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1 Goal

In this project, we study the tropicaliztion of genus 2 curves. Given a genus 2 curve
C over a valued field K, there is a genus 2 tropical curve we can associate to C which
is unique up to isomorphism of curves. It is a nontrivial task to compute the tropical
curve associated to C, and the goal of this talk is to understand how to compute this
tropical curve in two different ways:

1. By studying roots in the hyperelliptic cover, [RSS14]

2. By studying the Igusa Invariants. [Hel]

2 From curves to tropical curves

Setup: In what follows K will be a field with valuation with maximal ideal m and
valuation ring R, k will be the residue field, and C a curve over K.

We have that there exists a coarse moduli space M g of stable curves. This is the
stable compactification of Mg. The space M g is compact and separated.

What does this mean intuitively? It means that if we have a geometrically smooth
family of curves which specializes to a nonstable curve (having a cusp or worse sin-
gularity), we are guaranteed (abstractly) that we can replace the unstable fibers with
stable ones by making a base change and binational modification.

Example The curve

y2 = (x− 1)(x− 2)(x− 3)(x− 4)(x− t)(x− t2)

defines a hyperelliptic curve over the Puiseux series C{{t}}. For t 6= 0, this defines a
smooth curve over C. However, for t = 0, (i.e., the fiber over the residue field) we do
not have a stable curve. The semistable reduction theorem tells us that we should be
able to replace this fiber uniquely by some element of M g. How can we tell what the
reduction type is, and how do we know what the corresponding tropical curve is?



The reduction type of the curve completely determines what the associated tropical
curve will be, since the tropical curve is the dual graph of the stable curve. There are
seven possible reduction types for a genus two curve.

3 Moduli space of genus 2 tropical curves

For our purposes, a tropical curve will be a triple (Γ, w, l) where Γ = (V,E) is a con-
nected graph, and w is a function from V → Z≥0 assigning weights to the vertices, and
l is a function from E → R≥0 assigning a length to each edge.

The genus of a tropical curve is the sum over all weights of the vertices, plus the
classical genus of the graph Γ.

We will say that two tropical curves are isomorphic if one can be obtained from the
other via the following operations:

1. Graph automorphisms

2. Removing a leaf of weight 0, together with the edge connected to it.

3. Removing a vertex of degree 2 and weight 0, and replacing the corresponding
edges by one edge whose length is the sum of the lengths of the old edges.

Tropical Geometry 2 Madeline Brandt



4. Removing an edge of length 0 and adding the weights of the corresponding ver-
tices.

In this way, every tropical curve has a minimal skeleton. This is a tropical curve with
no vertices of weight 0 and degree less than or equal to two, or edges of length zero.

Given a fixed pair (Γ, w), or combinatorial type, the moduli space of tropical curves

of this type is R|E|≥0/Aut(Γ). The coordinates in R|E|≥0 give the edge lengths in the graph.
The boundary of these cones corresponds to curves with at least one edge of length 0.
Then, we glue the cones along the boundaries to form M tr

g . The moduli space M tr
g is

a stacky fan, and has been well studied.

4 The two methods

4.1 Method One: Ren, Sam, Sturmfels

Our goal is to understand the map

M2 →M tr
2 .

We now discuss the methods presented in [RSS14] for carrying out this map.

Theorem 1 ([RSS14]). There is a commutative diagram

M0,6 M tr
0,6

M2 M tr
2
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Now, we may study the bottom map by instead studying the top horizontal map
and the right vertical map, which we understand well.

The map from
M0,6 →M2

takes the genus 2 curve coming from the hyperelliptic cover of P1 with the 6 marked
ramification points.

All genus 2 curves are hyperelliptic, meaning any one can be defined by giving 6
points in P1. The curve is then the double cover of P1 branched at the 6 points. If the
curve is given in the form

y2 = f(x)

For a polynomial f of degree 5 or 6, then the points are precisely the roots of f , plus
possibly the point at infinity depending upon if f is degree 5.

The space M tr
0,6 is one we know well: this is the space of trees with 6 taxa. Using

the distances dij between the 6 marked points, we get a fan in TP14. Combinatorially,
it agrees with the tropical Grassmannian trop(Gr(2, 6)), as described in [MS15]. We
know that M tr

0,6 has a tropical basis given by the Plücker relations for Gr(2, 6). It has
one 0 dimensional cone, 25 rays, 105 two dimensional cones, and 105 three dimensional
cones. The dimension corresponds to the number of interior edges in the tree. Then
the map

M0,6 →M tr
0,6

can be described as follows. Denote the 6 points in P1 by (ai, bi). Then, take the matrix[
a1 a2 · · · a6
b1 b2 · · · b6

]
and take all 2 × 2 minors of the matrix. Then, take valuations of each of these. This
describes a point in P14

∆ = (p12, p13, · · · , p56)

This describes a tree metric on a tree with 6 taxa by taking d(i, j) = −2pij + 1 for a
suitable constant n.

The map
M tr

0,6 →M tr
2

This is a morphism of generalized cone complexes, and can be described as follows.
Given a point in M tr

0,6, find the tree associated to it, with interior edge lengths. This
tree maps to the corresponding tropical curve, as in the figures. If an interior edge
of length l in the tree comes from a curve of type (3), then the loop has length 2l.
Otherwise, if the curve is of type (2), the edge gets length 1/2l.
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4.2 Method Two: Helminck

In [Hel], Helminck completely determines the semistable reduction type of a genus two
curve using the Igusa invariants. These were first defined in [Igu60], in order to try and
extend the knowledge of genus 1 curves obtained by the j-invariant to higher genus.

Definition 1. The tropical Igusa invariants are the valuations of Ji and Ii.

He gives the following theorem:

Theorem 2 ([Hel]). Let C be a semistable curve of genus 2 over K. Then the cycle
lengths and reduction type of a faithful tropicalization can be completely described in
terms of the tropical Igusa invariants.

Using the tropical Igusa invariants, Helminck can determine which of the seven
possible reduction types CS. The full theorem statement may be found in [Hel], and
we implemented this in Mathematica. Helminck also determines the thickness of the
singular points on CS, which gives us the lengths of the edges in the tropical curve.

5 Examples

5.1 Example

Suppose exactly two points coincide in the residue field. For instance, this is the
polynomial introduced in the introduction. Call these two points a5, a6. Then the
tropical Igusa invariants are

(0, 0, 0, 0, 2a, 0, 0, 0, 0, 0),

where a = v(a5 − a6) > 0. This tells us that the curve is irreducible with one singular
point of thickness 2a. This corresponds to a single loop of length 2a and a vertex of
weight 1.

On the other hand, in M tr
0,6 we have a point of the form

(0, . . . , 0, a) = (p1,2, p1,3, . . . , p1,5).

This gives us a tree metric

(n, . . . , n, n− 2a) = (d1,2, d1,3, . . . , d1,5).

So the tree has the desired type, with an interior edge length of a. Then, we double
this length to find the length of the corresponding loop in the tropical curve.
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5.2 A second example

Consider the polynomial

y2 = (x + 1)(x− t)(x− t2)(x− t3)(x− t4).

Its tropical Igusa invariants are

(2, 4, 6, 8, 20, 2, 6, 6, 8, 20).

This tells us that the reduction type is two projective lines intersecting in one point,
with thicknesses (1/2, 2, 2), so the graph should be the dumbell with each loop having
length 2 and the interior edge having length 1/2.

On the other hand, in M tr
0,6 we have the point

(0, 0, 0, 0, 0, 1, 1, 1, 0, 2, 2, 0, 3, 0, 0) = (p1,2, p1,3, . . . , p1,5).

So that a possible tree metric (up to all 1’s vector) is

(8, 8, 8, 8, 8, 6, 6, 6, 8, 4, 4, 8, 2, 8, 8) = (d1,2, d1,3, . . . , d1,5).
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