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Tensors are higher dimensional analogs of matrices. We will see that one way
to view a symmetric tensor is as a homogeneous polynomial. Basic attributes
of matrices, like eigenvectors, can be defined for tensors. This talk is split in
2 sections— symmetric and non symmetric tensors. For each, we review some
familiar aspects of matrices in preparation for the analagous concept for tensors.

Definition 1. A tensor is a d-dimensional array T = (t;,,.;,). The entries are
elements of the ground field K. The set of all tensors of format n; x --- x ng form
a vector space of dimension n; - - -ng over K.

1 Symmetric Tensors, Homogeneous Polynomials, Eigen-
vectors

1.1 Square Symmetric Matrices (d = 2)

Let K be a field. Recall that symmetric matrices correspond to quadratic forms.

Example 2. Let Q = 2x* + 7y? + 23z% + 6xy + 10xz + 22yz. This is represented as
a symmetric 3 x 3-matrix as follows:

2 3 5 X
Q=(xy z)[3 7 11] |y
5 11 23 z

The gradient of a quadratic form is the vector of its partial derivatives. So, it
is a vector of linear forms, giving a map K* — K".



Example 3. For the quadratic form we have from before, this is given by

0Q/dx 2 3 5\ /x
vQ=[0Qay|=2-(3 7 11| |y
3Q/0z 5 11 23/ \z

Then, a vector v € K" is an eigenvector of Q if v is mapped to a scalar
multiple of v: VQv = Av, A € K. Replacing K™ by projective space P"'!, we
obtain a rational self-map of projective space:

VQ P s P,

If Q is rank-deficient then the linear map has a kernel. These are places where
the gradient VQ vanishes. These are called base points of the map. If Q has full
rank then VQ is a regular map P"' — P! so it is defined on all of P™

Question 4. If you are interested in trying an example, do Question 1.
Remark 5. The eigenvectors of Q are the fixed points (A # 0) and base points
(A =0) of the gradient map VQ.

1.2 Symmetric Tensors

Annx---xntensor T = (ti, i) is called symmetric if it is unchanged after per-
muting the indices. Symmetric tensors correspond to homogeneous polynomials
of degree d in n variables:

n
T= E Ty i - X4y Xy
i1ymia=]

Remark 6. For the rest of this section, it is more convenient to think of a tensor
as a polynomial, NOT as an array.

As with matrices, the gradient of T defines a map VT : K" — K" (T is a
homogeneous polynomial in n variables of degree d).

Definition 7. A vector v € K" is an eigenvector of T if (VT)(v) = Av for A € K.

Question 8. If you would like to compute an example, do Question 4.



If we again think of this map instead as a map on P"'| then the gradient map
is a rational map from projective space to itself:

VT:P ! - P
The eigenvectors of T are fixed points (A # 0) and base points (A = 0) of VT.

Theorem 9 (Cartwright-Sturmfels). If K is algebraically closed, then the number of
eigenvectors of a general d-dimensional 1 x - - - x n symmetric tensor T is

d-1"—1 & .
=Y (a-1k
d—2 ;

Proof. The proof is Question 5. O

Example 10. (n = d = 3) Consider the Fermat Cubic T = x* +y* + z3. Its gradient
map is the regular map that squares each coordinate:

VT:P2 5P (x:y:z)— (x*:y?:22).
This has 7 = 1 + 2 + 22 fixed points (all combinations of 1,0 minus all 0’s):
(1:0:0),(0:1:0),(0:0:1),(1:7:0),(1:0:1),(0:7T:1),(1:1:1).

Therefore, T has 7 eigenvectors, as the theorem predicts.

2 Rectangular Tensors, Multilinear Forms, Singular
Vectors

2.1 Rectangular matrices (d = 2)

For a rectangular matrix, one instead considers singular vectors. The number
of singular vectors is equal to the smaller of the two matrix dimensions. Each
rectangular matrix represents a bilinear form.

Example 11. Consider the following bilinear form.

X
B =2ux + 3uy +5uz +3vx + 7vy + 1lvz = (u v) (g ? 151) (‘J)
z



Its gradient defines an endomorphism on the direct sum of the row space and
the column space. We get a map VB : K* @ K3 — K? & K3 sending the pair

o ixua) = (5o 5) (55 52))
ou’ v 0x 0y 0z

= ((2x 4+ 3y +5z,3x + 7y + 11z), (2u + 3v,3u+ 7v,5u + 11v))
Let B be an m x n matrix over K. Consider the equations
Bx =2y, B'y=»Ax

for A € K, x € K", y € K™ Given a solution to these equations, we see that x is an
eigenvector of B'B, y is an eigenvector of BB!, and A? is a common eigenvalue.
We call x,y the right and left singular vector.

Remark 12. The singular pairs (x,y) of a rectangular matrix B are fixed points of
the gradient map VB of the associated bilinear form. This is now a self-map on
the product of projective spaces:

VB:P™ ! x P — P x P

Question 13. For those interested in computing an example, do Question 2.

2.2 Rectangular Tensors

Consider now a d-dimensional tensor T in K™>**™a_ ]t corresponds to a multi-
linear form.

Definition 14. The singular vector tuples of T are the fixed points of the gradient
map
VTPV 2 x Pram2 5 P2 . x Phe?,

Example 15. The trilinear form T = x;y;z; + X,Y,2; is interpreted as a 2 x 2 x 2
tensor. The gradient VT of this trilinear form is the rational map
P' x P' x P' --» P' x P! x P!
(x1:%2), (Y1 :Y2), (z1 1 22)) = ((Ur1z1 1 Yy222), (X121 X222), (X171 : X2Y2)).

This map has six fixed points, for example ((1 : 0),(1 : 0),(1 : 0)), and others.
These are the singular vector triples of the tensor T.

4



The expected number of singular vector triples is predicted by the following
theorem.

Theorem 16 (Friedland and Ottaviani). For a general ny x - - - X ng-tensor T over an
algebraically closed field K, the number of singular vector tuples is the coefficient of the

monomial "' - -z in the polynomial

d .
(B — 2
==

i=1
where £ = 21+ + 21 + 21+ + 24

Example 17. (Question 3) Consider the 3 x 3 x 2 x 2 tensor defined by the multi-
linear form T = x1y1z:Wq + X2y22oW;.

Computing the polynomial in the above theorem and examining the coef-
ficient of the monomial x}y?z;w;, we expect that there are 98 singular vector
tuples for T.

We will now determine all singular vectors of T. The gradient map sends

(1 :x2:x3), (Y1 1 y2:y3)y (21 1 22), (W i w)) =

((yrziwr 1 yazawy 1 0), (11w @ xazoW;3 2 0), (x1y1ws @ xpyawa), (X1Y121 : X2Y222)).
What are the fixed points of this map? First, we observe that x3,y; = 0.
If x; = 0: Theny; = z; = wy =0, so the only solution s ((0, 1,0), (0, 1,0), (0, 1), (0, 1)).
If x; # 0: Then yizyw; # 0. So, we may set x; = y; = z; = w; = 1. Then we
obtain:

((T:x2:0),(1:y2:0),(1:22), (1:w3))
= ((1 SY2Zowy O), (1 L X2Zo)wW) O), (1 IXzyzWZ), (1 1X2y22,2))

Macaulay?2 (degree + primary decomposition) reveals that there are 17 solutions,
and 9 of them are real. So in total, we have 18 singular vector tuples.



