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Tensors are higher dimensional analogs of matrices. We will see that one way
to view a symmetric tensor is as a homogeneous polynomial. Basic attributes
of matrices, like eigenvectors, can be defined for tensors. This talk is split in
2 sections– symmetric and non symmetric tensors. For each, we review some
familiar aspects of matrices in preparation for the analagous concept for tensors.

Definition 1. A tensor is a d-dimensional array T = (ti1,...,id). The entries are
elements of the ground field K. The set of all tensors of format n1×· · ·×nd form
a vector space of dimension n1 · · ·nd over K.

1 Symmetric Tensors, Homogeneous Polynomials, Eigen-
vectors

1.1 Square Symmetric Matrices (d = 2)

Let K be a field. Recall that symmetric matrices correspond to quadratic forms.

Example 2. Let Q = 2x2 + 7y2 + 23z2 + 6xy+ 10xz+ 22yz. This is represented as
a symmetric 3× 3-matrix as follows:

Q =
(
x y z

)2 3 5

3 7 11

5 11 23

xy
z


The gradient of a quadratic form is the vector of its partial derivatives. So, it

is a vector of linear forms, giving a map Kn → Kn.

1



Example 3. For the quadratic form we have from before, this is given by

∇Q =

∂Q/∂x∂Q/∂y

∂Q/∂z

 = 2 ·

2 3 5

3 7 11

5 11 23

xy
z

 .
Then, a vector v ∈ Kn is an eigenvector of Q if v is mapped to a scalar

multiple of v: ∇Qv = λv, λ ∈ K. Replacing Kn by projective space Pn−1, we
obtain a rational self-map of projective space:

∇Q : Pn−1 99K Pn−1.

If Q is rank-deficient then the linear map has a kernel. These are places where
the gradient ∇Q vanishes. These are called base points of the map. If Q has full
rank then ∇Q is a regular map Pn−1 → Pn−1 so it is defined on all of Pn−1

Question 4. If you are interested in trying an example, do Question 1.

Remark 5. The eigenvectors of Q are the fixed points (λ 6= 0) and base points
(λ = 0) of the gradient map ∇Q.

1.2 Symmetric Tensors

An n×· · ·×n tensor T = (ti1,...,id) is called symmetric if it is unchanged after per-
muting the indices. Symmetric tensors correspond to homogeneous polynomials
of degree d in n variables:

T =

n∑
i1,...,id=1

ti1,...,id · xi1 · · · xid .

Remark 6. For the rest of this section, it is more convenient to think of a tensor
as a polynomial, NOT as an array.

As with matrices, the gradient of T defines a map ∇T : Kn → Kn (T is a
homogeneous polynomial in n variables of degree d).

Definition 7. A vector v ∈ Kn is an eigenvector of T if (∇T)(v) = λv for λ ∈ K.

Question 8. If you would like to compute an example, do Question 4.
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If we again think of this map instead as a map on Pn−1, then the gradient map
is a rational map from projective space to itself:

∇T : Pn−1 99K Pn−1.

The eigenvectors of T are fixed points (λ 6= 0) and base points (λ = 0) of ∇T .

Theorem 9 (Cartwright-Sturmfels). If K is algebraically closed, then the number of
eigenvectors of a general d-dimensional n× · · · × n symmetric tensor T is

(d− 1)n − 1

d− 2
=

n−1∑
i=0

(d− 1)i.

Proof. The proof is Question 5.

Example 10. (n = d = 3) Consider the Fermat Cubic T = x3 + y3 + z3. Its gradient
map is the regular map that squares each coordinate:

∇T : P2 → P2, (x : y : z) 7→ (x2 : y2 : z2).

This has 7 = 1+ 2+ 22 fixed points (all combinations of 1,0 minus all 0’s):

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1), (1 : 1 : 1).

Therefore, T has 7 eigenvectors, as the theorem predicts.

2 Rectangular Tensors, Multilinear Forms, Singular
Vectors

2.1 Rectangular matrices (d = 2)

For a rectangular matrix, one instead considers singular vectors. The number
of singular vectors is equal to the smaller of the two matrix dimensions. Each
rectangular matrix represents a bilinear form.

Example 11. Consider the following bilinear form.

B = 2ux+ 3uy+ 5uz+ 3vx+ 7vy+ 11vz =
(
u v

)(2 3 5

3 7 11

)xy
z


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Its gradient defines an endomorphism on the direct sum of the row space and
the column space. We get a map ∇B : K2 ⊕ K3 → K2 ⊕ K3 sending the pair

((u, v), (x, y, z)) 7→ ((
∂B

∂u
,
∂B

∂v

)
,

(
∂B

∂x
,
∂B

∂y
,
∂B

∂z

))
= ((2x+ 3y+ 5z, 3x+ 7y+ 11z), (2u+ 3v, 3u+ 7v, 5u+ 11v))

Let B be an m× n matrix over K. Consider the equations

Bx = λy, Bty = λx

for λ ∈ K, x ∈ Kn, y ∈ Km. Given a solution to these equations, we see that x is an
eigenvector of BtB, y is an eigenvector of BBt, and λ2 is a common eigenvalue.
We call x, y the right and left singular vector.

Remark 12. The singular pairs (x, y) of a rectangular matrix B are fixed points of
the gradient map ∇B of the associated bilinear form. This is now a self-map on
the product of projective spaces:

∇B : Pm−1 × Pn−1 → Pm−1 × Pn−1

Question 13. For those interested in computing an example, do Question 2.

2.2 Rectangular Tensors

Consider now a d-dimensional tensor T in Kn1×···×nd . It corresponds to a multi-
linear form.

Definition 14. The singular vector tuples of T are the fixed points of the gradient
map

∇T : Pn1−2 × · · · × Pnd−2 → Pn1−2 × · · · × Pnd−2.

Example 15. The trilinear form T = x1y1z1 + x2y2z2 is interpreted as a 2 × 2 × 2
tensor. The gradient ∇T of this trilinear form is the rational map

P1 × P1 × P1 99K P1 × P1 × P1

((x1 : x2), (y1 : y2), (z1 : z2)) 7→ ((y1z1 : y2z2), (x1z1 : x2z2), (x1y1 : x2y2)).

This map has six fixed points, for example ((1 : 0), (1 : 0), (1 : 0)), and others.
These are the singular vector triples of the tensor T .
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The expected number of singular vector triples is predicted by the following
theorem.

Theorem 16 (Friedland and Ottaviani). For a general n1× · · · ×nd-tensor T over an
algebraically closed field K, the number of singular vector tuples is the coefficient of the
monomial zn1−1

1 · · · znd−1
d in the polynomial

d∏
i=1

(ẑi)
ni − zni

i

ẑi − zi
,

where ẑi = z1 + · · ·+ zi−1 + zi+1 + · · ·+ zd.

Example 17. (Question 3) Consider the 3× 3× 2× 2 tensor defined by the multi-
linear form T = x1y1z1w1 + x2y2z2w2.

Computing the polynomial in the above theorem and examining the coef-
ficient of the monomial x21y

2
1z1w1, we expect that there are 98 singular vector

tuples for T .
We will now determine all singular vectors of T . The gradient map sends

((x1 : x2 : x3), (y1 : y2 : y3), (z1 : z2), (w1 : w2)) 7→
((y1z1w1 : y2z2w2 : 0), (x1z1w1 : x2z2w2 : 0), (x1y1w1 : x2y2w2), (x1y1z1 : x2y2z2)).

What are the fixed points of this map? First, we observe that x3, y3 = 0.
If x1 = 0: Then y1 = z1 = w1 = 0, so the only solution is ((0, 1, 0), (0, 1, 0), (0, 1), (0, 1)).
If x1 6= 0: Then y1z1w1 6= 0. So, we may set x1 = y1 = z1 = w1 = 1. Then we

obtain:
((1 : x2 : 0), (1 : y2 : 0), (1 : z2), (1 : w2))

= ((1 : y2z2w2 : 0), (1 : x2z2w2 : 0), (1 : x2y2w2), (1 : x2y2z2))

Macaulay2 (degree + primary decomposition) reveals that there are 17 solutions,
and 9 of them are real. So in total, we have 18 singular vector tuples.
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