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Abstract

We show that the non-Archimedean skeleton of the d-th symmetric power
of a smooth projective algebraic curve X is naturally isomorphic to the d-th
symmetric power of the tropical curve that arises as the non-Archimedean
skeleton of X.

Tropical geometry gives us a way to unite the worlds of algebraic geometry,
non-archimedean geometry, and polyhedral geometry. Many results in this area
follow the following format:

In which the map “trop” associates to an algebraic object the “intuitively de-
fined” tropical version, the map “an” gives the Berkovich analytification, and
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the map ρ gives the retraction onto the skeleton. Then, one must prove that the
skeleton equals the intuitively defined polyhedral object.

Throughout, let K be a non-Archimedean field with valuation ring R whose
residue field k is algebraically closed and contained in K. Let X be a smooth
projective curve over K of genus g ≥ 1 and let d ≥ 0. Let X be a fixed strictly
semistable model of X over R. Denote by Γ the dual tropical curve of X.

Theorem 1. There is a natural isomorphism

µXd
: Γd

∼−−→ Σ(Xd)

of colored polysimplicial complexes that makes the diagram

Xand

Σ(Xd) Γd

ρXd

tropXd

µXd

∼

commute.

1 What is Γd?

We say a model X for a curve X is a flat and finite type scheme over R whose
generic fiber is isomorphic to X. We call this model strictly semistable if the
special fiber is a strictly semistable curve over k, meaning:

1. It is reduced, connected, and only has nodal singularites;

2. every rational component meets the rest of the curve in at least 2 singular
points (and no self-intersection).

The tropical curve G / dual graph Γ of Xk has vertices corresponding to the
irreducible components of Xk, and edges corresponding to nodes. It also has:

1. Vertex Weights: assign to each vertex the (geometric) genus of the corre-
sponding component.

2. Edge Lengths: Given an edge corresponding to a node q between two
components Xi and Xj, the completion of the local ring OX ,q is isomorphic
to R[[x, y]]/(xy − f) where v(f) > 0. Then, we define the length of the edge
eij to be v(f).
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An effective degree d divisor on a (tropical or classical) curve X is a finite
formal sum of the form

∑
nivi where the ni are positive integers summing to d,

and vi ∈ X.
The d-th symmetric power Xd of a (tropical or classical) curve X is defined to

be the quotient
Xd = X

d/Sd

of the d-fold product Xd = X×· · ·×X by the action of the symmetric group Sd that
permutes the entries. The symmetric power Xd is again a smooth and projective
algebraic variety and functions as the moduli space of effective divisors of degree
d on X.

We have now defined Γd as a set, but we would like to think of it as a colored
polysimplicial complex. This is like a simplicial complex, but now our basic
building blocks include both simplices and products of simplices (like squares,
toblerones, etc). A polysimplex formed as a product of k simplices is colored
by a vector of positive real numbers of length k which we think of as recording
the volume of each simplex. For example, a toblerone bar of chocolate is (∆2 ×
∆1, (1, 9)).

We now describe the colored polysimplicial complex structure on Γd. Given
G, the dual graph of our fixed semistable model X , and a degree d, consider the
poset of stable pairs (G ′, D) over G, where G ′ subdivides G and D(v) > 0 for all
exceptional vertices v ∈ G. Associate to (G ′, D) the polysimplex

(∆k1 × · · · × ∆kl , (l(e1), . . . , l(el)))

where ki is the number of vertices living above the edge ei. This polysimplex
parametrizes all divisors on the metric graph Γ with combinatorial type (G ′, D).

Example 1. To the G ′ in this picture we associate a rectangle of size l1 × l2. This
rectangle gives all of the divisors on Γ of type (G ′, D).

We glue these cells according to the poset of stable pairs to obtain the colored
polysimplicial complex structure on Γd.
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2 What is Xand ?

For each y ∈ Xd let κ(y) denote the residue field. As a set, Xand is

{(y, | · |) | y ∈ Xd and | · | is a norm on κ(y) extending exp(−valk(·)) on K}.

It has a topology given by the coarsest topology such that for any open U ⊂ Xd
and any regular function g ∈ OXd

(U), the map sending (y, | · |) 7→ |g(y)| is contin-
uous.

3 What is Σ(Xd)?

Berkovich spaces are very hairy but they have the following nice property. They
admit retractions onto what is called the skeleton, which we denote Σ(Xd). This
is given by the retraction map ρ : Xand → Σ(Xd). For brevity I will not write the
formula here, but it is writen out explicitly in the paper.

4 The tropXd map

A point (y, |·|) ∈ Xand can be represented by a a map Specκ(y) → Xd. This gives us
an effective divisor D on Xκ(y). Then, there is a unique semistable model X ′ → X
and divisor D in X ′ such that

1. the generic fiber of D is D,

2. the support of D0 in the special fiber does not meet the nodes of X ′
0

3. the support of D0 meets every exceptional component of X ′
0 over X0.

So, to the point y ∈ Xand we associate the divisor mdeg(D) on the dual graph Γ of
X given by

mdeg(D) =
∑

v∈V(G ′)

deg(D|X ′
v
) · v

where G ′ is the dual graph of X ′. This gives the map trop
Xd

.
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5 A few words about the proof

Now we have seen each of the main objects in the statement of the theorem as
well as the maps between them. A theorem of Berkovich plays a main role in
the proof. It says that the skeleton is equal to a dual complex to the strata of the
special fiber of a polystable model of Xd.

The model we take for Xd is SpecR ×Mg
Divg,d Where the map SpecR →

Mg
ss → Mg identifies a strictly semistable model for X and then stabilizes, and

Divg,d is the moduli space whose fiber over a family of stable curves X→ SpecR
is the set of pairs (X ′, D) consisting of a semistable model X ′ of X and a divisor D
on X ′ such that the support of D does not meet the nodes of X ′ and the support
of D does meet every exceptional component of X ′.

The main step in the proof is to show that the polysimplicial structure on Γd
described before is the same as the one given on Σ(Xd) given by the Berkovich
theorem. To that end, we now describe the polysimplicial structure we associate
to the special fiber of this model.

The special fiber (Xd)0 can be written as a disjoint union of strata. The strata
carry a partial order:

E ≺ E ′ when E ′ ⊂ E.
Around each stratum we have small charts which look like SpecA1 ⊗R · · · ⊗R Ar
over R where Ai is of the form R[t1, . . . , tni

]/(t1 · · · tki − ai) for ai ∈ R.
So, we associate a stratum

E 7→ (∆k1 × · · · × ∆kr , (a1, . . . , ar)).

This defines a complex ∆(Xd). By the Berkovich theorem, the suport of this
colored polysimplicial complex equals Σ(Xd).

Now, we will examine the strata to show that the corresponding cells can
be seen in Γd. Consider a point in the special fiber of Xd. It is given by a pair
(X ′

0 , D) satisfying the constraints from before. To this we may associate the pair
(G ′,mdegD), where G ′ is a subdivision of G and (G ′,mdegD) if a stable pair
over G.

The strata of (Xd)0 are exactly the loci where the dual pairs are constant. For
example, the smooth locus of (Xd)0 is (X ′

0, D) where X ′
0
∼= X0 and the strata are

distinguished by mdegD. We have an order preserving, 1-1 correspondence
between the strata and the stable pairs.

By examining the local equations, we can aslo show that the polysimplices
get the correct colors, so we see that the two colored polysimplicial complexes
are the same.
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