Worksheet 17: Linear Approximation \& Differentials

Russell Buehler

b.r@berkeley.edu

WHEN I GOT USED TO THE
REGULAR NIGHTMARES, MY
SUBCONSCIOUS GOT CREATIVE.

www.xkcd.com
2. Find the linearization of $f(x)=x^{\frac{3}{4}}$ at $a=16$.

Taking the derivative, $f^{\prime}(x)=\frac{3}{4} x^{-\frac{1}{4}}$, so $f^{\prime}(a)=\frac{3}{4}(16)^{-\frac{1}{4}}=\frac{3}{8}$.
Thus the linearizion (tangent line at a) is

$$
\begin{aligned}
L(x) & =f(a)+\frac{3}{2}(x-a) \\
& =(16)^{\frac{3}{4}}+\frac{3}{2}(x-16) \\
& =8+\frac{3}{2}(x)-24 \\
& =\frac{3}{2}(x)-16
\end{aligned}
$$

3. Find the differential of each function:
(a) $y=\frac{t^{2}}{1-t^{5}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(1-t^{5}\right)(2 t)-t^{2}\left(-5 t^{4}\right)}{\left(1-t^{5}\right)^{2}} \\
& =\frac{2 t-2 t^{6}+5 t^{6}}{\left(1-t^{5}\right)^{2}} \\
& =\frac{2 t+3 t^{6}}{\left(1-t^{5}\right)^{2}} \\
d y & =\left(\frac{2 t+3 t^{6}}{\left(1-t^{5}\right)^{2}}\right) d x
\end{aligned}
$$

(b) $y=e^{x} \cos ^{-1}\left(x^{2}\right)$

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x} \cos ^{-1}\left(x^{2}\right)+\frac{-2 x e^{x}}{\sqrt{1-x^{4}}} \\
d y & =\left(e^{x} \cos ^{-1}\left(x^{2}\right)+\frac{-2 x e^{x}}{\sqrt{1-x^{4}}}\right) d x
\end{aligned}
$$

4. Use a linear approximation or differentials to estimate the given number:
(a) $e^{-.01}$

Note that the function under consideration is $f(x)=e^{x}$ and $a=0$ is the obvious choice. Solving by differentials, $d y=e^{x} d x$. So, setting $x=a$ and $d x=-.01, d y=e^{0}(-.01)=-.01$. The estimate of $f(-.01)$ is therefore $f(0)+(-.01)=1-.01=.99$.
(b) $\frac{1}{4.001}$

Note that the function under consideration is $f(x)=\frac{1}{x}$ and $a=4$ is the obvious choice. Solving by linearization, $f^{\prime}(x)=-x^{-2}$, and so $f^{\prime}(4)=-\frac{1}{16}$. Thus,

$$
\begin{aligned}
L(x) & =f(a)-\frac{1}{16}(x-a) \\
& =\frac{1}{4}-\frac{1}{16}(x-4)
\end{aligned}
$$

And so, setting $x=4.001$,

$$
\begin{aligned}
L(4.001) & =\frac{1}{4}-\frac{1}{16}(4.001-4) \\
& =\frac{1}{4}-\frac{1}{16}\left(\frac{1}{1000}\right) \\
& =\frac{1}{4}-\frac{1}{16000} \\
& =\frac{4000}{16000}-\frac{1}{16000} \\
& =\frac{3999}{16000}
\end{aligned}
$$

(c) $\sqrt{99.9}$

Note that the function under consideration is $f(x)=\sqrt{x}$ and $a=100$ is the obvious choice. Solving by differentials, $d y=\frac{1}{2} x^{-\frac{1}{2}} d x$. So, setting $x=a$ and $d x=-.1$,

$$
\begin{aligned}
d y & =\frac{1}{2}(100)^{-\frac{1}{2}}(-.1) \\
& =\frac{1}{2}\left(\frac{1}{10}\right)(-.1) \\
& =\left(\frac{1}{20}\right)(-.1) \\
& =-\frac{1}{200}
\end{aligned}
$$

The estimate of $f(99.9)$ is therefore $f(100)+\left(-\frac{1}{200}\right)=10-.005=9.995$
5. The radius of circular disk is given as 24 cm with a maximum error in measurement of .2 cm . Use differentials to calculate the maximum error in the calculated area of the disk; what is the relative error?
Note that the formula for the area of a circle is: $A=\pi r^{2}$. Taking the derivative with respect to radius (note that the error in measurement is a change in radius), $\frac{d A}{d r}=2 \pi r$, and so the relevant differential is $d A=2 \pi r d r$. Plugging in the values, given we obtain that the maximum error is $d A=2 \pi(24)(.2)=\frac{48 \pi}{5}$. The error relative to the area, then, is $\frac{\frac{48 \pi}{5}}{(24)^{2} \pi}=\frac{1}{60}$.
6. (\star) Is there any difference between the approximation given by a differential and the approximation given by a linearization? Why or why not?
No; they're both using the same tangent line. It's two different ways of looking at the same approximation.

