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Introduction

This research was done with collaborators David Bruce, Taylor
Brysiewicz, Robert Krone, and Elina Robeva.

Definition
The group SO(n) is defined as

SO(n) := SO(n,C) =
{

M ∈ Matn,n(C) | det M = 1, MtM = Id
}
.

Since these conditions are polynomials in the entries of the matrix
M, we can view SO(n) as a complex variety.



Introduction

This research was done with collaborators David Bruce, Taylor
Brysiewicz, Robert Krone, and Elina Robeva.

Definition
The group SO(n) is defined as

SO(n) := SO(n,C) =
{

M ∈ Matn,n(C) | det M = 1, MtM = Id
}
.

Since these conditions are polynomials in the entries of the matrix
M, we can view SO(n) as a complex variety.



Introduction

This research was done with collaborators David Bruce, Taylor
Brysiewicz, Robert Krone, and Elina Robeva.

Definition
The group SO(n) is defined as

SO(n) := SO(n,C) =
{

M ∈ Matn,n(C) | det M = 1, MtM = Id
}
.

Since these conditions are polynomials in the entries of the matrix
M, we can view SO(n) as a complex variety.



Degree

Our main result was to find the degree of this complex variety.

Definition
The degree of a complex variety X is the generic number of
intersection points of X with a linear space of complementary
dimension.

Why do we want to know this degree?

1. The degree is a fundamental piece of data about a variety that
one would want to know about it, just like its dimension.

2. It provides the degree of low-rank semidefinite programming
and is used to find the number of critical points for certain
optimization problems.
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Main Result

Theorem (B., Bruce, Brysiewicz, Krone, Robeva)
The degree of SO(n) is given by:

deg SO(n) = 2n−1 det

((
2n− 2i − 2j

n− 2i

)
1≤i,j≤b n

2 c

)
.



Some Values

n Symbolic Numerical Formula
2 2 2 2
3 8 8 8
4 40 40 40
5 384 384 384
6 - 4768 4768
7 - 111616 111616
8 - - 3433600
9 - - 196968448

Gröbner bases methods were not as e�ective as numerical
techniques using monodromy.
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Kazarnovskij

Theorem (Kazarnovskij)
Let G be a connected reductive group of dimension m and rank r over an
algebraically closed field. If ρ : G → GL(V ) is a representation with finite
kernel then,

deg ρ (G) =
m!

|W (G)|(e1!e2! · · · er !)2| ker(ρ)|

∫
CV

(α̌1α̌2 · · · α̌l)
2dv.

where W (G) is the Weyl group, ei are Coxeter exponents, CV is the convex
hull of the weights, and α̌i are the coroots.

deg SO(2r+1) =

(
2r + 1

2

)
!

r!2r
r∏

k=1

(2k − 1)!2 · 1

∫
CV

 ∏
1≤i<j≤r

(x2
i − x2

j )
2

r∏
i=1

(2xi)
2

 dv

︸ ︷︷ ︸
Iodd
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Proof of Main Theorem

We will only prove this result for SO(2r + 1).

SO(2r) SO(2r + 1)

Dimension
(2r

2

) (2r+1
2

)
Rank r r
Positive Roots {ei ± ej}i<j {ei ± ej}i<j ∪ {ei}
Weights {±ei} {±ei}
|W (G)| r!2r−1 r!2r

Coxeter Exponents 1, 3, . . . , 2r − 3, r − 1 1, 3, 5, . . . , 2r − 1



Proof

Iodd(r) =

∫
Cv

∏
1≤i<j≤r

(x2
i − x2

j )2
r∏

i=1

(2xi)
2dv

= 2r
∫

∆r

∏
1≤i<j≤r

(x2
i − x2

j )2
r∏

i=1

(2xi)
2dv

Since the integrands are even in all variables, we can simplfy the
region over which we integrate. Specifically, the integrals over CV

are 2r times the same integrals over ∆r , the standard r-simplex.



Proof

Iodd(r) =

∫
Cv

∏
1≤i<j≤r

(x2
i − x2

j )2
r∏

i=1

(2xi)
2dv

= 2r
∫

∆r

∏
1≤i<j≤r

(x2
i − x2

j )2
r∏

i=1

(2xi)
2dv

Since the integrands are even in all variables, we can simplfy the
region over which we integrate. Specifically, the integrals over CV

are 2r times the same integrals over ∆r , the standard r-simplex.



Proof

The next step is to turn the integrand into monomials. We use the
well-known expression for the determinant of the Vandermonde
matrix (mi,j = x j

i ):∏
1≤i<j≤r

(yj − yi) =
∑
σ∈Sr

sgn(σ)
r∏

i=1
yσ(i)−1

i .

Substituting yi = x2
i and squaring the entire expression yields

∏
1≤i<j≤r

(x2
i − x2

j )2 =
∑
σ,τ∈Sr

sgn(στ)
r∏

i=1
x2σ(i)+2τ(i)−4

i .
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Expanding the binomials in the way described on the previous slide.
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Proof

Now, we apply the following proposition for integrating monomials
over a simplex.

Proposition (Found in Algebraic Number Theory)
Let ∆r ⊂ Rr be the standard r-simplex. If a = (a1, . . . , ar) ∈ Zr

>0 then∫
∆r

xadx =
1

(
∑

ai + r)!

r∏
i=1

ai!.



Proof

Iodd(r) = 23r
∑
σ,τ∈Sr

sgn(στ)

∫
´r

( r∏
i=1

x2σ(i)+2τ(i)−2
i

)
dv

=
23r(

4
(r

2

)
+ 3r

)
!

∑
σ,τ∈Sr

sgn(στ)
r∏

i=1
(2σ(i) + 2τ(i)− 2)!

=
23r(

4
(r

2

)
+ 3r

)
!

∑
σ,τ∈Sr

sgn(στ)
r∏

i=1
(2i + 2τσ−1(i)− 2)!

Using the previous slide and the fact that the integrand is
homogeneous of degree 4

(r
2

)
+ 2r .

Replacing i with σ−1(i).
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Let ρ = τσ−1. Over all pairs σ, τ ∈ Sr , permutation ρ takes the value
of each permutation in Sr exactly r! times, and sgn(στ) = sgn(ρ).
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The main theorem now follows directly from some simplification, by
pushing factorial factors from the denominator in to the rows and
columns of the matrix to make binomial coe�icients.



Non-Intersecting Lattice Paths

The formula given in the main theorem can be interpreted as a
count of non-intersecting la�ice paths via the Gessel-Viennot
Lemma [GV85].

Lemma (Gessel-Viennot (Weak Version))
Let A = {a1, . . . , ar},B = {b1, . . . , br} ⊆ Z2. Let Mi,j be the number
of North-East la�ice paths from ai to bj . If the only way that a system
of North-East la�ice paths from A→ B do not cross each other is by
sending ai 7→ bi then the determinant of M is given by the number of
such non-intersecting la�ice paths.
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Example: SO(5)

We will count all north-east la�ice paths a1 → b1.

Since the total number of steps taken is 6 and 3 of these must be
eastward, we have that the total number of paths is

(6
3

)
.

If we add two more points at (−1, 0) and (0, 1), the matrix M in this
case is: [(6

3

) (4
1

)(4
3

) (2
1

)] .
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Example: SO(5)

Its determinant is 24, which is deg(SO(5))/24.

Here are 14 of the 24
paths. The missing 10 are obtained by taking the first 10 in the
picture, and “flipping” the lower right path.
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deg(SO(n)) in Terms of Lattice Paths

The determinant appearing in the degree of SO(n) has a natural
interpretation via Gessel-Viennot because binomial coe�icients
count la�ice paths.

Theorem (B., Bruce, Brysiewicz, Krone, Robeva)
deg SO(n) = 2n−1(#{Non-Intersecting La�ice Paths from A to B}),

where the positions of A and B are given by
ai = (2i − n, 0), bj = (0, n− 2j) where 1 ≤ i, j ≤ bn

2c.

deg SO(n) = 2n−1 det

((
2n− 2i − 2j

n− 2i

)
1≤i,j≤b n

2 c

)
.
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Theorem (B., Bruce, Brysiewicz, Krone, Robeva)
deg SO(n) = 2n−1(#{Non-Intersecting La�ice Paths from A to B}),

where the positions of A and B are given by
ai = (2i − n, 0), bj = (0, n− 2j) where 1 ≤ i, j ≤ bn

2c.

deg SO(n) = 2n−1 det

((
2n− 2i − 2j

n− 2i

)
1≤i,j≤b n

2 c

)
.
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