Symmetric powers of algebraic and tropical curves

Madeline Brandt (W/ Martin Ulirsch)

February 11 2019

Tropical geometry gives a way to connect algebraic geometry and combinatorics or polyhedral geometry. Today I will give an example of this by studying the collection of divisors on a curve or graph.

Throughout, let K be a non-Archimedean field with valuation ring R whose residue field k is algebraically closed and contained in K. Let X be a smooth projective curve over K of genus $g \ge 1$ and let $d \ge 0$. An **effective degree** d **divisor** on a X is a finite formal sum of the form $\sum n_i v_i$ where the n_i are positive integers summing to d, and $v_i \in X$.

The d-th symmetric power X_d of X is defined to be the quotient

$$X_d = X^d / S_d$$

of the d-fold product $X^d = X \times \cdots \times X$ by the action of the symmetric group S_d that permutes the entries. The symmetric power X_d is again a smooth and projective algebraic variety and functions as the **moduli space of effective divisors of degree** d **on** X.

A **tropical curve** $\Gamma = (G, V, l, w)$ is a metric graph with some weights. One way to think about this is through models. A **model** of a metric graph is a graph G = (V, E) and a "length function" l on the edges so that the metric graph is obtained by gluing together intervals of the correct length according to the instructions given by the graph. To make it a tropical curve, we also add weights to the vertices (the role of these weights will be explained later).

Then, a **divisor** on a tropical curve is again a finite formal sum of the form $\sum n_i v_i$, and the d-th symmetric power is the quotient

$$X_d = X^d / S_d.$$

What follows is the main theorem that I will explain in this talk. The remainder of the talk will be dedicated to understanding the statement in more detail, and a sketch of the proof will be given at the end.

Theorem 1 (M-Ulirsch). *The non-Archimedian skeleton of the effective degree* d*-divisors on a curve is the effective degree* d *divisors on the skeleton of the curve.*

Are there any questions up to this point?

1 Skeletons of curves

First, I will say how to tropicalize an algebraic curve X and get a tropical curve Γ .

Madeline: [Depending upon what is said in the introductory talks, say more or less about the "intuitive version" of this]

We say a **model** \mathcal{X} for a curve X is a flat and finite type scheme over R (SpecR = {0, m}) whose **generic fiber** (fiber over (0)) is isomorphic to X. We call this model **strictly semistable** if the **special fiber** (fiber over the maximal ideal) satisfies:

- 1. It is reduced, connected, and only has nodal singularites;
- 2. every rational component meets the rest of the curve in at least 2 singular points (and no self-intersection).

Definition 1. The **dual graph** G of X_k has vertices corresponding to the irreducible components of X_k , and edges corresponding to nodes.

Here is an example of a schematic of the special fiber of a curve G and on the right, its dual graph.

To define the **tropicalization** Γ of the curve \mathcal{X} , we add a bit of extra data.

- 1. Vertex Weights: we add weights to the vertices by assigning to each vertex the genus of the corresponding component.
- Edge Lengths: We add edge lengths in the following way. Given an edge corresponding to a node q between two components X_i and X_j, the completion of the local ring O_{X,q} is isomorphic to R[[x, y]]/(xy − f) where v(f) > 0. Then, we define the length of the edge e_{ij} to be v(f).

2 Divisors on a tropical curve. What is Γ_d ?

Motivating Principle: When finding the skeleton of the curve, we just observed that there was a correspondence between:

strata in the special fiber \leftrightarrow cells in a polyhedral complex

The same story will hold for X_d . We make a **nice model** (which I will not describe) so that the strata of the special fiber of this model are dual to some polyhedral cells (which I will now describe).

Recall from earlier that Γ_d is the set of effective degree d divisors on Γ – these are just formal linear combinations of points on Γ with positive coefficients which sum to d.

We would like to think of it as a **colored polysimplicial complex**, to add more combinatorial structure that will agree with the skeleton of X_d . A colored polysimplicial complex is like a simplicial complex, but now our basic building blocks include both simplices and products of simplices (like squares, toblerones, etc). A polysimplex formed as a product of k simplices is colored by a vector of positive real numbers of length k which we think of as recording the volume of each simplex. For example, a toblerone bar of chocolate is ($\Delta_2 \times \Delta_1$, (1,9)) and an Apieceofpaperis($\Delta_1 \times \Delta_1$, (210, 297)) (mm).

We now describe the colored polysimplicial complex structure on Γ_d . Given G, the dual graph of our fixed semistable model \mathcal{X} , and a degree d, consider the poset of **stable pairs** (G', D) over G, where G' subdivides G and D(ν) > 0 for all exceptional vertices $\nu \in G$. Associate to (G', D) the polysimplex

$$(\Delta_{k_1} \times \cdots \times \Delta_{k_l}, (l(e_1), \ldots, l(e_l)))$$

where k_i is the number of vertices living above the edge e_i . This polysimplex parametrizes all divisors on the metric graph Γ with combinatorial type (G', D).

$$G = \bigoplus_{l_2}^{l_1} G' = \bigoplus_{l_2}^{l_2}$$

Example 2. To the G' in this picture we associate a rectangle of size $l_1 \times l_2$. This rectangle gives all of the divisors on Γ of type (G', D).

We glue these cells according to the poset of stable pairs to obtain the colored polysimplicial complex structure on Γ_d .

3 What is the tropicalization of X_d?

Now, in order to tropicalize X_d , we must also find a nice model. This is now called a **polystable model**, and we will denote it X_d . I will describe what the strata of the special fiber look like.

In the generic fiber of \mathcal{X}_d we have X_d . On the other hand, points in the special fiber of \mathcal{X}_d are given by a pair $(\mathcal{X}', \mathcal{D})$ satisfying:

- 1. the generic fiber of \mathcal{D} is D,
- 2. the support of \mathcal{D}_0 in the special fiber does not meet the nodes of \mathcal{X}'_0
- 3. the support of \mathcal{D}_0 meets every exceptional component of \mathcal{X}'_0 over \mathcal{X}_0 .

To this we may associate the pair (G', mdegD), where

$$\mathrm{mdeg}(\mathcal{D}) = \sum_{\nu \in V(G')} \mathrm{deg}(\mathcal{D}|_{X'_{\nu}}) \cdot \nu.$$

Then G' is a subdivision of G and (G', mdegD) if a stable pair over G.

The strata of $(X_d)_0$ are exactly the loci where the dual pairs are constant. To tropicalize X_d , we form a polysimplicial complex which encodes the combinatorial data of how the strata intersect.

In the end, We have an order preserving, 1-1 correspondence between the strata and the stable pairs.

(The model we take for X_d is Spec $R \times_{\overline{M}_g} \overline{\text{Div}_{g,d}}$ where the map Spec $R \to \overline{M_g}^{ss} \to \overline{M}_g$ identifies a strictly semistable model for X and then stabilizes, and $\overline{\text{Div}_{g,d}}$ is the moduli space whose fiber over a family of stable curves $X \to \text{Spec } R$ is the set of pairs (X', D) consisting of a semistable model X' of X and a divisor D on X' such that the support of D does not meet the nodes of X' and the support of D does meet every exceptional component of X'.)