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1. Introduction

This research was done with collaborators David Bruce, Taylor Brysiewicz, Robert
Krone, and Elina Robeva. This was inspired by a Fortnight of Apprenticeship orches-
trated by Bernd Sturmfels, which had fitness exercises. Determining the degree of
SO(n) was one of the exercises.

Definition 1. The group SO(n) is defined as

SO(n) := SO(n,C) =
{
M ∈ Matn,n(C) | detM = 1, M tM = Id

}
.

Since these conditions are polynomials in the entries of the matrix M , we can view
SO(n) as a complex variety. Our main result was to find the degree of this complex
variety.

Definition 2. The degree of a complex variety X is the generic number of intersection
points of X with a linear space of complementary dimension. (by generic, we mean
that the intersection with the linear space is transverse).

Why do we care about the degree of SO(n)? The degree is a fundamental piece of
data about a variety that one would want to know about it, just like its dimension.
Also, it provides the degree of low-rank semidefinite programming and is used to find
the number of critical points for certain optimization problems.

Theorem 1. The degree of SO(n) is given by:

deg SO(n) = 2n−1 det

((
2n− 2i− 2j

n− 2i

))
1≤i,j≤bn

2
c
.

Using Gröbner bases, one can compute the degree for small values, but this fails
quickly. The Gröbner basis for SO(5) has 344 elements, coming from 26 equations in
25 variables. Further, numerical techniques using monodromy have been developed for
computing witness sets for the variety, and these give two more values for the degree
of SO(n).



n Symbolic Numerical Formula
2 2 2 2
3 8 8 8
4 40 40 40
5 384 384 384
6 - 4768 4768
7 - 111616 111616
8 - - 3433600
9 - - 196968448

The focus of this talk will be the proof of this result, because in principle, our proof
gives a roadmap for finding degrees of other algebraic groups. Our proof of this theorem
uses a formula of Kazarnovskij [Kaz87] for the degree of the image of a representation
of a connected, reductive, linear algebraic group over an algebraically closed field.

2. Proof of Main Result

I will now ignore some language from Lie Theory that we used to prove this result. If
you know what these things are, that is great; otherwise, the important thing to know
is that each of these pieces of data is easily computable for the group SO(n), and I will
immediately say what it is. But this is the main theorem we used to prove our result.

Theorem 2 (Kazarnovskij’s Theorem (Prop 4.7.18 [DK02])). Let G be a connected
reductive group of dimension m and rank r over an algebraically closed field. If ρ :
G→ GL(V ) is a representation with finite kernel then,

deg ρ (G) =
m!

|W (G)|(e1!e2! · · · er!)2| ker(ρ)|

∫
CV

(α̌1α̌2 · · · α̌l)2dv.

where W (G) is the Weyl group, ei are Coxeter exponents, CV is the convex hull of the
weights, and α̌i are the coroots.

The first step is to plug in the data about SO(n) in to this result, with the regular
representation.

Group Dimension Rank Positive Roots Weights |W (G)| Coxeter Exponents

SO(2r)
(
2r
2

)
r {ei ± ej}i<j {±ei} r!2r−1 1, 3, . . . , 2r − 3, r − 1

SO(2r + 1)
(
2r+1

2

)
r {ei ± ej}i<j ∪ {ei} {±ei} r!2r 1, 3, 5, . . . , 2r − 1
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I will do this only for the odd case, but the odd case follows similarly. Miraculously,
they collapse in to one formula.

deg SO(2r + 1) =

(
2r + 1

2

)
!

r!2r
r∏

k=1

(2k − 1)!2

∫
CV

( ∏
1≤i<j≤r

(x2
i − x2

j)
2

r∏
i=1

(2xi)
2

)
dv︸ ︷︷ ︸

Iodd

The main step is to evaluate the integral, Iodd. The first step is to turn the inte-
grand into monomials. We use the well-known expression for the determinant of the
Vandermonde matrix (mi,j = xji ):∏

1≤i<j≤r

(yj − yi) =
∑
σ∈Sr

sgn(σ)
r∏

i=1

y
σ(i)−1
i .

Substituting yi = x2
i and squaring the entire expression yields∏

1≤i<j≤r

(x2
i − x2

j)
2 =

∑
σ,τ∈Sr

sgn(στ)
r∏

i=1

x
2σ(i)+2τ(i)−4
i . (1)

Additionally, since the integrands are even in all variables, we can simplfy the region
over which we integrate. Specifically, the integrals over CV are 2r times the same
integrals over ∆r, the standard r-simplex.

Iodd(r) = 2r
∫

∆r

∏
1≤i<j≤r

(x2
i − x2

j)
2

r∏
i=1

(2xi)
2dv

= 2r
∫

∆r

( ∑
σ,τ∈Sr

sgn(στ)
r∏

i=1

x
2σ(i)+2τ(i)−4
i

)
r∏
i=1

(2xi)
2dv

= 23r
∑
σ,τ∈Sr

sgn(στ)

∫
∆r

r∏
i=1

x
2σ(i)+2τ(i)−2
i dv.

Now, we apply the following proposition.

Proposition 1 (Lemma 4.23 [Mil14]). Let ∆r ⊂ Rr be the standard r-simplex. If
a = (a1, . . . , ar) ∈ Zr>0 then ∫

∆r

xadx =
1

(
∑
ai + r)!

r∏
i=1

ai!.

Using the fact that the integrand is homogeneous of degree 4
(
r
2

)
+ 2r, we obtain

Iodd(r) =
23r(

4
(
r
2

)
+ 3r

)
!

∑
σ,τ∈Sr

sgn(στ)
r∏

i=1

(2σ(i) + 2τ(i)− 2)!,
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which after replacing i with σ−1(i) gives us

Iodd(r) =
23r(

4
(
r
2

)
+ 3r

)
!

∑
σ,τ∈Sr

sgn(στ)
r∏

i=1

(2i + 2τσ−1(i)− 2)!,

Let ρ = τσ−1. Over all pairs σ, τ ∈ Sr, permutation ρ takes the value of each permu-
tation in Sr exactly r! times, and sgn(στ) = sgn(ρ). Therefore, we have that

Iodd(r) =
r!23r(

4
(
r
2

)
+ 3r

)
!

∑
ρ∈Sn

sgn(ρ)
r∏

i=1

(2i + 2ρ(i)− 2)!

=
r!23r(

4
(
r
2

)
+ 3r

)
!
det ((2i+ 2j − 2)!)1≤i,j≤n .

The main theorem now follows directly from some simplification, by pushing factorial
factors from the denominator in to the rows and columns of the matrix to make binomial
coefficients.

3. Non-Intersecting Lattice Paths

The formula given in the main theorem can be interpreted as a count of non-intersecting
lattice paths via the Gessel-Viennot Lemma [GV85].

Lemma 1 (Gessel-Viennot (Weak Version)). Let A = {a1, . . . , ar}, B = {b1, . . . , br} ⊆
Z2. LetMi,j be the number of North-East lattice paths from ai to bj. If the only way that
a system of North-East lattice paths from A→ B do not cross each other is by sending
ai 7→ bi then the determinant of M is given by the number of such non-intersecting
lattice paths.

Example Here is an example of a point configuration, and we will describe a north-
east lattice path and how to count all such paths.

Since the total number of steps taken is 6 and 3 of these must be eastward, we have
that the total number of paths is

(
6
3

)
. If we add two more points at (−1, 0) and (1, 0),

the matrix M in this case is: [(
6
3

) (
4
1

)(
4
3

) (
2
1

)
.

]
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Its determinant is 24, which is deg(SO(5))/24.

The determinant appearing in the degree of SO(n) has a natural interpretation via
Gessel-Viennot because binomial coefficients count lattice paths.

Theorem 3.

deg SO(n) = 2n−1(#{Non-Intersecting Lattice Paths from A to B})

where the positions of A and B are given by ai = (2i − n, 0), bj = (0, n − 2j) where
1 ≤ i, j ≤ bn

2
c.

This suggests a relationship between these non-intersecting lattice paths and the
degree of SO(n), but we currently do not have any meaningful understanding of the
nature of this relationship. Such an interpretation could be interesting, and so we pose
the following question: Does Theorem 3 have a deeper combinatorial interpretation?

4. Computational Methods: Monodromy

We tried several computational methods, but the most efficient and effective proved to
be monodromy techniques. The idea is as follows:

1. Choose a random linear space L of complimentary dimension n2−
(
n
2

)
containing

a favorite matrix I.

2. I is one point (out of deg(SO(n)) many points) lying inside L ∩ SO(n). Now,
move L along a path to a new linear space L′. While this happens, track where
I moves inside of L. Numerical algebraic geometry can do this easily (each step
is Newton’s method which is linear algebra).

3. Move L′ back to L, along a different path, and still keep track of where I is
moving. Now, we most likely have an entirely different point I ′ ∈ L ∩ SO(n).

4. Repeat this process, hoping to populate all of L∩SO(n). (The monodromy group
is transitive because the variety is connected and irreducible, meaning there exists
a path we could track between any two points)

5. There is a stopping criterion called the trace test. You move the linear cut in a
linear fashion, and track the average of the solutions. This should change linearly
as well. This turns out to be if and only if.

For SO(7), this terminated in about 12 hours. (Thanks to Anton Leykin for the
software, which will probably be released in the next Macaulay2 package.)
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