# the Degree of SO(n) 

Madeline Brandt

University of California, Berkeley
brandtm@berkeley.edu

December 8, 2016

## Introduction

This research was done with collaborators David Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva.

## INTRODUCTION

This research was done with collaborators David Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva.

## Definition

The group $\operatorname{SO}(n)$ is defined as
$\operatorname{SO}(n):=\operatorname{SO}(n, \mathbb{C})=\left\{\mathcal{M} \in \operatorname{Mat}_{n, n}(\mathbb{C}) \mid \operatorname{det} \mathcal{M}=1, \quad \mathcal{M}^{t} \mathcal{M}=\mathrm{Id}\right\}$.

## INTRODUCTION

This research was done with collaborators David Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva.

## Definition

The group $\operatorname{SO}(n)$ is defined as
$\operatorname{SO}(n):=\operatorname{SO}(n, \mathbb{C})=\left\{\mathcal{M} \in \operatorname{Mat}_{n, n}(\mathbb{C}) \mid \operatorname{det} \mathcal{M}=1, \quad \mathcal{M}^{t} \mathcal{M}=\mathrm{Id}\right\}$.

Since these conditions are polynomials in the entries of the matrix $M$, we can view $\operatorname{SO}(n)$ as a complex variety.

## Degree

Our main result was to find the degree of this complex variety.

## Degree

Our main result was to find the degree of this complex variety.

## Definition

The degree of a complex variety $X$ is the generic number of intersection points of $X$ with a linear space of complementary dimension.

## Degree

Our main result was to find the degree of this complex variety.

## Definition

The degree of a complex variety $X$ is the generic number of intersection points of $X$ with a linear space of complementary dimension.

Why do we want to know this degree?

1. The degree is a fundamental piece of data about a variety that one would want to know about it, just like its dimension.
2. It provides the degree of low-rank semidefinite programming and is used to find the number of critical points for certain optimization problems.

## Main Result

Theorem (B., Bruce, Brysiewicz, Krone, Robeva)
The degree of $\mathrm{SO}(n)$ is given by:

$$
\operatorname{deg} \mathrm{SO}(n)=2^{n-1} \operatorname{det}\left(\binom{2 n-2 i-2 j}{n-2 i}_{1 \leq i, j \leq\left\lfloor\frac{n}{2}\right\rfloor}\right)
$$

## Some Values

| $\mathbf{n}$ | Symbolic | Numerical | Formula |
| :---: | :---: | :---: | :---: |
| 2 | 2 | 2 | 2 |
| 3 | 8 | 8 | 8 |
| 4 | 40 | 40 | 40 |
| 5 | 384 | 384 | 384 |
| 6 | - | 4768 | 4768 |
| 7 | - | 111616 | 111616 |
| 8 | - | - | 3433600 |
| 9 | - | - | 196968448 |

## Some Values

| $\mathbf{n}$ | Symbolic | Numerical | Formula |
| :---: | :---: | :---: | :---: |
| 2 | 2 | 2 | 2 |
| 3 | 8 | 8 | 8 |
| 4 | 40 | 40 | 40 |
| 5 | 384 | 384 | 384 |
| 6 | - | 4768 | 4768 |
| 7 | - | 111616 | 111616 |
| 8 | - | - | 3433600 |
| 9 | - | - | 196968448 |

Gröbner bases methods were not as effective as numerical techniques using monodromy.

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{v}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \mathrm{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1 \underbrace{\int_{C_{v}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{I_{\text {odd }}}}
$$

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{V}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \mathrm{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1 \underbrace{\int_{C_{v}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{I_{\text {odd }}}}
$$

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{v}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \mathrm{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1 \underbrace{\int_{C_{v}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{I_{\text {odd }}}}
$$

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{v}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \mathrm{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1} \underbrace{\int_{C_{v}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{I_{\text {odd }}}
$$

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{v}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \operatorname{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1 \underbrace{\int_{C_{V}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{l_{\text {odd }}}}
$$

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{v}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \mathrm{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1 \underbrace{\int_{C_{v}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{I_{\text {odd }}}}
$$

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{V}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \mathrm{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1 \underbrace{\int_{C_{v}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{I_{\text {odd }}}}
$$

## KazarnovskiJ

## Theorem (Kazarnovskij)

Let $G$ be a connected reductive group of dimension $m$ and rank $r$ over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then,

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{v}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v .
$$

where $W(G)$ is the Weyl group, $e_{i}$ are Coxeter exponents, $C_{V}$ is the convex hull of the weights, and $\breve{\alpha}_{i}$ are the coroots.

$$
\operatorname{deg} \operatorname{SO}(2 r+1)=\frac{\binom{2 r+1}{2}!}{r!2^{r} \prod_{k=1}^{r}(2 k-1)!^{2} \cdot 1 \underbrace{\int_{C_{V}}\left(\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2}\right) d v}_{l_{\text {odd }}}}
$$

## Proof of Main Theorem

We will only prove this result for $\mathrm{SO}(2 r+1)$.

|  | $\mathrm{SO}(2 r)$ | $\mathrm{SO}(2 r+1)$ |
| :--- | :---: | :---: |
| Dimension | $\binom{2 r}{2}$ | $\binom{2 r+1}{2}$ |
| Rank | $r$ | $r$ |
| Positive Roots | $\left\{e_{i} \pm e_{j}\right\}_{i<j}$ | $\left\{e_{i} \pm e_{j}\right\}_{i<j} \cup\left\{e_{i}\right\}$ |
| Weights | $\left\{ \pm e_{i}\right\}$ | $\left\{ \pm e_{i}\right\}$ |
| $\|W(G)\|$ | $r!2^{r-1}$ | $r 2^{r}$ |
| Coxeter Exponents | $1,3, \ldots, 2 r-3, r-1$ | $1,3,5, \ldots, 2 r-1$ |

## Proof

$$
I_{o d d}(r)=\int_{C_{v}} \prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v
$$

## Proof

$$
\begin{aligned}
I_{\text {odd }}(r) & =\int_{C_{v}} \prod_{1 \leq i \leq i \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v \\
& =2^{r} \int_{\Delta_{r}} \prod_{1 \leq i<i \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v
\end{aligned}
$$

Since the integrands are even in all variables, we can simplfy the region over which we integrate. Specifically, the integrals over $C_{V}$ are $2^{r}$ times the same integrals over $\Delta_{r}$, the standard $r$-simplex.

## Proof

The next step is to turn the integrand into monomials. We use the well-known expression for the determinant of the Vandermonde matrix $\left(m_{i, j}=x_{i}^{j}\right)$ :

$$
\prod_{1 \leq i<j \leq r}\left(y_{j}-y_{i}\right)=\sum_{\sigma \in S_{r}} \operatorname{sgn}(\sigma) \prod_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{y}_{\mathrm{i}}^{\sigma(\mathrm{i})-1}
$$

## Proof

The next step is to turn the integrand into monomials. We use the well-known expression for the determinant of the Vandermonde matrix $\left(m_{i, j}=x_{i}^{j}\right)$ :

$$
\prod_{1 \leq i<j \leq r}\left(y_{j}-y_{i}\right)=\sum_{\sigma \in S_{r}} \operatorname{sgn}(\sigma) \prod_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{y}_{\mathrm{i}}^{\sigma(\mathrm{i})-1}
$$

Substituting $y_{i}=x_{i}^{2}$ and squaring the entire expression yields

$$
\prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2}=\sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{x}_{\mathrm{i}}^{2 \sigma(\mathrm{i})+2 \tau(\mathrm{i})-4}
$$

## Proof

$$
\begin{aligned}
I_{\text {odd }}(r) & =\int_{C_{v}} \prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v \\
& =2^{r} \int_{\Delta_{r}} \prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v
\end{aligned}
$$

## Proof

$$
\begin{aligned}
I_{o d d}(r) & =\int_{C_{v}} \prod_{1 \leq i<j \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v \\
& =2^{r} \int_{\Delta_{r}} \prod_{1 \leq i<i \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{r} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v \\
& =2^{r} \int_{\Delta_{r}}\left(\sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{i=1}^{r} x_{i}^{2 \sigma(i)+2 \tau(i)-4}\right) \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v
\end{aligned}
$$

Expanding the binomials in the way described on the previous slide.

## Proof

$$
\begin{aligned}
I_{o d d}(r) & =\int_{C_{r}} \prod_{1 \leq i<i \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v \\
& =2^{r} \int_{\Delta_{r}} \prod_{1 \leq i<i \leq r}\left(x_{i}^{2}-x_{j}^{2}\right)^{2} \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v \\
& =2^{r} \int_{\Delta_{r}}\left(\sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{i=1}^{r} x_{i}^{2 \sigma(i)+2 \tau(i)-4}\right) \prod_{i=1}^{r}\left(2 x_{i}\right)^{2} d v \\
& =2^{3 r} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \int_{r}\left(\prod_{i=1}^{r} x_{i}^{2 \sigma(i)+2 \tau(i)-2}\right) \mathrm{dv} .
\end{aligned}
$$

## Proof

Now, we apply the following proposition for integrating monomials over a simplex.

## Proposition (Found in Algebraic Number Theory)

Let $\Delta_{r} \subset \mathbb{R}^{r}$ be the standard $r$-simplex. If $\mathbf{a}=\left(a_{1}, \ldots, a_{r}\right) \in \mathbb{Z}_{>0}^{r}$ then

$$
\int_{\Delta_{r}} x^{\mathbf{a}} d \mathbf{x}=\frac{1}{\left(\sum a_{i}+r\right)!} \prod_{i=1}^{r} a_{i}!
$$

## Proof

$$
I_{\text {odd }}(r)=2^{3 r} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \int_{r_{\mathrm{r}}}\left(\prod_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{x}_{\mathrm{i}}^{2 \sigma(\mathrm{i})+2 \tau(\mathrm{i})-2}\right) \mathrm{dv}
$$

## Proof

$$
\begin{aligned}
I_{o d d}(r) & =2^{3 r} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \int_{r_{r}}\left(\prod_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{x}_{\mathrm{i}}^{2 \sigma(\mathrm{i})+2 \tau(\mathrm{i})-2}\right) \mathrm{dv} \\
& =\frac{2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}}(2 \sigma(\mathrm{i})+2 \tau(\mathrm{i})-2)!
\end{aligned}
$$

Using the previous slide and the fact that the integrand is homogeneous of degree $4\binom{r}{2}+2 r$.

## Proof

$$
\begin{aligned}
I_{\text {odd }}(r) & =2^{3 r} \sum_{\sigma, \tau \epsilon S_{r}} \operatorname{sgn}(\sigma \tau) \int_{r}\left(\prod_{i=1}^{\mathrm{r}} \mathrm{x}_{\mathrm{i}}^{2 \sigma(\mathrm{i})+2 \tau(\mathrm{i})-2}\right) \mathrm{dv} \\
& =\frac{2^{2 r}}{\left(4\left(\frac{r}{2 r}\right)+3 r\right)!} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}}(2 \sigma(\mathrm{i})+2 \tau(\mathrm{i})-2)! \\
& =\frac{2^{3 r}}{\left(4\left(\frac{r}{2}\right)+3 r\right)!} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}}\left(2 \mathrm{i}+2 \tau \sigma^{-1}(\mathrm{i})-2\right)!
\end{aligned}
$$

Replacing $i$ with $\sigma^{-1}(i)$.

## Proof

$$
I_{\text {odd }}(r)=\frac{2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}}\left(2 \mathrm{i}+2 \tau \sigma^{-1}(\mathrm{i})-2\right)!
$$

## Proof

$$
\begin{aligned}
I_{\text {odd }}(r) & =\frac{2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}}\left(2 \mathrm{i}+2 \tau \sigma^{-1}(\mathrm{i})-2\right)! \\
& =\frac{r!2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\rho \in S_{n}} \operatorname{sgn}(\rho) \prod_{\mathrm{i}=1}^{\mathrm{r}}(2 \mathrm{i}+2 \rho(\mathrm{i})-2)!
\end{aligned}
$$

Let $\rho=\tau \sigma^{-1}$. Over all pairs $\sigma, \tau \in S_{r}$, permutation $\rho$ takes the value of each permutation in $S_{r}$ exactly $r!$ times, and $\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\rho)$.

## Proof

$$
\begin{aligned}
I_{o d d}(r) & =\frac{2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}}\left(2 \mathrm{i}+2 \tau \sigma^{-1}(\mathrm{i})-2\right)! \\
& =\frac{r!2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\rho \in S_{n}} \operatorname{sgn}(\rho) \prod_{\mathrm{i}=1}^{\mathrm{r}}(2 \mathrm{i}+2 \rho(\mathrm{i})-2)! \\
& =\frac{r!2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \operatorname{det}((2 i+2 j-2)!)_{1 \leq i, j \leq n} .
\end{aligned}
$$

We recognize this as a determinant.

## Proof

$$
\begin{aligned}
I_{o d d}(r) & =\frac{2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\sigma, \tau \in S_{r}} \operatorname{sgn}(\sigma \tau) \prod_{\mathrm{i}=1}^{\mathrm{r}}\left(2 \mathrm{i}+2 \tau \sigma^{-1}(\mathrm{i})-2\right)! \\
& =\frac{r!2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \sum_{\rho \in S_{n}} \operatorname{sgn}(\rho) \prod_{\mathrm{i}=1}^{\mathrm{r}}(2 \mathrm{i}+2 \rho(\mathrm{i})-2)! \\
& =\frac{r!2^{3 r}}{\left(4\binom{r}{2}+3 r\right)!} \operatorname{det}((2 i+2 j-2)!)_{1 \leq i, j \leq n} .
\end{aligned}
$$

The main theorem now follows directly from some simplification, by pushing factorial factors from the denominator in to the rows and columns of the matrix to make binomial coefficients.

## Non-Intersecting Lattice Paths

The formula given in the main theorem can be interpreted as a count of non-intersecting lattice paths via the Gessel-Viennot Lemma [GV85].

## Non-Intersecting Lattice Paths

The formula given in the main theorem can be interpreted as a count of non-intersecting lattice paths via the Gessel-Viennot Lemma [GV85].

## Lemma (Gessel-Viennot (Weak Version))

Let $A=\left\{a_{1}, \ldots, a_{r}\right\}, B=\left\{b_{1}, \ldots, b_{r}\right\} \subseteq \mathbb{Z}^{2}$. Let $\mathcal{M}_{i, j}$ be the number of North-East lattice paths from $a_{i}$ to $b_{j}$. If the only way that a system of North-East lattice paths from $A \rightarrow B$ do not cross each other is by sending $a_{i} \mapsto b_{i}$ then the determinant of $\mathcal{M}$ is given by the number of such non-intersecting lattice paths.

## Example: SO(5)

We will count all north-east lattice paths $a_{1} \rightarrow b_{1}$.


## Example: SO(5)

We will count all north-east lattice paths $a_{1} \rightarrow b_{1}$.


Since the total number of steps taken is 6 and 3 of these must be eastward, we have that the total number of paths is $\binom{6}{3}$.

## Example: SO(5)

We will count all north-east lattice paths $a_{1} \rightarrow b_{1}$.


Since the total number of steps taken is 6 and 3 of these must be eastward, we have that the total number of paths is $\binom{6}{3}$.
If we add two more points at $(-1,0)$ and $(0,1)$, the matrix $M$ in this case is:

$$
\left.\left[\begin{array}{ll}
6 \\
3
\end{array}\right) \quad\binom{4}{1}\right]
$$

## Example: SO(5)

Its determinant is 24 , which is $\operatorname{deg}(\mathrm{SO}(5)) / 2^{4}$.

## Example: SO(5)

Its determinant is 24 , which is $\operatorname{deg}(\mathrm{SO}(5)) / 2^{4}$. Here are 14 of the 24 paths. The missing 10 are obtained by taking the first 10 in the picture, and "flipping" the lower right path.


## $\operatorname{deg}(\mathrm{SO}(n))$ in Terms of Lattice Paths

The determinant appearing in the degree of $\mathrm{SO}(n)$ has a natural interpretation via Gessel-Viennot because binomial coefficients count lattice paths.

## $\operatorname{deg}(\mathrm{SO}(n))$ in Terms of Lattice Paths

The determinant appearing in the degree of $\mathrm{SO}(n)$ has a natural interpretation via Gessel-Viennot because binomial coefficients count lattice paths.

Theorem (B., Bruce, Brysiewicz, Krone, Robeva) $\operatorname{deg} \mathrm{SO}(n)=2^{n-1}(\#\{$ Non-Intersecting Lattice Paths from $A$ to $B\})$,
where the positions of $A$ and $B$ are given by $a_{i}=(2 i-n, 0), b_{j}=(0, n-2 j)$ where $1 \leq i, j \leq\left\lfloor\frac{n}{2}\right\rfloor$.

$$
\operatorname{deg} \mathrm{SO}(n)=2^{n-1} \operatorname{det}\left(\binom{2 n-2 i-2 j}{n-2 i}_{1 \leq i, j \leq\left\lfloor\frac{n}{2}\right\rfloor}\right)
$$

## References

Daniel J Bates, Jonathan D Hauenstein, Andrew J Sommese, and Charles W Wampler, Bertini: Software for numerical algebraic geometry (2006), Software available at http://bertini. nd. edu.

Harm Derksen and Gregor Kemper, Computational invariant theory, Encyclopaedia of Mathematical Sciences, vol. 130, Springer-Verlag, Berlin Heidelberg, 2002.
(R- Daniel R Grayson and Michael E Stillman, Macaulay 2, a software system for research in algebraic geometry, 2002.

Ira Gessel and Gérard Viennot, Binomial determinants, paths, and hook length formulae, Advances in mathematics 58 (1985), no. 3, 300-321.

B Ya Kazarnovskii, Newton polyhedra and the bezout formula for matrix-valued functions of finite-dimensional representations, Functional Analysis and its applications 21 (1987), no. 4, 319-321.

James S. Milne, Algebraic number theory (v3.06), 2014, Available at www.jmilne.org/math/, p. 164.

