# THE DEGREE OF SO(n)

#### Madeline Brandt

University of California, Berkeley brandtm@berkeley.edu

December 8, 2016

### INTRODUCTION

This research was done with collaborators David Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva.

### INTRODUCTION

This research was done with collaborators David Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva.

### **Definition** The group SO(n) is defined as

$$\mathrm{SO}(n) := \mathrm{SO}(n,\mathbb{C}) = \left\{ M \in \mathrm{Mat}_{n,n}(\mathbb{C}) \mid \det M = 1, \quad M^t M = \mathrm{Id} \right\}.$$

### INTRODUCTION

This research was done with collaborators David Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva.

#### **Definition** The group SO(n) is defined as

$$\mathrm{SO}(n) := \mathrm{SO}(n,\mathbb{C}) = \left\{ M \in \mathrm{Mat}_{n,n}(\mathbb{C}) \mid \det M = 1, \quad M^t M = \mathrm{Id} \right\}.$$

Since these conditions are polynomials in the entries of the matrix M, we can view SO(n) as a complex variety.

## DEGREE

Our main result was to find the degree of this complex variety.

# DEGREE

Our main result was to find the degree of this complex variety.

#### Definition

The degree of a complex variety X is the generic number of intersection points of X with a linear space of complementary dimension.

# Degree

Our main result was to find the degree of this complex variety.

#### Definition

The degree of a complex variety X is the generic number of intersection points of X with a linear space of complementary dimension.

Why do we want to know this degree?

- 1. The degree is a fundamental piece of data about a variety that one would want to know about it, just like its dimension.
- 2. It provides the degree of low-rank semidefinite programming and is used to find the number of critical points for certain optimization problems.

## MAIN RESULT

**Theorem (B., Bruce, Brysiewicz, Krone, Robeva)** *The degree of* SO(*n*) *is given by:* 

$$\deg \operatorname{SO}(n) = 2^{n-1} \det \left( \binom{2n-2i-2j}{n-2i}_{1 \le i,j \le \lfloor \frac{n}{2} \rfloor} \right).$$

# Some VALUES

| n | Symbolic | Numerical | Formula   |
|---|----------|-----------|-----------|
| 2 | 2        | 2         | 2         |
| 3 | 8        | 8         | 8         |
| 4 | 40       | 40        | 40        |
| 5 | 384      | 384       | 384       |
| 6 | -        | 4768      | 4768      |
| 7 | -        | 111616    | 111616    |
| 8 | -        | -         | 3433600   |
| 9 | -        | -         | 196968448 |

## Some Values

| n | Symbolic | Numerical | Formula   |
|---|----------|-----------|-----------|
| 2 | 2        | 2         | 2         |
| 3 | 8        | 8         | 8         |
| 4 | 40       | 40        | 40        |
| 5 | 384      | 384       | 384       |
| 6 | -        | 4768      | 4768      |
| 7 | -        | 111616    | 111616    |
| 8 | -        | -         | 3433600   |
| 9 | -        | -         | 196968448 |

Gröbner bases methods were not as effective as numerical techniques using monodromy.

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg \operatorname{SO}(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^r \prod_{k=1}^r (2k-1)!^2 \cdot 1} \underbrace{\int_{C_V} \left( \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 \right) dv}_{I_{odd}}$$

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg SO(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^{r}\prod_{k=1}^{r}(2k-1)!^{2}\cdot 1} \underbrace{\int_{C_{V}} \left(\prod_{1\leq i< j\leq r} (x_{i}^{2}-x_{j}^{2})^{2}\prod_{i=1}^{r} (2x_{i})^{2}\right) dv}_{I_{odd}}$$

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg SO(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^r \prod_{k=1}^r (2k-1)!^2 \cdot 1} \underbrace{\int_{C_V} \left( \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 \right) dv}_{I_{odd}}$$

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg SO(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^r \prod_{k=1}^r (2k-1)!^2 \cdot 1} \underbrace{\int_{C_V} \left(\prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2\right) dv}_{I_{odd}}$$

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg SO(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^{r}\prod_{k=1}^{r}(2k-1)!^{2}\cdot 1} \underbrace{\int_{C_{V}} \left(\prod_{1\leq i< j\leq r} (x_{i}^{2}-x_{j}^{2})^{2}\prod_{i=1}^{r} (2x_{i})^{2}\right) dv}_{I_{odd}}$$

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg SO(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^{r}\prod_{k=1}^{r}(2k-1)!^{2}\cdot 1} \underbrace{\int_{C_{V}} \left(\prod_{1\leq i< j\leq r} (x_{i}^{2}-x_{j}^{2})^{2}\prod_{i=1}^{r} (2x_{i})^{2}\right) dv}_{I_{odd}}$$

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{\mathcal{C}_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg SO(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^r \prod_{k=1}^r (2k-1)!^2 \cdot 1} \underbrace{\int_{\mathcal{C}_{V}} \left( \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 \right) dv}_{I_{odd}}$$

#### Theorem (Kazarnovskij)

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If  $\rho : G \to GL(V)$  is a representation with finite kernel then,

$$\deg \overline{\rho(G)} = \frac{m!}{|W(G)|(e_1!e_2!\cdots e_r!)^2|\ker(\rho)|} \int_{C_V} (\check{\alpha}_1\check{\alpha}_2\cdots\check{\alpha}_l)^2 dv.$$

$$\deg SO(2r+1) = \frac{\binom{2r+1}{2}!}{r!2^r \prod_{k=1}^r (2k-1)!^2 \cdot 1} \underbrace{\int_{C_V} \left(\prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2\right) dv}_{I_{odd}}$$

## **PROOF OF MAIN THEOREM**

We will only prove this result for SO(2r + 1).

|                   | SO(2 <i>r</i> )               | SO(2r+1)                               |
|-------------------|-------------------------------|----------------------------------------|
| Dimension         | $\binom{2r}{2}$               | $\binom{2r+1}{2}$                      |
| Rank              | r                             | r                                      |
| Positive Roots    | $\{e_i \pm e_j\}_{i < j}$     | $\{e_i \pm e_j\}_{i < j} \cup \{e_i\}$ |
| Weights           | $\{\pm e_i\}$                 | $\{\pm e_i\}$                          |
| W(G)              | $r!2^{r-1}$                   | $r!2^r$                                |
| Coxeter Exponents | $1, 3, \ldots, 2r - 3, r - 1$ | $1, 3, 5, \ldots, 2r - 1$              |

$$I_{odd}(r) = \int_{C_v} \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 dv$$

$$\begin{split} I_{odd}(r) &= \int_{C_{v}} \prod_{1 \leq i < j \leq r} (x_{i}^{2} - x_{j}^{2})^{2} \prod_{i=1}^{r} (2x_{i})^{2} dv \\ &= 2^{r} \int_{\Delta_{r}} \prod_{1 \leq i < j \leq r} (x_{i}^{2} - x_{j}^{2})^{2} \prod_{i=1}^{r} (2x_{i})^{2} dv \end{split}$$

Since the integrands are even in all variables, we can simplify the region over which we integrate. Specifically, the integrals over  $C_V$  are  $2^r$  times the same integrals over  $\Delta_r$ , the standard *r*-simplex.

The next step is to turn the integrand into monomials. We use the well-known expression for the determinant of the Vandermonde matrix  $(m_{i,j} = x_i^j)$ :

$$\prod_{1 \le i < j \le r} (y_j - y_i) = \sum_{\sigma \in S_r} \operatorname{sgn}(\sigma) \prod_{i=1}^r y_i^{\sigma(i)-1}$$

The next step is to turn the integrand into monomials. We use the well-known expression for the determinant of the Vandermonde matrix  $(m_{i,j} = x_i^j)$ :

$$\prod_{1 \le i < j \le r} (y_j - y_i) = \sum_{\sigma \in S_r} \operatorname{sgn}(\sigma) \prod_{i=1}^r y_i^{\sigma(i)-1}$$

Substituting  $y_i = x_i^2$  and squaring the entire expression yields

$$\prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 = \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma\tau) \prod_{i=1}^r x_i^{2\sigma(i) + 2\tau(i) - 4}$$

$$I_{odd}(r) = \int_{C_v} \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 dv$$
$$= 2^r \int_{\Delta_r} \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 dv$$

$$\begin{split} I_{odd}(r) &= \int_{C_v} \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 dv \\ &= 2^r \int_{\Delta_r} \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 dv \\ &= 2^r \int_{\Delta_r} \left( \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma\tau) \prod_{i=1}^r x_i^{2\sigma(i) + 2\tau(i) - 4} \right) \prod_{i=1}^r (2x_i)^2 dv \end{split}$$

Expanding the binomials in the way described on the previous slide.

$$\begin{split} I_{odd}(r) &= \int_{C_v} \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 dv \\ &= 2^r \int_{\Delta_r} \prod_{1 \le i < j \le r} (x_i^2 - x_j^2)^2 \prod_{i=1}^r (2x_i)^2 dv \\ &= 2^r \int_{\Delta_r} \left( \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma \tau) \prod_{i=1}^r x_i^{2\sigma(i) + 2\tau(i) - 4} \right) \prod_{i=1}^r (2x_i)^2 dv \\ &= 2^{3r} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma \tau) \int_{\Gamma_r} \left( \prod_{i=1}^r x_i^{2\sigma(i) + 2\tau(i) - 2} \right) dv. \end{split}$$

Now, we apply the following proposition for integrating monomials over a simplex.

**Proposition (Found in <u>Algebraic Number Theory</u>)** Let  $\Delta_r \subset \mathbb{R}^r$  be the standard *r*-simplex. If  $\mathbf{a} = (a_1, \dots, a_r) \in \mathbb{Z}_{>0}^r$  then

$$\int_{\Delta_r} x^{\mathbf{a}} d\mathbf{x} = \frac{1}{(\sum a_i + r)!} \prod_{i=1}^r a_i!$$

$$I_{odd}(r) = 2^{3r} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma\tau) \int_{r} \left( \prod_{i=1}^r x_i^{2\sigma(i)+2\tau(i)-2} \right) dv$$

$$\begin{split} I_{odd}(r) &= 2^{3r} \sum_{\sigma,\tau \in S_r} \operatorname{sgn}(\sigma\tau) \int_{r} \left( \prod_{i=1}^r x_i^{2\sigma(i)+2\tau(i)-2} \right) dv \\ &= \frac{2^{3r}}{\left(4\binom{r}{2}+3r\right)!} \sum_{\sigma,\tau \in S_r} \operatorname{sgn}(\sigma\tau) \prod_{i=1}^r (2\sigma(i)+2\tau(i)-2)! \end{split}$$

Using the previous slide and the fact that the integrand is homogeneous of degree  $4\binom{r}{2} + 2r$ .

$$\begin{split} I_{odd}(r) &= 2^{3r} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma \tau) \int_{r} \left( \prod_{i=1}^r x_i^{2\sigma(i) + 2\tau(i) - 2} \right) dv \\ &= \frac{2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma \tau) \prod_{i=1}^r (2\sigma(i) + 2\tau(i) - 2)! \\ &= \frac{2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma \tau) \prod_{i=1}^r (2i + 2\tau\sigma^{-1}(i) - 2)! \end{split}$$

Replacing *i* with  $\sigma^{-1}(i)$ .

$$I_{odd}(r) = \frac{2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma\tau) \prod_{i=1}^r (2i + 2\tau\sigma^{-1}(i) - 2)!$$

$$I_{odd}(r) = \frac{2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma\tau) \prod_{i=1}^r (2i + 2\tau\sigma^{-1}(i) - 2)!$$
$$= \frac{r! 2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\rho \in S_n} \operatorname{sgn}(\rho) \prod_{i=1}^r (2i + 2\rho(i) - 2)!$$

Let  $\rho = \tau \sigma^{-1}$ . Over all pairs  $\sigma, \tau \in S_r$ , permutation  $\rho$  takes the value of each permutation in  $S_r$  exactly r! times, and  $\operatorname{sgn}(\sigma \tau) = \operatorname{sgn}(\rho)$ .

$$I_{odd}(r) = \frac{2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma\tau) \prod_{i=1}^r (2i + 2\tau\sigma^{-1}(i) - 2)!$$
  
=  $\frac{r! 2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\rho \in S_n} \operatorname{sgn}(\rho) \prod_{i=1}^r (2i + 2\rho(i) - 2)!$   
=  $\frac{r! 2^{3r}}{(4\binom{r}{2} + 3r)!} \det ((2i + 2j - 2)!)_{1 \le i,j \le n}.$ 

We recognize this as a determinant.

$$I_{odd}(r) = \frac{2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\sigma, \tau \in S_r} \operatorname{sgn}(\sigma\tau) \prod_{i=1}^r (2i + 2\tau\sigma^{-1}(i) - 2)!$$
  
=  $\frac{r! 2^{3r}}{(4\binom{r}{2} + 3r)!} \sum_{\rho \in S_n} \operatorname{sgn}(\rho) \prod_{i=1}^r (2i + 2\rho(i) - 2)!$   
=  $\frac{r! 2^{3r}}{(4\binom{r}{2} + 3r)!} \det ((2i + 2j - 2)!)_{1 \le i,j \le n}.$ 

The main theorem now follows directly from some simplification, by pushing factorial factors from the denominator in to the rows and columns of the matrix to make binomial coefficients.

# **Non-Intersecting Lattice Paths**

The formula given in the main theorem can be interpreted as a count of non-intersecting lattice paths via the Gessel-Viennot Lemma [GV85].

### **Non-Intersecting Lattice Paths**

The formula given in the main theorem can be interpreted as a count of non-intersecting lattice paths via the Gessel-Viennot Lemma [GV85].

#### Lemma (Gessel-Viennot (Weak Version))

Let  $A = \{a_1, \ldots, a_r\}, B = \{b_1, \ldots, b_r\} \subseteq \mathbb{Z}^2$ . Let  $M_{i,j}$  be the number of North-East lattice paths from  $a_i$  to  $b_j$ . If the only way that a system of North-East lattice paths from  $A \to B$  do not cross each other is by sending  $a_i \mapsto b_i$  then the determinant of M is given by the number of such non-intersecting lattice paths.

We will count all north-east lattice paths  $a_1 \rightarrow b_1$ .



We will count all north-east lattice paths  $a_1 \rightarrow b_1$ .



Since the total number of steps taken is 6 and 3 of these must be eastward, we have that the total number of paths is  $\binom{6}{3}$ .

We will count all north-east lattice paths  $a_1 \rightarrow b_1$ .



Since the total number of steps taken is 6 and 3 of these must be eastward, we have that the total number of paths is  $\binom{6}{3}$ . If we add two more points at (-1, 0) and (0, 1), the matrix *M* in this case is:

$$\begin{bmatrix} \begin{pmatrix} 6\\ 3 \end{pmatrix} & \begin{pmatrix} 4\\ 1 \end{pmatrix} \\ \begin{pmatrix} 4\\ 3 \end{pmatrix} & \begin{pmatrix} 2\\ 1 \end{pmatrix} \end{bmatrix}$$

Its determinant is 24, which is  $deg(SO(5))/2^4$ .

Its determinant is 24, which is  $deg(SO(5))/2^4$ . Here are 14 of the 24 paths. The missing 10 are obtained by taking the first 10 in the picture, and "flipping" the lower right path.



# deg(SO(n)) in Terms of Lattice Paths

The determinant appearing in the degree of SO(n) has a natural interpretation via Gessel-Viennot because binomial coefficients count lattice paths.

# deg(SO(n)) in Terms of Lattice Paths

The determinant appearing in the degree of SO(n) has a natural interpretation via Gessel-Viennot because binomial coefficients count lattice paths.

**Theorem (B., Bruce, Brysiewicz, Krone, Robeva)** deg SO(n) =  $2^{n-1}$ (#{Non-Intersecting Lattice Paths from A to B}),

where the positions of A and B are given by  $a_i = (2i - n, 0), b_j = (0, n - 2j)$  where  $1 \le i, j \le \lfloor \frac{n}{2} \rfloor$ .

$$\deg \operatorname{SO}(n) = 2^{n-1} \det \left( \binom{2n-2i-2j}{n-2i}_{1 \le i,j \le \lfloor \frac{n}{2} \rfloor} \right).$$

# REFERENCES

- Daniel J Bates, Jonathan D Hauenstein, Andrew J Sommese, and Charles W Wampler, <u>Bertini: Software for numerical algebraic geometry (2006)</u>, Software available at http://bertini. nd. edu.
- Harm Derksen and Gregor Kemper, <u>Computational invariant theory</u>, Encyclopaedia of Mathematical Sciences, vol. 130, Springer-Verlag, Berlin Heidelberg, 2002.
- Daniel R Grayson and Michael E Stillman, <u>Macaulay 2, a software system for</u> research in algebraic geometry, 2002.

Ira Gessel and Gérard Viennot, <u>Binomial determinants</u>, <u>paths</u>, <u>and hook</u> <u>length formulae</u>, Advances in mathematics **58** (1985), no. 3, 300–321.

B Ya Kazarnovskii, <u>Newton polyhedra and the bezout formula for</u> <u>matrix-valued functions of finite-dimensional representations</u>, Functional Analysis and its applications **21** (1987), no. 4, 319–321.



James S. Milne, <u>Algebraic number theory (v3.06)</u>, 2014, Available at www.jmilne.org/math/, p. 164.