagate572

the uncertainty forward in time and to assess the uncertainty of forecasts (see figure 1). We573

conclude that the implicit particle smoother is efficient and reliable in it its variational574

implementation.575

25



b. The weak constraint problem576

We now consider a weak constraint problem and use a stochastic version of the Lorenz577

attractor578

dx1

dt
= σ(x2 − x1) + gdW 1,

dx2

dt
= x1(ρ− x3)− x2 + gdW 2

dx3

dt
= x1x2 − βx3 + gdW 3,

where W 1,W 2 and W 3 are independent Brownian motions and where σ, ρ and β are as in579

section 5a and g = 1/
√

2. We discretize these stochastic differential equations (SDE) using580

the Euler-Maruyama scheme with constant time step δ = 10−3 (Kloeden and Platen 1999).581

With this choice the function Rj(xj) for the discrete recurrence (11) becomes582

R(xj) = xj + f(xj)δ,

where xj =
(
x1
j , x

3
j , x

3
j

)T
and

f(xj) =
(
σ(x2

j − x1
j), x

1
j(ρ− x3

j)− x2
j , x

1
jx

2
j − βx3

j

)T
,

and Zk ∼ N (0, δ/2I3).583

The observations are all three state variables, collected at times tnk
= k · r · δ, perturbed584

by Gaussian noise with mean zero and covariance matrix Q = 2I3. The data assimilation585

problem is particularly hard when the time between observations is greater than the char-586

acteristic time scale at which transitions are made between the two attractors, which, for587

our choice of parameters is about T = 0.5 (Miller et al. 1999). We consider two cases:588

(a) r = 400, i.e. the gap between observations is 0.4 dimensionless time units and smaller589

than the characteristic time scale; and (b) r = 800, i.e. the gap between observations is590

0.8 dimensionless time units and larger than the characteristic time scale. In both cases we591

assimilate the data sequentially using the implicit particle filter of section 3c.592
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1) Variational implementation of the implicit particle filter593

The main computational challenge of the implicit particle filter is to find the minima of594

the F k’s in (16). We explained in section (4) that these F k’s are related to the weak con-595

straint 4D-Var cost function and that 4D-Var codes can be used to carry out the required596

minimizations. The various weak 4D-Var codes differ mainly in the extent to which ap-597

proximate techniques, such as linearizations or Gaussian assumptions, are used. We decided598

not to favor any particular approximate version of weak constraint 4D-Var and, for that599

reason, computed the first and second derivatives of F k analytically and used a trust-region600

method for the minimizations (see e.g. Conn et al. (2000)). This corresponds to an “ideal”601

implementation of weak constraint 4D-Var, for which the control variable is the full state602

trajectory (Tremolet 2006).603

The trust-region approach requires a Cholesky decomposition of the Hessian of F k at604

each iteration of the minimization algorithm. Since this Hessian is banded (with band width605

6), the cost of one iteration is O(3m), where m is the number of model steps between606

observations. The number of model steps between observations increases quickly as the607

(non-dimensional) time between observations increases, because we chose a small time step608

δ to ensure accuracy of the discretization of the SDE’s. Because the cost of each iteration is609

relatively large for large gaps between observations, it is worthwhile to invest into generating610

“good seeds” to initialize the trust-region iteration, so that it converges quickly.611

We generated a seed as follows: for each time window between observations, we first612

obtain xm = xnm+1:nm+1 by integrating the stochastic differential equation. We then calculate613

the “residual vector” r = xnm+1 − ym+1 and perturb the model path using xrj = xj − r(j/r)614

for each j = 0, 1, 2 . . . , r. This procedure rotates the model path xj towards the observation.615

We refine this seed with a multi-grid technique, which is conceptually similar to the616

multi-grid finite difference method (Fedorenko 1961) and multi-grid Monte Carlo (Goodman617

and Sokal 1989) (see also Chorin (2008)). The idea is to first perform a cheap minimization618

on a coarse grid, i.e. with a larger time step, and then use the result of this minimization,619
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interpolated onto the fine grid, as the seed for the minimization on the finer grid. The620

reason why we can use this multi-grid approach here is that the conditional pdf depends on621

the model (it is proportional to the product of the pdf for the model and the pdf for the622

observations), which in turn represents an approximation to an SDE. The conditional pdf623

we obtain with a model and time step say δ̂ < δ should thus be somewhat similar to the624

conditional pdf we obtain with a time step δ < δ̂. Since F k is minus the logarithm of the625

conditional density, we expect that the minimizer of F k with a model with time step δ̃ is626

similar to the minimizer of an F k with a model and time step δ < δ̃.627

In addition to speeding up the minimization, the multi-grid approach proved effective to628

identify local minima of F k. We observed in our experiments that the global minimum of F k
629

was rarely larger than 10, independent of the time step or even the gap between observation630

times. Local minima were observed to be as large as 200. This observation can be used631

to identify local minima of F k: the result of a coarse grid minimization is rejected if the632

minimum is above a threshold φc, and we restart the minimization with a new (unrefined)633

seed xm.634

To test our minimization algorithm (the weak 4D-Var code), we compare its output to the635

output of a trust-region method that uses “the truth” as its seed, i.e. we generate a reference636

state trajectory by integrating the SDE’s, collect observations from this state trajectory and637

run our 4D-Var code as well as a trust-region method that is initialized with the true state638

trajectory. This should give us an idea of how accurate our 4D-Var code is, because the true639

state trajectory typically lies only a few Newton steps away from a relevant mode of the640

conditional pdf. We find that our multi-grid scheme finds the same minimum as seeding the641

minimization with the truth 100% of the time for gaps between observations that are less642

than 1.5 dimensionless time units (1500 model steps).643
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2) Implementation of the map ψ644

Upon minimization of the F k’s, we solve (17) for each particle to obtain samples from645

the conditional pdf. To solve this underdetermined equation, we use the same approach646

as in section 5a, i.e. we replace F k in (17) by its quadratic approximation and solve a647

quadratic equation. This approach is very efficient for this problem, because we can solve648

the quadratic equation using the Cholesky factor, L, of the Hessian of F k, which is available649

from the trust-region minimization (the variational part of the implicit particle filter). The650

Jacobian of this map is easily calculated to be the determinant of L (the product of its651

diagonal entries). We observed that, for this example, generating a sample using this map652

takes about 1/10,000 of the time it takes to carry out the minimization; in general, obtaining653

a sample requires a Cholesky factorization of H (which we already have from the Newton654

minimization), followed by a matrix-vector multiplication (where the matrix is triangular).655

The cost of sampling is thus small compared to the cost of minimizing F k, i.e. turning a656

weak 4D-Var code into implicit sampling code comes at a relatively small additional cost.657

Again, we account for the error we make by replacing F k by its quadratic approximation658

through the weights, which become659

ŵk = wke−φ
k

e−(F (Xk
nm:nm+1

)−F0(Xk
nm:nm+1

)) detL−1.

Note that the factors with φk and the Jacobian of the map (detL−1) must appear in the660

weights because the functions F k are different for each particle and, thus, can have different661

minima and different Hessians. In other problems, these Hessians may not be available (or662

too large to store). In these cases, the random map approach can be implemented without663

using second derivatives of the F k’s (see section 2 and (Morzfeld et al. 2012; Morzfeld and664

Chorin 2012)).665
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3) Monte Carlo variance reduction666

We can improve the performance of the implicit particle filter by using standard Monte667

Carlo variance reduction techniques such as prior boosting, rejection control or partial rejec-668

tion control (Gordon et al. 1993; Liu et al. 2001, 1998). These methods rely on generating669

an expanded ensemble of particles from which only a subset will be promoted to the next670

assimilation window. It is important to realize that the expanded ensemble of particles does671

not require additional minimizations, because the new “intermediate” particles share their672

F k’s with their “parent” particles (for which the minimization has already been carried out).673

In particular, we can generate m > 1 “intermediate” particles for each of the M particles674

by using (23) repeatedly. We thus obtain mM samples of the conditional pdf, essentially at675

the cost of M samples (since using (23) is cheap compared to the minimization of F k). This676

“prior boosting” technique proved effective at increasing sample diversity in our numerical677

experiments.678

4) Numerical results679

We test the efficiency and accuracy of the implicit particle filter by running twin exper-680

iments, as we did in section 5a. Each twin experiment amounts to generating a reference681

solution up to time 4, also called “the truth,” using the Euler-Maruyama discretization of the682

stochastic Lorenz attractor, and collecting observations at times tnk
= k · r · δ. We consider683

two cases: (a) data is collected every r = 400 model steps (the gap between observations is684

smaller than the characteristic time scale of the Lorenz attractor); and (b) data is collected685

every r = 800 model steps (the gap between observations is larger than the characteristic686

time scale of the Lorenz attractor). In each case, the data are passed to three data assimi-687

lation algorithms: (i) the implicit particle filter in its sequential form (see section 3c); (ii)688

the Bayesian bootstrap filter with resampling (also sometimes known as the standard SIR689

filter), which uses the pdf p(xnm+1:nm+1|xnm) as its importance function (Gordon et al. 1993;690
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Doucet et al. 2001); and (iii) an implementation of weak constraint 4D-Var, which uses the691

same (nonlinear) multi-grid trust-region method as the implicit particle filter to carry out692

the minimizations. The weak 4D-Var code also assimilates the observations sequentially.693

The output of the two filters is an approximation of the conditional mean, and the output694

of the weak constraint 4D-Var code is an approximation of the conditional mode.695

In figure 2 we plot the results of one twin experiment, where we assimilate sequentially 5696

observations, with r = 800 model steps (0.8 dimensionless time units) between observations697

(case (b)).698

We observe that, with 20 particles, the SIR filter loses track of the true state trajectory699

after a relatively short time. The reason is that none of the samples is sufficiently close to700

the observations, i.e. we observe the typical effect of sample impoverishment. The weak701

constraint 4D-Var code cannot follow the true state trajectory, because, starting at time 2.4,702

it is trapped in a local minimum. The implicit particle filter with 20 particles, each boosted703

with 50 intermediate particles (see section 3) can follow the true state trajectory at all times.704

The reason why the implicit particle filter is not “stuck” in a local minimum (as is 4D-Var)705

is that it is able to track the various modes of the conditional pdf, since the minimization is706

performed particle by particle. In this example, about 10 particles appear sufficient to track707

all relevant modes (because we essentially observe the same errors for the implicit particle708

filter with 10 and 20 particles).709

We perform 100 such twin experiments, because a single twin experiment is not very710

informative (it is a random event). For each one we compute the errors e = xF0:n − x0:n,711

where x0:N is the true state trajectory and xF0:N is the output of the data assimilation (implicit712

particle filter, SIR filter, or 4D-Var). The mean and standard deviation of the Euclidean713

norm of these errors indicates the errors one can expect for each method and in each run.714

The results are shown in table 2, where we scaled the errors and their standard deviations715

by the mean of the Euclidean norm of the true state trajectory.716

We observe from table 2, that the implicit particle filter as well as the standard SIR717
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filters can provide accurate approximations of the true state in both cases (since all errors are718

relatively small), provided that the number of particles is large enough. What is important719

to realize here is that the implicit particle filter can achieve a similar accuracy, but with720

a significantly lower number of particles than the standard SIR filter. The weak 4D-Var721

method cannot achieve the accuracy of the particle filters, especially if the gap between722

observations is larger (case (b)). The reason is that the method is trapped in local minima,723

i.e. 4D-Var is unable to track more than one mode. The implicit particle filter on the724

other hand is able to track all relevant modes (in this example), due to the particle-by-725

particle minimization. The additional computations of turning the variational method into726

an implicit particle filter however makes it possible to track all relevant modes.727

To further assess the quality of the implicit particle filter, we compute the normalized728

effective sample size729

Meff
M

=
(
∑M

k=1wk)
2

M
∑M

k=1w
2
k

,

where M is the number of particles, for each twin experiment at the last data assimilation730

cycle. The normalized effective sample size indicates the percentage of particles that con-731

tribute meaningfully to the approximation of the conditional pdf (Doucet et al. 2001) and732

we compare the normalized effective sample size of the implicit particle filter and the SIR733

filter. The results are shown in table 3.734

We observe that, with a relatively short time between observations (case (a)), about735

50% of the particles of the standard SIR filter are contributing meaningfully to the ensemble736

averages. The situation is more dramatic for a larger gap between observations (case (b)),737

where we observe effective sample sizes of about 35%. The normalized effective sample size738

of the implicit particle filter is about 95% for small gaps, and about 84% for larger gaps.739

While the computational cost of an SIR filter with about 500 particles is comparable to the740

implicit filter with 10 particles (each boosted with 50 particles), the ensemble produced by741

the implicit particle filter is of higher quality, as is indicated by a significantly larger effective742

sample size.743
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In summary, we conclude that the implicit particle filter performs accurately and reliably744

on our test problems and yields accurate results (with uncertainty quantifications) at a745

reasonable computational cost.746

Finally, we wish to mention that we ran numerical experiments with an EnKF, using747

the Matlab implementation available at www.enkf.nersc.co. We experimented in both the748

weak and strong constraint problem set ups and came to the conclusion that our time-gap749

between observations is too large for the EnKF to give accurate state estimates between750

the observations. These observations are in line with the results reported in the detailed751

comparative study of Kalnay et al. (2007).752

6. Conclusions753

The implicit particle filter was introduced in (Chorin et al. 2010; Chorin and Tu 2009;754

Morzfeld et al. 2012) as a sequential Monte Carlo method for data assimilation. In the755

present paper, we derived the implicit particle filter in a more general set up and presented756

extensions to implicit particle smoothing and to data assimilation for perfect models.757

We explored the connection of these implicit particle methods with variational data as-758

similation and showed that existing variational codes can be used for efficient implementation759

of implicit particle methods. In particular, we showed that variational codes can carry out760

the minimizations required by implicit particle methods. Turning a variational code into761

an implicit particle method then amounts to solving an underdetermined scalar equation;762

methods to solve these equations efficiently can be found in our earlier work (e.g. in Chorin763

et al. (2010); Morzfeld et al. (2012)). The additional cost of implicit particle methods is thus764

small, and the payoff is that one can obtain the minimum mean square error estimate of the765

state along with a quantitative measure of its uncertainty, whereas variational codes produce766

biased state estimates with error quantifications that often rely on Gaussian approximations.767

We have demonstrated the applicability and efficiency of the implicit particle methods768
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by applying them to the Lorenz attractor. We considered the strong constraint data as-769

similation problem (estimation of initial conditions for a perfect model) as well as the weak770

constraint problem (estimation of the state trajectory of an uncertain model) and, in both771

cases discussed the details of the variational aspects of the filter. In the strong constraint772

problem, we found that the implicit particle filter can improve the variational estimate sig-773

nificantly by turning the conditional mode into the conditional mean (the minimum mean774

square error estimator). Moreover, the implicit particle smoother produced quantitative775

measures of the uncertainty which were useful in assessing the uncertainty in forecasts. In776

the weak constraint problem, we found that the implicit particle filter requires about 10%777

of the particles of a standard SIR filter, and that it performs better than weak constraint778

4D-Var because it can track all relevant modes of the conditional pdf. In every case we779

considered, the cost of solving the implicit equations to generate samples was small com-780

pared to the cost of the minimizations, i.e. to the cost the implicit particle filter shares with781

variational data assimilation.782
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4D-Var Implicit particle smoother Bayesian bootstrap
(100 particles) (1000 particles)

0.063 / 0.027 0.047 / 0.023 0.046 / 0.022

Table 1. Errors (mean / standard deviation) in the reconstruction of the initial condition
for three data assimilation techniques for the strong constraint problem.
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Case (a): r = 400 model steps between observations
Number of particles 4D-Var IPF SIR

- 0.086 / 0.063 - -
10 - 0.042 / 0.012 0.15 / 0.16
20 - 0.040 / 0.013 0.092 / 0.10
100 - - 0.048 / 0.050
250 - - 0.039 / 0.0098
500 - - 0.038 / 0.0089
1000 - - 0.038 / 0.013
5000 - - 0.037 / 0.0087

Case (b): r = 800 model steps between observations
Number of particles 4D-Var IPF SIR

- 0.13 / 0.15 - -
10 - 0.074 / 0.070 0.18 / 0.17
20 - 0.074 / 0.080 0.14 / 0.15
100 - - 0.077 / 0.082
250 - - 0.066 / 0.055
500 - - 0.063 / 0.054
1000 - - 0.065 / 0.056
5000 - - 0.064 / 0.056

Table 2. Errors (mean / standard deviation) of three data assimilation techniques for the
weak constraint problem. 4D-Var: an ideal implementation of weak constraint 4D-Var. IPF:
the implicit particle filter (each particle has 50 intermediate particles). SIR: the Bayesian
bootstrap filter.
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Case (a): r = 400 model steps between observations
Number of particles IPF SIR

10 95.0% 50.4 %
20 94.5 % 49.2 %
100 - 49.0 %
250 - 48.3 %
500 - 48.4 %
1000 - 48.5%
5000 - 48.6%

Case (b): r = 800 model steps between observations
Number of particles IPF SIR

10 84.8% 37.9 %
20 84.1 % 34.7 %
100 - 32.6 %
250 - 34.3 %
500 - 34.0 %
1000 - 33.0%
5000 - 33.0%

Table 3. Normalized effective sample size of the implicit particle filter and the standard
SIR filter for the weak constraint problem.
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List of Figures935

1 Illustration of data assimilation and forecasting using the implicit particle936

smoother for the strong constraint problem. On the left (Time ≤ 0.8): 30937

samples from the prior pdf (blue lines); the data and error bars (red); 25938

samples obtained by the implicit particle smoother (purple); and the true939

state trajectory (teal). On the right (Time > 0.8): 50 samples of a Gaussian940

approximation of the pdf of the state at time 0.8 obtained by the implicit941

particle smoother (purple); and the true state trajectory (teal). 46942

2 Reconstructions of a reference path (solid-black) from a set of 5 observations943

(red dots) by three data assimilation methods for the weak constraint prob-944

lem. Dashed-teal: reconstruction by the standard SIR filter with 20 particles.945

Dashed-blue: reconstruction by weak constraint 4D-Var. Dashed-purple: re-946

construction by the implicit particle filter with 10 particles, each with 50947

intermediate particles. 47948
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Fig. 1. Illustration of data assimilation and forecasting using the implicit particle smoother
for the strong constraint problem. On the left (Time ≤ 0.8): 30 samples from the prior
pdf (blue lines); the data and error bars (red); 25 samples obtained by the implicit particle
smoother (purple); and the true state trajectory (teal). On the right (Time > 0.8): 50
samples of a Gaussian approximation of the pdf of the state at time 0.8 obtained by the
implicit particle smoother (purple); and the true state trajectory (teal).

46



0 0.5 1 1.5 2 2.5 3 3.5 4
−20

0

20

x

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

0

20

y

0 0.5 1 1.5 2 2.5 3 3.5 4

10
20
30
40

z

Time

Fig. 2. Reconstructions of a reference path (solid-black) from a set of 5 observations (red
dots) by three data assimilation methods for the weak constraint problem. Dashed-teal:
reconstruction by the standard SIR filter with 20 particles. Dashed-blue: reconstruction by
weak constraint 4D-Var. Dashed-purple: reconstruction by the implicit particle filter with
10 particles, each with 50 intermediate particles.
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