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Abstract

Given a smooth curve defined over a valued field, it is a difficult problem to compute
the Berkovich skeleton of the curve. In theory, one can find a semistable model for the
curve and then find the dual graph of the special fiber, and this will give the skeleton.
In practice, these procedures are not algorithmic and finding the model can become
difficult. It is known how to find the Berkovich skeleton of genus one and genus two
curves; more recently, the hyperelliptic case has also been solved. In this talk, we
present the solution for superelliptic curves yn = f(x). This involves studying the
covering from the curve to P1, and recovering data about the Berkovich skeleton from
the tropicalization of P1 together with the marked ramification points. Throughout
the talk we will study many examples in order to get a feel for the difficulties of this
problem and how the procedure is carried out.

1 Introduction
Throughout the talk we let K be a field with valuation v and characteristic 0, together with
a uniformizer π.

Problem. Compute in an algorithmic way the abstract tropicalization of a smooth curve
over K just from equations defining the curve. The main result of the paper and this talk
is that we have found an algorithm for finding the abstract tropicalization of superelliptic
curves.

I will first give an informal description of the problem. We can think of the uniformizer
π as “going to zero”. Generically, the curve will be smooth, but it could limit to something
singular. Then, we study the dual graph of the special fiber: to each irreducible component
we associate a vertex, and to each node we associate an edge. We then weight each vertex
by the genus of the corresponding component.

So, why is this hard? Depending upon the equations that the curve arrives to you with,
the singularities when π = 0 could be worse than nodes. By the semistable reduction theo-
rem, we are always guaranteed in the abstract that we can replace a bad special fiber with a
good one. However, this process is not algorithmic, and this proves to be the main difficulty
in finding the abstract tropicalization of a curve in explicit examples.

This problem has been studied in several classes of curves.
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1. In genus 1, the answer has been known for some time; one simply takes the valuation
of the j-invariant of the curve and if it is negative, then the abstract tropicalization
will be a cycle of length negative of this valuation.

2. The problem of computing the Berkovich skeleton for genus 2 curves was first studied
in [Liu93] in terms of semistable models. This was done systematically by studying
the ramification data in [RSS14] and using Igusa invariants in [Hel16].

3. In the case of hyperelliptic curves, this problem was studied in [Cha13] and later
solved in [BBCar] using ramification data and admissible covers. In [Hel17], Helminck
presents criteria to reconstruct Berkovich skeleta using Laplacians on metric graphs.
In this paper, we apply these techniques to the superelliptic case.

I will begin the talk with a more precise set up of the problem and some of the ideas
we use. Then, I will present the algorithm found by my collaborator and I for computing
the abstract tropicalization of a superelliptic curve. Lastly, I will provide some examples to
illustrate the algorithm.

2 Setup of Problem
Let R be the valuation ring of K with maximal ideal m, let k := R/m be the residue field,
and let π be a uniformizer for K. Let C be a smooth curve over K.

Definition 1. A superelliptic curve over K is a curve C which admits a Galois covering
φ : C → P1 such that the Galois group is cyclic of order n. Kummer theory [Neu99,
Proposition 3.2] tells us the covering comes as yn = f(x), where f(x) can be assumed to be
a polynomial. Then, the covering is given by (x, y) 7→ x, and the ramification points are the
roots of the polynomial f .

Definition 2. We say a model C for a curve C over K is a flat and finite type scheme over
R whose generic fiber is isomorphic to C. We call this model semistable if the special fiber

Ck = C ×R k

is a semistable curve over k, meaning that every smooth rational component meets the rest
of the curve in at least two points, or every component has at least two points which are
singular. By the semistable reduction theorem, our curve C always admits a semistable
model.

The dual graph of Ck has vertices corresponding to the irreducible components of Ck, and
edges corresponding to nodes.

Theorem 1 ([Ber99], for the experts). The geometric realization of the dual graph is home-
omorphic to the skeleton of the analytification. This is independent of any embedding of the
curve C.
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Definition 3. To define the abstract tropicalization of the curve C, we add a bit of extra data.
We add weights to the vertices by assigning to each vertex the genus of the corresponding
component. We add edge lengths in the following way. Given an edge corresponding to a
node q between two components Ci and Cj, the completion of the local ringOC,q is isomorphic
to R[[x, y]]/(xy − f) where f is some element of the maximal ideal of R. Then, we define
the length of the edge eij to be v(f).

3 Galois Covers of Trees
Our strategy for computing the abstract tropicalization of a superelliptic curve is as follows.
The entire situation of the covering C → P1 tropicalizes, meaning, that the abstract tropi-
calization of C will admit a map to the tree given by the tropicalization of P1 together with
the marked ramification points. This map will be a superelliptic, nondegenerate harmonic
morphism of graphs. From there, we can use some extra data about the divisor coming
from the polynomial f to determine the missing details about the connectivity of the graph.
Finally, the harmonicity of the cover and the local Riemann-Hurwitz conditions determine
the edge lengths and vertex weights on the tropical curve.

We first give the groundwork for discussing morphisms of metric graphs. In this setting,
we assume some knowledge about metric graphs and models of metric graphs. We allow our
graphs to have leaves of infinite length.

Definition 4. If (H, l) and (H ′, l′) are loopless models for metric graphs Σ and Σ′, then a
nondegenerate morphism of loopless models θ : (H, l) → (H ′, l′) is a pair of maps V (H) →
V (H ′) and E(H)→ E(H ′) such that

1. If e ∈ E(H) maps to e′ ∈ E(H ′), then the vertices of e must map to vertices of e′.

2. Infinite leaves in H map to infinite leaves in H ′.

3. If θ(e) = e′, then l′(e′)/l(e) is an integer. These must be specified if the edges have
infinite length.

We say θ is harmonic if for every v ∈ V (H), the local degree

dv =
∑
e3v,

θ(e)=e′

l′(e′)

l(e)

is the same for all choices of e′ ∈ E(H ′).

As in [CMR16], we say that θ satisfies the local Riemann-Hurwitz condition at v if

2− 2w(v) = dv(2− 2w′(θ(v)))−
∑
e3v

(
l′(θ(e))

l(e)
− 1

)
.

Definition 5. An automorphism of Σ is a harmonic morphism θ : Σ→ Σ of degree 1. Given
a subgroup G of Aut(Σ), the quotient graph Σ/G has a model H/G whose vertices are the
G-orbits of V (H) and whose edges are the G-orbits of edges defined by vertices lying in
distinct G-orbits. If θ(e) is an edge in H/G, then l(θ(e)) = l(e) · |Stab(e)|.
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Definition 6. A nondegenerate harmonic morphism θ : Σ → T is a superelliptic covering
of metric graphs if θ is a quotient map with G := Z/nZ and the target T is a tree, and θ
satisfies the local Riemann-Hurwitz conditions at every point.

4 Statement of Algorithm and Example
Example. We use as a running example finding the abstract tropicalization of the curve
defined by the equation

y3 = x2(x− π)(x− 1)2(x− 1− π)(x− 2)2(x− 2− π).

Tropicalization Algorithm

Input : A curve C defined by the equation yn = f(x) =
∏r

i=1(x− αi).
Output : The Abstract Tropicalization CΣ of C.

Remark 1. For the input of this algorithm, we assume the function f has already been
factored. Using the Newton-Puiseux Method [Wal78], one can make a finite expansion for
the roots. Since we are only interested in the valuations of the root differences, a finite
expansion is sufficient. An explicit upper bound for the needed height of this expansion is
given by v(∆(f)), where ∆(f) is the discriminant of f .

1. Compute the tree T . This is the abstract tropicalization of P1 together with the marked
ramification points Q1, . . . , Qs. This is done in the following way (See [MS15, Section
4.3]).

(a) Let M be the 2× s matrix whose columns are the branch points Q1, . . . , Qs. Let
mij be the (i, j)-th minor of this matrix.

(b) Let dij = N − 2v(mij), where v is the valuation on K and N is an integer such
that dij ≥ 0.

(c) The number dij is the distance between leaf i and leaf j in the tree T . These
distances uniquely specify the tree T , and one can use the Neighbor Joining
Algorithm [PS05, Algorithm 2.41] to reconstruct the tree T from these distances.

Example. The matrix M is

M =

[
0 π 1 1 + π 2 2 + π
1 1 1 1 1 1

]
,

and so the vector m (organized lexicographically) is

m = (−π, −1, −1−π, −2, −2−π, π−1, −1, π−2, −2, −π, −1, −1−π,−1+π, −1, −π).

Taking N = 2, we have m = (0, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 0). Therefore,
the tree is as displayed in Figure 1.
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2. Compute the slopes ψe along each edge of T . There is a notion of divisors on metric
graphs– finite formal linear combinations of points on the metric graph. There is also
a notion of a principal divisor and equivalence of divisors which is analogous to those
notions in algebraic geometry. The divisor div(f) specializes to a principal divisor
ρ(div(f)) is a principal divisor on T . Then, and so there exists a rational function
ψ : T → R on T so that the corresponding divisor is ρ(div(f)). One can compute
ρ(div(f)) by observing where the zeros and poles of f specialize. Use this to compute
the slopes ψe of ψ along edges e of T .

Example. We have div(f) = 2(0)+(π)+2(1)+(π+1)+2(2)+(2+π)−9(∞). Then,
ρ(div(f)) = 3v12 + 3v34 + 3v56 − 9v, and φe12 = φe34 = φe56 = 3.

3. Compute the intersection graph of Cs.

(a) Edges. The number of preimages of each edge is gcd(ψe, n).

(b) Vertices. The number of preimages of each vertex v is gcd(n, ψe|e 3 v).

Example. Each of the edges e12, e34, e56 has 3 preimages, and all leaves have 1 preim-
age. We can contract these in the tropical curve, so we do not draw them in the graph,
but we mention them here because they are necessary for bookkeeping the ramification
in the formulas. The middle vertex v has 3 preimages, and the other vertices have 1
preimage. So, the graph is K3,3.

4. Determine the edge lengths and vertex weights to find CΣ.

(a) Edges. If an edge e in T has length l(e), then the length of each of its preimages
in CΣ is l(e)·gcd(ψe,n)

n
. Remove any infinite leaf edges.

(b) Vertices. The weight on each vertex v is determined by the local Riemann-Hurwitz
formula. The degree d at v can be determined from definitions. The weight of v
is determined by

2w(v)− 2 = −2 · d+
∑
e3v

(
n

gcd(n, ψe)
− 1

)
.

Example. The lengths of all interior edges in the tree T were 1. These lengths are
preserved in K3,3 because all edges were unramified. The weights on all vertices are 0.
For example,

w(v12) = −3 + 1 + (3(3/3− 1) + 2(3/1)− 1)/2 = 0.

So, the abstract tropicalization of our curve is the metric graph in Figure 2. Each
vertex is labeled with its image in the tree T .
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Figure 1: The tree T in Exam-
ple 4.

Figure 2: Tropicalization of the
curve in Example 4.

5 Conclusion
In conclusion, in this paper we study the problem of computing the abstract tropicalization
of a curve over a valued field. We provide an algorithm for computing this for superelliptic
curves. Other main results include a theorem about realizability of superelliptic covers of
metric graphs, and a computational study of the superelliptic locus inside the moduli space
of tropical curves.

References
[BBCar] Barbara Bolognese, Madeline Brandt, and Lynn Chua, From curves to tropical ja-

cobians and back, Combinatorial Algebraic Geometry (G.G. Smith and B. Sturm-
fels, eds.), to appear.

[Ber99] Vladimir G. Berkovich, Smooth p-adic analytic spaces are locally contractible, In-
vent. Math. 137 (1999), no. 1, 1–84.

[Cha13] Melody Chan, Tropical hyperelliptic curves, Journal of Algebraic Combinatorics.
An International Journal 37 (2013), no. 2, 331–359.

[CMR16] Renzo Cavalieri, Hannah Markwig, and Dhruv Ranganathan, Tropicalizing the
space of admissible covers, Mathematische Annalen 364 (2016), no. 3-4, 1275–
1313.

[Hel16] Paul Alexander Helminck, Tropical Igusa invariants and torsion embeddings,
arXiv:1604.03987 (2016).

[Hel17] , Tropicalizing abelian covers of algebraic curves, arXiv:1703.03067 (2017).

[Liu93] Qing Liu, Courbes stables de genre 2 et leur schÃľma de modules., Mathematische
Annalen 295 (1993), no. 2, 201–222.

[MS15] D. Maclagan and B. Sturmfels, Introduction to tropical geometry:, Graduate Stud-
ies in Mathematics, American Mathematical Society, 2015.

[Neu99] Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wis-
senschaften, Springer Berlin Heidelberg, 1999.

6



[PS05] Lior Pachter and Bernd Sturmfels, Algebraic statistics for computational biology,
Cambridge University Press, New York, NY, USA, 2005.

[RSS14] Qingchun Ren, Steven V. Sam, and Bernd Sturmfels, Tropicalization of classical
moduli spaces, Mathematics in Computer Science 8 (2014), no. 2, 119–145.

[Wal78] Robert J. Walker, Algebraic curves, Springer-Verlag, New York-Heidelberg, 1978,
Reprint of the 1950 edition.

7


	Introduction
	Setup of Problem
	Galois Covers of Trees
	Statement of Algorithm and Example
	Conclusion

