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Before we go into derived categorical algebra, it might be useful to review usual algebra, then derived algebra.

Let A be an associative algebra, and M an A-bimodule. We define the center and trace of M :

ZpA,Mq “ tm P M | am “ ma @a P Au, TrpA,Mq “ M{tam´ma | m P M,a P Au.

Of special interest is the case M “ A, where we will write the above by ZpAq and TrpAq. The center of ZpAq is a

commutative algebra, and both ZpA,Mq and TrpA,Mq are modules for it.

We write Ae “ AbAop as shorthand. The above formulas may be rewritten:

ZpA,Mq “ HomAepA,Mq, TrpA,Mq “ AbAe M.

Let M be a right A-module and N a left A-module. We will use the following obvious formula a lot:

M bA N “ AbAe pM bNq.

Let A,B be associative algebras. Given an pA,Bq-bimodule K, we define the left and right dual pB,Aq-

bimodules:
_K “ HomApK,Aq, K_ “ HomBpK,Bq

which only really deserve to be called duals if the coevaluation and evaluation maps

η : B Ñ _K bA K, ϵ : K bB
_K Ñ A

η : A Ñ K bB K_, ϵ : K_ bA K Ñ B

satisfy “Zorro’s identities”, i.e. the compositions

K Ñ K bB K_ bA K Ñ K, K_ Ñ K_ bA K bB K Ñ K

are the identity. A dual pair pK,K_q gives rise to a functoriality of traces:1

TrpAq “ AbAe A Ñ AbAe pK bB K_q » B bBe pK_ bA Kq Ñ B bBe B “ TrpBq.

1By convention, we will consider right modules, thus an pA,Bq-bimodule K defines a functor ModpAq Ñ ModpBq, thus we have
covariant functoriality for right dualizable bimodules, and contravariant functoriality for left dualizable bimodules.
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Explicitly, right dualizability of K is equivalent to K being projective as a B-module. For simplicity, let us assume

that K is free as a B-module; then this functoriality assigns to an element a P A the trace of its action on K,

viewed as a B-valued matrix (assuming B is commutative). One may verify that it factors through the quotient by

commutators in A.

There is also a coefficients version, i.e. given an A-bimodule M and a B-bimodule N , one can work out what

extra data is needed to write down a map TrpA,Mq Ñ TrpB,Nq: we need a way to commute M with K, i.e. a

map M bA K Ñ K bB N (exercise: justify using the above picture).

Example 0.0.1. Let A “ M “ k, and N “ BF where ϕ : B Ñ B is an endomorphism of the algebra, and Bϕ

is the B-bimodule where b1 ¨ b ¨ b2 “ b1bϕpb2q. Let K be a right B-module; a commuting structure is given by a

ϕ-semilinear map f : K Ñ K. Now, the trace of the map defined by K, which we call its character rK, f s, is the

trace of the endomorphism f viewed as a B-valued matrix. In particular, if ϕ “ f “ id, then rK, f s is the rank of

K.

As far as I know there is not a nice functoriality for centers.

Deriving algebra is not hard. The main tool is the bar resolution, i.e. the following resolution of A as an

Ae-module:

BpAq :“
´

¨ ¨ ¨ AbAbAbA AbAbA AbA
¯

» A

where the maps are given by adjacent multiplication. More generally, if A is a R-algebra one can take a relative

bar resolution

BpA{Rq :“
´

¨ ¨ ¨ AbR AbR AbR A AbR AbR A AbR A
¯

» A.

This complex will not be a resolution unless A is projective over R. However, if we have a good notion of derived

tensor product, we may derive the tensor products in the terms of the relative bar resolution to obtain a resolution.

This is less useful in algebra, but will be useful in categorical algebra.

We can now define derived centers (also known as Hochschild cohomology) and derived traces (also known as

Hochschild homology)

HH‚pA,Mq “ Ext‚
AepA,Mq » Hom‚

AepBpAq,Mq, HH‚pA,Mq “ TorA
e

‚ pA,Mq » BpAq bAe M.

The utility of the bar construction is not limited to computing Hochschild (co)homology. It can be used to

produce a resolution of any relative tensor product via the formula

M bA N » pM bNq bAe A »

´

¨ ¨ ¨ M bAbAbN M bAbN M bN
¯

.

This gives a universal way to compute derived tensor products. This will be useful when categorifying, because we

can’t do things like choose generators and relations.

1 Generalities on traces

We will now categorify the above discussion. Confusingly, there are two things we might mean by categorifying the

algebra A, and one can discuss centers and traces for both, leading to two different notions. Furthermore, these

two notions are related, and we will require discussion of both.

� We can view the algebra A itself as a k-linear category with one object (or pass to its category of modules

ModpAq), i.e. view A as living in k-linear categories. Note that ModpAq is only monoidal if A is commutative,

so the monoidal structure is not necessary to define this trace. Here, a module is a functor Aop Ñ Vectk.

The corresponding trace is sometimes called the 1-categorical or vertical or ordinary trace. The corresponding

Morita theory is the dg Morita theory of Toën.[To07]
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� We may categorify the notion of algebras, leading to associative monoidal k-linear categories A. Note that

A may be considered in the above set-up as well. Here, a module is a category M with an action functor

AˆM Ñ M satisfying identities. The corresponding trace is sometimes called the 2-categorical or horizontal

or monoidal trace.

� If A is a monoidal category satisfying some compactness conditions, its vertical trace becomes an algebra.

The horiontal trace need not be monoidal. This hints that the two traces are being taken in two directions.

We will discuss this later.

Example 1.0.1. Let us now introduce the examples of monoidal categories we want to keep in mind.

1. Let X,Y be perfect stacks over k (e.g. quasiprojective schemes modulo affine groups). Then, the category

QCpX ˆY Xq is monoidal under convolution.

(a) If we take X “ Y , we obtain QCpXq under tensor product.

(b) If we take Y “ BG and X “ pt, we obtain QCpGq under group multiplication.

2. In the set-up above, assume that X,Y are smooth and QCA (e.g. smooth quasiprojective schemes modulo

affine groups), and furthermore that f : X Ñ Y is proper. Then, QC!pXˆY Xq is monoidal under convolution.

This is a renormalization of QC, and may be ignored at a first pass.

3. Let Y be a stack with smooth diagonal (e.g. a classifying stack) and assume f : X Ñ Y is proper. Then,

DpX ˆY Xq is monoidal under convolution.

Not all the conditions above are necessary to define monoidal structures, but they will be for the monoidal categories

to have some basic good properties we desire, e.g. semi-rigidity and control over compact objects.

1.1 Trace in a symmetric monoidal category

We will be vague in this section about what kind of objects (1-category, 8-categorical, et cetera) we are dealing

with. Let pU,b,1q denote some kind of symmetric monoidal category, with operation b and unit 1. We are mostly

interested in the following examples of pU,b,1q for k a field:

(0) U “ Vectk,
2 the usual tensor product of chain complexes, and 1 “ k.

(1) U “ 1Mork is the dg3 1-Morita category, whose objects are the dg categories ModpAq for dg algebras A, and

HomUpA,Bq is the set of pA,Bq-bimodules. We define ModpAq bModpBq :“ ModpAbBq, and 1 :“ Modpkq.

(1’) U “ dgCatk is the category of dg categories, with colimit-presrving functors, over k under the Lurie tensor

product b, and 1 :“ Modpkq. Not every dg category is equivalent to ModpAq, for example, ReppGq for G a

reductive group (there is not a single compact generator but an infinite collection of them).

(2) U “ 2Modk is the 2-Morita category,4 whose objects are ModpAq for monoidal k-linear 8-categories A,

and morphisms HomUpA,Bq are pA,Bq-bimodule categories. We define the tensor product analogously, and

1 :“ ModpdgCatkq.

Definition 1.1.1. We say that X P U has a dual X_ if there are maps

ηX : 1 Ñ X_ bX, ϵX : X bX_ Ñ 1

satisfying “Zorro’s axioms”:

2Note we use this notation to mean the category of chain complexes, i.e. derived vector spaces.
3The difference between this and usual Morita theory is that we “derive everything.” The functors are no longer required to be

exact.
4We now move from dg categories to stable 8-categories. This is necessary because of the abstract nature of various constructions

here which are difficult to formulate in the explicit dg setting.
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Exercise: use Zorro’s axioms to prove that duals are unique if they exist. Hint: if there are two duals X_ and 1X_,

write down the diagram corresponding to the first Zorro axiom above using both. Note that for any map ϕ : X Ñ Y

between dualizable objects, there is a dual map ϕ_ : Y _ Ñ X_:

For the next definition, we need the following observation. For X P U, the functor actX : U Ñ U has a right

adjoint HompX,´q : U Ñ U. Taking X “ 1 and applying the right adjoint to 1, we find that EndUp1q is enriched

in U, and since the adjoint functors are equivalences in this case, we have an isomorphism in U:

EndUp1q » 1.

Note that this implies that EndUp1q, which is a priori only associative, is in fact commutative.

Definition 1.1.2. Assume X is dualizable and let ϕ : X Ñ X be an endomorphism of X. We define the trace

trpX,ϕq “ pϵX ˝ pϕb idX_ q ˝ ηXq P EndUp1q » 1.

We remark, without clarifying terms, that the trace of the identity trpX, idXq has a canonical S1-action, while in

general traces have a “paracyclic action.”

In our examples:

(0) U “ Vectk: a chain complex is dualizable if and only if it has bounded and finite-dimensional cohomology,

and we have trpV ‚, ϕq “
ř

nPZp´1qn trpHnpV q, Hnpϕqq P k is the alternating sum of the usual trace.

(1) U “ 1Mork: every category ModpAq is dualizable, with ModpAq_ “ ModpAopq, and the trace of a bimodule

is its Hochschild homology trpA,Mq “ HH‚pA,Mq P Vectk.

(1’) U “ dgCatk: it is not easy to say precisely which categories are dualizable. If C “ IndpC0q is compactly

generated, then its dual is C_ » IndpCop
0 q. The trace is also the Hochschild homology HH‚pCq; there is a

notion of cyclic bar complex of a compactly generated category. Note that this notion generalizes that one,

i.e. we only require the category to be dualizable, which is weaker than being compactly generated. One

particular example of interest is the case where F : C Ñ C is a colimit-preserving endofunctor, and we define

CF to be the F -twisted diagonal bimodule, i.e. sending pX,Y q ÞÑ HomCpX,F pY qq.
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For example, if X is perfect then C “ QCpXq, then C_ :“ QCpXq, the coevaluation is ∆˚p
˚ and the

evaluation is p˚∆
˚, where p : X Ñ Spec k and ∆ : X ãÑ X ˆ X. Thus the trace of ϕ : X Ñ X is the global

sections on the derived intersection (we will define Lq later):

trpQCpXq, ϕ˚q » OpΓϕ XR
XˆX ∆Xq » OpLqpXqq.

Definition 1.1.3. The derived loop space is defined

LX “ MappS1, Xq “ MappΣS0, Xq “ Mapp˚
ž

˚ ˚

˚, Xq “ X ˆXˆX X.

For ϕ : X Ñ X a self-map, the ϕ-twisted derived loop space is defined

LϕX “ Γϕ XXˆX ∆X .

(2) U “ 2Modk: every category ModpAq is dualizable with ModpAq “ ModpArvq. The Hochschild homology is

computed by the cyclic bar complex and lives in dgCatk. We similarly define for any monoidal endofunctor

F : A Ñ A, the corresponding F -twisted diagonal bimodule AF .

1.2 Functoriality of traces and characters

Furthermore, we have functoriality of traces. This notion only makes sense if U is a 2-category, i.e. in the 1 and

2-categorical contexts.

Definition 1.2.1. LetX,Y be dualizable objects with endomorphisms ϕX , ϕY . Let f : X Ñ Y be a right-dualizable

morphism in U with a commuting structure η : f ˝ ϕX Ñ ϕY ˝ f . Then we have a map on traces

trpf, ηq : trpX,ϕXq Ñ trpY, ϕY q

defined in the usual way (see the picture, and examples).

Example 1.2.2. Again, we go to the examples.

(0) There is no functoriality for 0-categorical traces, since there are no 2-morphisms.

(1) First, let’s recall that the 0-categorical trace is literally just taking the trace of a matrix. Now, recall how

we defined functoriality of 1-categorical traces earlier. Let A,B be algebras, and let K be a right-dualizable

pA,Bq-bimodule (i.e. perfect as a B-module). Then we have a map on traces:

HH‚pAq “ A{rA,As ÝÑ HH‚pBq “ B{rB,Bs.

This map is given by the 0-categorical trace for the A-action on K.

(1’) A right dualizable functor F : C Ñ D is one that admits a colimit-preserving right adjoint FR. If C

is compactly generated, this is equivalent to F preserving compact objects. In this case, we have a map

TrpF q : HH‚pCq Ñ HH‚pDq. More generally, given ϕC and ϕD endofunctors, we need to provide a “ϕ-

equivariant” structure F ˝ ϕC Ñ ϕD ˝ F .

As an explicit example, let f : X Ñ Y be a map of schemes, equivariant for a Z-action generated by ϕ. Then,

f˚ acquires a ϕ˚-equivariant structure, and we have

HHpf˚, ϕ˚q : HHpQCpY q, ϕ˚q “ Lϕf
˚ » OpLϕpY qq Ñ HH‚pQCpXq, ϕ˚q » OpLϕpXqq.

(2) We will discuss this later, but things are more complicated. As far as I know there isn’t a general easy criterion

for determining if a module category is right dualizable. By [GKRV22], if A,B are rigid monoidal categories

and F : A Ñ B a monoidal endofunctor, then B is a pA,Bq-bimodule and its right dual is itself.
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Functoriality leads to the notion of characters.

Definition 1.2.3. Suppose X P U is dualizable, and ϕ : X Ñ X an endomorphism. Let pFx, ηq : p1, id1q Ñ pX,ϕq

be a right dualizable morphism in U equipped with a compatible commuting structure η : x Ñ ϕpxq, which

we can view as defining a “finite-dimensional element” of X via the action of 1 on x P X (plus a ϕ-semilinear

endomorphism). By functoriality of traces, we have

trpFxq : trp1q Ñ trpX,ϕq.

Assume that trp1q is an algebra object with unit 1.5 We define rx, ηs :“ trpFxqp1q.

Just how functoriality “looks like” a lower trace, the same is true for characters, but we avoid using this term

so as to not overload the word trace.

Example 1.2.4. We compute some examples.

(1a) Let M be a perfect A-module, which we view as a pk,Aq-bimodule. The right dual is M_ “ HomApM,Aq.

This defines a map

k Ñ EndApMq » pM_ bk Mq bAbAop A Ñ AbAbAop A » HH‚pAq

and we denote the image of 1 by rM s P HH‚pAq. Note, in particular, that it always defines an element of

HH0pAq “ A{rA,As, i.e. the derived structure is not relevant. If A is a connective dg algebra, then this is

still true, i.e. HH0pAq “ π0pAq{rπ0pAq, π0pAqs. If A is coconnective, this can fail.

Example: let A “ EndpV q for a finite vector space V . Show that rV s “ 1, thus rAs “ dimpV q. Hint: the

coevaluation map k Ñ V ˚ bA V sends 1 ÞÑ f b e for any choices such that fpeq “ 1.

(1b) The map A Ñ A{rA,As is realized as follows. Take M “ A to be the right regular A-module, and let

ηa : A Ñ A be the right action by a P A (which is an endomorphism as a right A-module). Then, the

character ras :“ rA, ηas is given by the composition

k Ñ A » EndApAq » pA_ bk Aq bAbAop A Ñ AbAbAop A » A{rA,As

where now the first map sends 1 ÞÑ a. One can check that this is the obvious map.

(1’) Let C be a category, and X P C a compact object. Then, the functor FX : Vectk Ñ C where FXpV q “ V bX

is right dualizable, so we can define rXs P HH‚pCq to be image of k.

Example: take C “ QCpXq where X is a smooth scheme. For E a vector bundle on X, we have rEs P
À

HppX,Ωp
Xq is the Chern character of E . Explicitly, it is the composition

k Ñ REndXpEq » RΓpX,∆˚pE_ b Eqq Ñ RΓpX,L∆˚∆˚OXq

where the latter map is RΓ ˝L∆˚ applied to the map E_ b E Ñ ∆˚OX , adjoint to the usual evaluation map

∆˚pE_ b Eq » E_ b E Ñ OX on X. With some work, one can calculate (see [Ca05]) that this is in fact the

Chern character for X “ P1. Note that here, because we mixed a right and left adjoint, it is important to

take derived global sections: R0ΓpX,∆˚∆˚OXq » H0pX,OXq, but H0pRΓpX,∆˚∆
˚OXq »

À

pH
ppX,Ωp

Xq.

Example:

(2) Let M be an A-module category which is right-dualizable. We are interested in computing rMs. Alternatively,

for any A P A, we can compute rAs :“ rA, A b ´s, i.e. consider the trace of the left action of A on the right

regular A-module, and produce a functor A Ñ trpAq. Some of these will be discussed later.

Finally, we discuss a compatibility of 1 and 2-categorical traces, which realizes the 0-categorical and 1-categorical

traces in the 2-categorical setting. There are twisted versions, et cetera, as well. This is the main structural theorem

from which we conclude our results.
5I am not sure if this is automatic or not. Probably?
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Theorem 1.2.5 (Gaitsgory, Kazhdan, Rozenblyum, Varshavsky; Campbell, Ponto). Let A be a rigid monoidal

category and M a A-module category. There is an equivalence

HomTrpAqprAs, rMsq » HomHH‚pAqpHH‚pAq, HH‚pMqq “ HH‚pMq

as EndTrpAqprAsq » HH‚pAq-modules.

We won’t prove or justify it. A few remarks:

1. The rigidity assumption is used to make various modules automatically dualizable.

2. The theorem is about a “secdonary functoriality” or lower-level functoriality. Namely, characters are given

by functoriality for

dgCatk ModpAq
FA

FM

so a map rAs Ñ rMs should roughly have something to do with a natural

3. The reference [CP22], though in a different language, gives some intriguing TFT-style pictures explaining this

compatibility.

1.3 Digression: 1-categorical traces

This section is lazily copy-pasted from some notes from another talk, so it doesn’t fit in so well. The calculation

of the 1-categorical trace is essentially by Toën’s dg Morita theory [To07]. The basic example is the diagonal

Cop b C-bimodule C is the Yoneda Hom-functor, i.e.

Cpx, yq :“ HomCpx, yq.

LetM be a C-module and N a Dop-module. This defines a CbDop-module (taking the “pointwise” tensor product

of dg categories)

pM bNqpxb yq “ Mpxq bNpyq x P C, y P D.

We can combine these two to compute relative tensor products. Non-derived version: say M is a right C-module

and N a left C-module, then we should have

M bC N “ C bCbCop pM bNq “ coeq

¨

˝

à

f :x0Ñx1

Mpx0q bNpx1q
à

xPC

Mpxq bNpxq
f˚bid

idbf˚

˛

‚

The derived version just continues the bar complex:

M bC N “

¨

˚

˚

˝

¨ ¨ ¨
à

f :x0Ñx1
g:x1Ñx2

Mpx0q bNpx2q
à

f :x0Ñx1

Mpx0q bNpx1q
à

xPC

Mpxq bNpxq
f˚bid

idbf˚

˛

‹

‹

‚

Note that since M is a right module, we act by pushforwards, and since N is a left module, we act by pullback.

Also note it might look more natural to write the terms in the complex (where Cp´,´q “ HomCp´,´q):

à

x0,x1,x2PC

Mpx0q b Cpx0, x1q b Cpx1, x2q bNpx2q
à

x0,x1PC

Mpx0q b Cpx0, x1q bNpx1q
à

xPC

Mpxq bNpxq.

Exercise 1.3.1. Some exercises to get a feeling for this notion.

1. Let A be an algebra with central orthogonal idempotents e1, . . . , er. Then, one may realize A as a category

with one object as usual, or as a category with r objects x1, . . . , xr where Endpxrq “ erA “ Aer. Check the

compatibility of the usual tensor product in this setting with the notion above.
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2. Check that M bC C » M .

3. Let A be an idempotented (possibly non-unital) algebra, e.g. compactly supported functions on a p-adic

group under convolution. We cannot realize A as a category with one object since there is no unit, but we can

realize it as a category with many objects. For each idempotent e, we define an object xe with endomorphisms

Endpxeq “ eAe, and for two idempotents e1, e2 we define Hompx1, x2q “ e1Ae2. Check that the category of

modules in the above sense is the category of non-degenerate modules (i.e. those such that AM “ M).

4. Note that there is no “forgetful functor” to Vect, i.e. any functor Vect Ñ C necessitates choosing a favored

object of c P C. Given such an object, we can define Ccpxq “ Hompx, cq to be a left C-module, and check

that M bC Cc “ Mpcq.

5. Check that the Hochschild homology HHpCq “ C bCopbC C is computed by the cyclic bar complex:

¨ ¨ ¨
à

x0,x1,x2PC

Cpx0, x1q b Cpx1, x2q b Cpx2, x0q
à

x0,x1PC

Cpx0, x1q b Cpx1, x0q
à

x0PC

Cpx0, x0q

6. Not every category has a single compact generator, e.g. ReppGq where G is a reductive algebraic group. Check

that

TrpReppGqq “
à

IrrpGq

k “ OpGqG

and that the character of a G-representation rV s P OpGqG is its character in the usual sense.

In particular, this allows for an explicit algebraic description of the 1-categorical trace. We summarize some of

its main properties.

1. One can check directly using the above definitions that the 1-categorical trace takes semi-orthogonal decom-

positions (i.e. upper triangular categories) to direct sums.

2. The 1-categorical trace is Morita invariant, i.e. we have HHpPerfpAqq “ HHpAq.

3. There is a comparison “Chern character” map from the connective K-theory spectrum K‚pCq Ñ HHpCq.

This is via the Blumberg-Gepner-Tabuada characterization of (connective/non-connective) K-theory as the

universal additive/localizing invariant.

4. The horizontal trace plays well with tensor products of categories. Namely, if A is a monoidal category acting

on a module category M in a sufficiently nice way (i.e. everything can be formulated in terms of compact

objects), then HHpAq is an algebra, with module HHpMq. This more or less follows from functoriality, and

the Eilenberg-Zilberg identification of HHpA b Bq » HHpAq bHHpBq.

1.4 Digression: topological field theories

There is a TFT-style way to picture traces and centers. We will avoid making this picture too precise.

Definition 1.4.1. An n-framing of an d-manifold M is a choice of basis of sections of TM ˆ Rn´d. Let Bordn

denote the p8, nq-category whose objects are 0-manifolds with an n-framing, 1-morphisms are 1-manifolds with an

n-framing, et cetera, up to the n-morphisms being n-manifolds with a framing. LetC be a monoidal p8, nq-category;

a fully extended framed topological field theory is a p8, nq-functor Z : Bordn Ñ C.

Theorem 1.4.2 (Cobordism hypothesis (Baez, Dolan, Lurie, Grady, Pavlov)). The category of fully extended

framed n-dimensional TFTs in C is equivalent to fully n-dualizable objects in C.

We stress this is mostly a guideline that we are not quite able to make precise all the time. The first exercise to

understand the following.
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Example 1.4.3. Let pU,b,1q be a monoidal category. A dualizable object X is given by a 1-dimensional TFT Z,

where Zp˚q “ X, and ZpS1q “ trpX, idXq. Traces can be understood by inserting an “event” in S1 corresponding

to ϕ.

Functoriality can be depicted in the following way.

Can centers be realized in this TFT picture? I’m not able to say anything very precise, but can try to draw

some pictures. When n “ 2, a convenient way to try to view framings on 1-manifolds is to write down the identity

map as a cobordism and give a framing of identity.

The left is the annulus framing of the circle S1
an, and the right is the cylinder S1

cy. If Z is the TFT with

Zp˚q “ C, then we might hope for something like

ZpS1
anq » HH‚pCq, ZpS1

cyq » HH‚pCq.

Heuristically, we can see the multiplication and actions via pictures:
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On the left, evidently the restriction of the framing to the boundary gives rise to three annular framings, one with

opposite orientation (i.e. the target). On the right, we take the identity map with the cylindrical framing and cut

out a hole in the side, which restricts to an anular framing.

2 2-categorical traces and coherent sheaves

2.1 Colimits of categories

To compute the trace we need to compute a colimit in categories. First, let’s do a very basic review in 1-categories:

it is generally easy to take a pullback of categories but not a pushout. Consider a pullback diagram

C1 C1

C2 C0.

ev1

ev2

x
F1

F2

One can either formulate the universal property of categories in a 1-categorical way (“strict”) or a 2-categorical

way (“weak”). For weak pullbacks, the objects of C1 consist of pairs pX1, X2q P ObpC1q ˆ ObpC2q along with an

isomorphism α : F1pX1q » F2pX2q (in the strict case this is required to be an equality, and therefore not an extra

datum). We leave it to the reader to formulate what the morphisms are and check that, in particular, the pullback

of abelian categories is again abelian, and the inclusion Ab ãÑ 1Cat preserves limits. For example, given an exact

functor between abelian categories, it is easy to say what the kernel of the functor is. In general, we can (and often

do) easily talk about fibers of functors.

Why weak pullbacks instead of strong pullbacks? Consider the following example.

Example 2.1.1. Let G be an affine algebraic group and p : Vectk » QCpSpec kq Ñ QCpGq the pullback, i.e.

sending k to OG (here QC means the abelian 1-category). The strict pullback Vectk ˆQCpGq Vectk » Vectk is not

very interesting, and evidently can never be. An object in the weak pullback is a pair of vector spaces pV,W q and

an OpGq-module isomorphism α : V b OpGq » W b OpGq. This is close to descent datum for a sheaf on BG, i.e.

a rational G-representation, but we are missing the cocycle condition since we haven’t included the next “level” in

the simplicial diagram.

Pushouts, on the other hand, are more difficult. They can be understood in a few examples.

1. LetC be a category, and letR be an equivalence relation on arrows realized as a category with ObpRq “ ObpCq

and HomRpx, yq Ă HomCpx, yq ˆHomCpx, yq satisfying the usual conditions. The (strict or weak) coequalizer

R C

can be realized as a quotient in the usual way. One can see that this may not appear so much in practice.

2. The (strict and weak) coequalizer

t‚u t‚ Ñ ‚u
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is (equivalent to) the category corresponding to the monoid N. From this example, we see it is necessary to

“freely generate” morphisms when identifying objects. One can imagine this process getting complicated.

3. Let C0 Ă C1 be a full subcategory, and consider the coequalizer

C0 C1
0

If C0 is a Serre subcategory, i.e. closed under isomorphisms, subquotients and extensions, then there is a

construction of the Serre quotient very roughly by “freely adjoining isomorphisms 0 » x for x P C0 in “an

abelian sense”, which means very roughly “freely’ adjoining isomorphisms x » x{x1 for subobjects x1 P C0

and x » x1 for subobjects x1 such that x{x1 P C0. The Serre quotient is the coequalizer in Ab, but the

coequalizer in Add or 1Cat may look different.

For example, take C1 Ă Vectk the full subcategory generated by kn for n “ 0, 1, . . ., and C0 the full

subcategory generated by 0, k. The quotient in Ab is the zero category, but the quotient in Addk is equivalent

to the full subcategory of Vectk generated by k, k, k2, . . . (i.e. we now have two copies of k).

2.2 Colimits of presentable 8-categories

So, as we’ve seen:

1. Taking limits and colimits of 1-categories “correctly” involves thinking p2, 1q-categorically. Since we are

interested in derived categories, we will work in the setting of p8, 1q-categories.

2. Colimits tend to depend on what kind of categories we restrict ourselves to, so we need to be fix a category

of 8-categories where we take colimits.

3. Taking general colimits is difficult, and we need a strategy to do so. The strategy will be to turn them into

limits.

We will ignore (1); roughly, we will work with 8-categories as though they were ordinary categories, except that

we are not able to directly manipulate objects, morphisms, et cetera. For (2), we introduce the following.

Definition 2.2.1. The category PrLk is the category of k-linear presentable 8-categories. Morally, they are cate-

gories with all small colimits plus a technical condition (“accessibility”) that we won’t discuss. The morphisms are

given by colimit-preserving functors (equivalently, by the adjoint functor theorem, left adjoint functors).

One indication that this is the correct setting is that (1) for any dg algebra A, the (dg nerve of the) dg derived

category ModpAq is presentable, (2) the Lurie tensor product is well-defined for presentable 8-categories, and (3)

ModpAq b ModpBq » ModpAbBq.

For (3), we will commonly use the following strategy available to us in the context of presentable 8-categories.

Here are some facts:

1. The category PrLk has all limits and colimits, and the inclusion PrLk ãÑ 8Cat commutes with limits.

2. By passing to right adjoints, we have PrLk » pPrRk qop.

3. The inclusion PrRk ãÑ Cat8 commutes with limits.

So, if there is a colimit we want to compute in PrLk then we can pass to right adjoints to obtain a limit in

PrRk , then regard it as a limit in Cat8, and compute the limit there (or basically anywhere, since it’s irrelevant for

limits).

Example 2.2.2. There are many well-established examples of categories of sheaves being presented as limits, e.g.

by descent. More concretely, say X is a scheme and p : U Ñ X is a fpqc morphism. Descent tends to be formulated

in one of several ways.
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1. By descent data, i.e. the most classical formulation: a sheaf F on U , with an isomorphism identifying its two

pullbacks to U ˆX U satisfying a cocycle condition.

2. By a monad, i.e. the adjoint pair pp˚, p˚q defines a monad p˚p˚ on QCpUq, and take modules for the monad.

3. By a limit, i.e. the totalization TotpQCpU ˆX ¨ ¨ ¨ ˆX Uq of the simplicial diagram of categories given by the

Cech complex.

Formulations (1) and (2) are (in the 1-categorical setting) related by the Bénabou-Roubaud theorem. Formulations

(2) and (3) are related by Beck-Chevalley theorems.

2.3 Example: quasicoherent sheaves

We now compute some examples in the setting of quasi-coherent sheaves. The main reference here is [BFN10].

Proposition 2.3.1 (Ben-Zvi, Francis Nadler). Let Xi, Y be perfect stacks. Then,

QCpX1q bQCpY q QCpX2q » QCpX1 ˆY X2q.

Proof. First, we note that QCpX1q b QCpX2q » QCpX1 ˆ X2q. This is established in Proposition 4.6 of [BFN10].

We sketch the proof of the relative statement, which is Theorem 4.7 of [BFN10]. We first try to compute the tensor

product using the passing to right adjoints trick as above. That is, we have

QCpX1q bQCpY q QCpX2q » colim
´

QCpX1 ˆX2q QCpX1 ˆ Y ˆX2q ¨ ¨ ¨

¯

» lim

ˆ

QCpX1 ˆX2q QCpX1 ˆ Y ˆX2q ¨ ¨ ¨
p1˚

p2˚

˙

.

By general nonsense, the limit C » ModQCpX1ˆX2qpev ˝ evLq, i.e. modules for the monad given by the evaluation

functor. We identify this monad using a “Beck-Chevalley” argument, i.e. letting C denote the above limit we have

adjoint maps of augmented simplicial diagrams

C QCpX1 ˆX2q QCpX1 ˆ Y ˆX2q ¨ ¨ ¨

QCpX1 ˆX2q QCpX1 ˆ Y ˆX2q QCpX1 ˆ Y 2 ˆX2q ¨ ¨ ¨

ev

ev

p1˚

p2˚

p1˚ p1˚evL

p2˚

p˚
1 p˚

1
.

The bottom diagram is a limit since the diagram admits a splitting via the extra degeneracy. Since the squares

satisfy base change, by Beck-Chevalley we have that C » ModQCpX1ˆX2qpp˚
1p2˚q.

On the right hand side, we can identify QCpX1 ˆY X2q via Barr-Beck for the affine (since Y has affine diagonal)

map6 i : X1 ˆY X2 Ñ X1 ˆ X2. One verifies that the adjoint pair pi˚, i˚q is monadic, thus QCpX1 ˆY X2q »

ModQCpX1ˆX2qpi˚i
˚q. Finally, by base change:

X1 ˆY X2 X1 ˆX2

X1 ˆX2 X1 ˆ Y ˆX2

i

i p2

p1

we may identify i˚i
˚ » p˚

1p2˚.

Example 2.3.2. It may be worth doing out the the example where X1 “ X2 “ Spec k and Y “ BG to get a feeling

for the above.

6A decent toy model for this is: given an affine map of schemes, we can understand sheaves upstairs as modules for some sheaf of
algebras downstairs.
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Corollary 2.3.3. Let X be a perfect stack and ϕ : X Ñ X be a self-map. Then,

trpQCpXq, ϕ˚q » QCpX ˆXˆX Xq “ QCpLϕXq.

Example 2.3.4. We introduced the derived loop space in Definition 1.1.3. Some examples to get a sense of this

derived stack:

1. The classical points of LX are just the inertia stack, i.e. π0pLXq “ IX. Recall that inetia stack has points

IXpSq “ tx P XpSq, α P Autpxq “ Sx ˆX Sxu.

2. In particular, π0pLXq “ X when X is a scheme, i.e. for a scheme the derived loop space is entirely in

cohomological dimensions over X. More explicitly, if X is smooth,

LX “ SpecX SymX Ω1
X r1s.

3. If X “ BG, then LX “ IX “ G{G, i.e. there are no derived directions.

4. If X “ Y {G, then LX “
pGˆ Y q ˆY ˆY Y q

G
.

5. Take X “ g{G and ϕ “ q˚, where q is the scaling by q map. Then we have

LqX “ tpx, gq P g ˆG | gxg´1 “ qxu{G » tpx, gq P N ˆG | gxg´1 “ qxu{G.

We may take the nilpotent cone instead by applying Lq (which commutes with limits) to the fiber square:

N {G g{G LqpN {Gq Lqpg{Gq

t0u h{{W Lqpt0uq “ t0u Lqph{{W q » t0u

where Lqph{{W q » t0u as long as q is not a root of unity for any of the degrees of the polynomial generators

of krhsW . Furthermore, this derived stack has no derived structure, which one can see via a dimension count:

G acts on N by finitely many orbits, so π0pLqpN {Gqq is the union of irreducible components of dimension

dimpGq indexed by the orbits, and since π0pLqpN {Gqq “ π0pLqpg{Gqq, the claim follows since g{G is smooth.

2.4 Example: convolution categories

I will use the term convolution category to vague refer to the following kind of category of quasi/ind-coherent

sheaves. A very similar story works for D-modules with more or less all the geometric diagrams the same, just with

different functors; see [BN15, BN19].

Let fi : Xi Ñ Y be maps of stacks. Convolution is the push-pull:

Z12 ˆ Z23 :“ X1 ˆY X2 ˆX2 ˆY X3 Z123 :“ X1 ˆY X2 ˆY X3 Z13 :“ X1 ˆY X3.

This defines a functor on quasi-coherent sheaves

QCpZ12q b QCpZ23q ÝÑ QCpZ13q.

One can make similar definitions for other sheaves, as long as they satisfy a Kunneth formula, though we often

impose other conditions. We have the following theorem.[BFN10]

Theorem 2.4.1 (Ben-Zvi, Francis, Nadler). Suppose that X,Y are perfect stacks. Then we have a monoidal

equivalence

FunLQCpY qpQCpX1q,QCpX2qq » QCpX1 ˆY X2q
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exchanging composition and convolution.

2.4.2. Ind-coherent sheaves We need to introduce the category of ind-coherent sheaves. This is a technical issue

that ends up being somewhat important. The point is that for X a perfect stack, we have QCpXq “ IndpPerfpXqq.

One can alternatively take as a small category, CohpXq, which when X is classical is an enlargement of PerfpXq.

We then define QC!pXq “ IndpCohpXqq.7 There are also singular support conditions Λ that give intermediate

categories QCpXq “ QC!
t0uX

pXq Ă QC!
ΛpXq Ă QC!pXq. We give three justifications for the use of ind-coherent

sheaves (or singular support conditions) when discussing convolution categories.

1. In ind-coherent sheaves, under some mild conditions the monoidal product preserves compact objects, and

the monoidal unit is compact. This means it is well-behaved with respect to traces.

2. Singular support conditions give natural characterizations of the relative tensor product of two convolution

categories.

3. Categorical Morita theory says that quasi-coherent sheaves don’t give us anything new; ind-coherent sheaves

do.

First, we note that if X Ñ Y is proper and X,Y are smooth, then pullback along the diagonal preserves coherent

objects, and pushforward also preserves coherent objects. Thus, the convolution functor restricts:

QC!pZ12q b QC!pZ23q Ñ QC!pZ13q

We also have the following theorem.[BNP17b]

Theorem 2.4.3 (Ben-Zvi, Francis, Nadler, Preygel). Suppose that X,Y are smooth perfect stacks and that Xi are

proper over Y . Then we have on small categories

FunexPerfpY qpPerfpX1q,PerfpX2qq » CohpX1 ˆY X2q.

In particular, the identity functor correpsonds to the sheaf ∆˚OX . This is generally not compact in QCpXˆY Xq,

but it is often compact in QC!pX ˆY Xq. So:

1. The 1-categorical trace of QCpX ˆY Xq does not have a unit, and is not an algebra. But QC!pX ˆY Xq is a

unital algebra.

2. Theorem 1.2.5 requires rigidity. The category QCpX ˆY Xq is only semi-rigid, while QC!pX ˆY Xq is rigid.

Why else should we consider ind-coherent sheaves, or more generally, singular support conditions? It turns out

they give very natural characterizations of convolution categories.

Proposition 2.4.4. The convolution functor descends to a relative tensor product

‹ : QC!pZ12q bQC!pZ22q QC!pZ23q Ñ QC!pX1 ˆY X3q.

Furthermore, this functor is fully faithful. Its essential image may be characterized by a singular support condition.

Example 2.4.5. Sanity check: if T “ B0A0 “ BA (with A1 and A the same dimensions, and likewise for B) then

then there is a sequence of matrices pAi, Biq (for i “ 1, . . . , r) such that Ai “ PAi´1 and BiP “ Bi´1 or a matrix

Q such that QAi “ Ai´1 and Bi “ BQi´1, such that Ar “ A and Br “ B.

Finally, there is a “dictionary” between the usual algebraic Morita theory and a geometric Morita theory.

7This is technically only the right definition when X is QCA, which is a theorem, but let’s ignore this.
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algebraic, 1-categorical geometric, 2-categorical

R commutative algebra R “ pQCpY q,bOY
q symmetric monoidal

P an R-module P “ QCpXq module under pullback

A “ EndRpP q an R-algebra A “ pQCpX ˆY Xq, ‹q

M “ HomRpP,Qq or QbR P a right A-module M “ QCpW ˆY Xq

A the regular A-representation QCpX ˆY Xq

P the standard/vector A-representation QCpXq “ QC!pXq

if P finite rank projective over R,

Morita equivalence ModpRq » ModpEndRpP qq

if X proper surjective over Y ,

ModpQCpY qq » ModpQCpX ˆY Xqq

In particular,

ModpQCpY qq » ModpQCpX ˆY Xqq fi ModpQC!pX ˆY Xqq.

The point is that module categories for QCpXˆY Xq is the same module categories for QCpY q, which is sometimes

not interesting enough. For example, in local categorical Langlands, we ware interested in X “ rN {G and Y “ G{G,

and QCpG{Gq is the spectral bi-Whittaker category, which doesn’t capture all representations of the p-adic group.

2.4.6. Traces of convolution categories Anyway, let’s compute the trace. We’ll use the trace correspondence:

Z “ X ˆY X Z ˆXˆX X » LY ˆY X LY.δ π

One can think about δ as a base change of the diagonal map X Ñ X ˆ X and π as a base change of the map

f : X Ñ Y . This can be depicted:

Informally, one can think of the left term as two points in X and a path in Y connecting their images, the middle

term as a single point in X and a loop in Y with base point its image, and the right term as a loop in Y .

We didn’t talk about singular supports, but it is possible to pullback and pushforward singular support conditions

along these maps. Let ΛX{Y denote the singular support condition on LY obtained by applying this correspondence

to the maximal singular support on Z. See [BNP17a] for the following theorem.

Theorem 2.4.7 (Ben-Zvi, Nadler, Preygel). Let ϕX , ϕY be compatible proper self-maps of X,Y , inducing ϕZ on

Z. We have

TrpQC!pZq, ϕ˚q » QC!
ΛX{Y

pLϕY q.

The character is given by

r´s “ π˚δ
! : QC!pZq Ñ TrpQC!pZqq “ QC!

ΛX{Y
pLY q.

Proof. Here is a proof by picture, using Proposition 2.4.4:
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That is, the bottom row depicts what happens when we “compose” QC!pZq bQC!pZqbQC!pZq QC!pZq “in a circle”

and the top base change is a simplification of it. The singular support condition arises via the same principle as

the one in loc. cit.

Example 2.4.8. Let f : X Ñ Y be surjective; then QCpXq is naturally a QCpY q-module category, and we have

rQCpXqsQCpY q “ Lf˚OLX P TrpQCpY qq “ QCpLY q.

On the other hand, QCpXq is naturally a QCpZq “ QCpX ˆY Xq-module category. It is induced from QCpY q, and

by Morita invariance (here is where we needed surjectivity) we have

rQCpXqsQCpZq “ rQCpY qsQCpY q “ OLY P QCpLY q.

Inducing the QCpY q-module category QCpXq gives the regular QCpZq-representation QCpZq, and we have

rQCpZqsQCpZq “ Lf˚OLX .

This can be seen directly via a base-change, i.e. it is given via the trace correspondence on the diagonal ∆˚OX :

LX “ X ˆXˆX X X

Z ˆXˆX X Z

LY

∆

The regular representation is always the trace of the identity (i.e. the diagonal), but the vector representation

is not always (obviously) realizable as the trace of an object of QC!pZq. The following is from [BCHN22], which

roughly says that for the regular and vector representation, the calculation is exactly the same as the one above.

Proposition 2.4.9 (Ben-Zvi, C, Helm, Nadler). We have calculations of the trace of the regular and vector repre-

sentations

rQC!pZqs “ r∆˚OX s “ Lf˚OLX , rQC!pXqs “ RΓfpXqpOLY q.

Note that since LY is Calabi-Yau, we have OLY “ ωLY . It is sometimes more natural to write the latter, i.e.

rQC!pXqs “ RΓfpXqωLY “ ω
yLY fpXq

.

Proof. Let us sketch the idea and ignore singular support conditions; keeping track of them carefully is an essential

part of the argument but it takes us too far afield. First, we show that QCpXq is self-dual as a QCpY q-module by

checking the Zorro axioms. Then, we compute:

QCpXq bQCpZq QCpXq » QCpY q, QCpXq bQCpY q QCpXq » QCpZq

using Proposition 2.4.4. Note there is no room for singular support conditions. Now, when we “glue the ends” in the

trace, we obtain QCpLY q, with various singular supports, for which we either include or take “local cohomology”

with respect to.

Example 2.4.10. Take X “ BB and Y “ BG. Then, the above corespondence is just the horocycle correspon-

dence:

BzG{B
G

B

G

G
.δ π
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Furthermore, the bar complex is

¨ ¨ ¨
GˆB GˆB G

B

GˆB G

B

G

B

G

G
.

The trace of the identity (i.e. regular representation) is the “Springer sheaf”, i.e. letting µ : B{B Ñ G{G we have

rQCpBzG{Bqs “ rOBzB{Bs “ π˚OB{B .

By the above, the trace of the standard representation is

rQCpBBqs “ OG{G.

The same example works in the setting of sheaves or D-modules as well.

3 Application to spectral geometric/geometrized local Langlands

3.1 Spectral side

Let’s briefly discuss the following example. First, letting F be a non-Archimedian local field with residue Fq, we let

Hq “ CcpIzGF {Iq, Wq “ CcpIzGF {I0, ψq

denote the affine Hecke algebra specialized to q and the Iwahori-Whittaker module. Next, we let F “ Fqpptqq, and

Fu “ Fqpptqq, and let LG be the group ind-scheme whose such that LGpFqq “ GFu , and define the affine Hecke

category, with the equivalence by Arhipov and Bezrukavnikov:[AB09, Be16]

H :“ ShpIzLG{Iq » Cohp rN {Ǧˆǧ{Ǧ
rN {Ǧq

W :“ ShpIzLG{I0, ψq » Cohp rN {Ǧˆǧ{Ǧ ǧ{Ǧq » Cohp rN {Ǧq.

The equivalences intertwine pullback along geometric Frobenius and pushforward along scaling by q.

We have the following theorem. We define the coherent Springer sheaf Sq :“ Lqµ˚OLqp ĂN {Gq
, where µ : rN Ñ N

is the Springer resolution.

Theorem 3.1.1 (Ben-Zvi, C, Helm, Nadler). Consider the two cases.

1. Assume q is not a root of unity. We have equivalences of complexes

HH‚pH, q˚q » Hq, HH‚pW, q˚q » W.

Furthermore, we have an equivalence

TrpH, q˚q » CohpLqpN {Gqq.

Furthermore, OLqpN {Gq is a summand of Sq. From this, we may conclude

Sq “ rH, q˚s, OLqpN {Gq “ rW, q˚s.

EndpSqq » Hq, HompSq,Oq » W, EndpOq » OpLqpN {Gqq.

Furthermore, there is an embedding ModpHqq ãÑ QC!pLqpN {Gqq whose right adjoint is HompSq,´q which

takes

Hq ÞÑ Sq, Wq ÞÑ OLqpN {Gq.
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2. When q “ 1 we have equivalences of complexes (where h is the Lie algebra of the universal Cartan)

HH‚pHq » kĂW a b Symph˚r1s ‘ h˚r2sq, HH‚pWq » Ind
ĂWa

W f k.

Furthermore, we have an equivalence

TrpH, q˚q » CohN pLpg{Gqq.

From this, we may conclude

S “ rHs, ωLp xN {Gq
“ rWs.

EndpSq » kĂW a b Symph˚r1s ‘ h˚r2sq, HompS, ωq » Ind
ĂWa

W f k.

Furthermore, there is an embedding ModpkĂW a b Symph˚r1s ‘ h˚r2sqq ãÑ QC!
N pLpg{Gqq whose right adjoint

is HompS,´q which takes

kĂW a b Symph˚r1s ‘ h˚r2sq ÞÑ S, W ÞÑ prSωLp xN {Gq

where prS is the projection to the Springer subcategory.

3.2 Automorphic side

Let GF be a reductive group over a non-archimedian local field F , and let LG denote the loop group defined over

Fq where Fq is the residue field of F , and L`G the arc group. First, let us recall Lang’s theorem; I won’t attempt

to prove it, there are many standard references.

Theorem 3.2.1 (Lang). Let G be a connected linear algebraic group defined over Fq and based changed to Fq, and

let Fr denote the geometric Frobenius automorphism. The map

G Ñ G, g ÞÑ g´1Frpgq

is surjective.

Corollary 3.2.2. The same is true for L`G, or for any compact open subgroup K Ă LG. In particular, K{FrK »

BKF .

Proof. The quotient maps L`G Ñ LpnqG are compatible with Frobenius, thus surjectivity for each n implies

surjectivity. It remains to verify that LpnqG are connected, but this follows since the reductive quoteint is just G.

A similar argument works for K.

We now apply the traces formalism to the example: X “ BpL`Gq and Y “ BpLGq (pretend these make sense

as stacks, and see Example 2.4.10). I want to keep this discussion informal, and refer the reader to [Zhu21, HZ] for

details. Let’s define the following moduli stacks of G-bundles (we will suppress G from the notation) on a curve X,

for a fixed point x0 P X:

1. BunX is the stack whose points are vector bundles on X. Its local model at x0 is given by the quotient stack

LGzLG{L`G “ BpL`Gq.

2. GrX is the Beilinson-Drinfeld Grassmannian, whose points are px, E , βq where x P X, E P BunX , and β :

E |X´x » OG|X´x. Its local model at x0 is given by the affine Grassmannian GrX,x0 “ LG{L`G. It has a

forgetful map GrX Ñ BunX .

3. HkX is the Hecke stack, whose points are px, E0, E1, βq where x P X, Ei P BunX , and β : E0|X´x » E1|X´x. Its

local model at x0 is LGˆL`G LG. It has a forgetful map HkX Ñ BunX ˆBunX .
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4. ShtX is the moduli stack of Shtukas, whose points are px, E , βq where x P X, E P BunX , and β : E |X´x »
τE |X´x, where

τ denotes a “twisting” by an automorphism of BunX (e.g. twist by Frobenius). Its local model

is
LG

L`G
, where L`G acts by the twist on one side. It has a forgetful map ShtX Ñ BunX .

5. Hk
pnq

X and Sht
pnq

X are the iterated Hecke stack and moduli of Shtukas, i.e. where we have a sequence of

isomorophisms E0|X´x » E1|X´x » ¨ ¨ ¨ » En|X´x (and for Shtukas, take En “ τE0). They have local models

LGˆL`G ¨ ¨ ¨ ˆL`G LG and
LGˆL`G ¨ ¨ ¨ ˆL`G LG

L`G
(n` 1 and n factors respectively).

6. There are versions for level structures, but let me ignore this to keep things simple. Of course for the affine

Hecke category the relevant thing is Iwahori level structure.

We may wish to consider two cases: where τ is the trivial automorphism, and where τ is the geometric Frobenius.

1. When τ “ 1, then TrpShpLGqq “ ShpLG{LGq is the category of affine character sheaves. It has an intricate

geometry that I do not understand.

2. When τ “ Fr, then TrpShpLGqq “ ShpLG{FrLGq is the stack of G-isocrystals or Kottwitz stack. It is, in

some sense, “smaller” than LG{LG.8 Its points are parameterized by the set of G-isocrystals BpGq. Each

isocrystal determines a form H of GF , and sheaves supported on that isocrystal are equivalent to ReppHq. In

particular, for the unique closed orbit, we have ReppGF q.

By Example 2.4.10, we see that

rHs “ π˚CB{B .

is the affine Springer sheaf. For the Frobenius-twisted version, we have a map for any compact open which factors:

BK Ñ BGF ãÑ LG{ FrLG.

We denote the pushforward of the constant sheaf by δK P ShpLG{ FrLGq, and

rH,Fr˚
s “ δI .

Now, for the Iwahori-level setting we have Bezrukavnikov’s equivalence, whence we have the following commuting

diagram

ShpIzLG{Iq QC!p rNǦ{Ǧˆǧ{Ǧ
rNǦ{Ǧq

ShpLG{FrLGq QC!pLqpNǦ{Ǧqq

»

Trp´,Fr˚
q Trp´,q˚q

which, furthermore, identifies the trace of the identity and the trace of the Whittaker module, i.e.

δI ÐÑ Sq

In [HZ] a precise description of the essential image of the left map will be given.

Taking trace of the identity instead, we obtain the following relationship between affine Springer theory and

coherent Springer theory

ShpIzLG{Iq QC!p rNǦ{Ǧˆǧ{Ǧ
rNǦ{Ǧq

ShpLG{LGq QC!pLN pǧǦ{Ǧqq

»

Tr Tr

where LN here means both nilpotent classical (but not singular) support. We note this gives an automorphic

explanation for why the ring Symph˚r1s ‘ h˚r2sq appears for q “ 1 but not otherwise; this ring is the cohomology

ring H‚pI{I; kq, which appears in Springer theory but not in the Frobenius-twisted version.

8In the finite analogue, by Lang’s theorem, G{Fr G “ GpFqq.
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