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Goal

Goal: Make spaces whose points correspond to realizations of a
matroid, and study that space to learn about the matroid.

Why: We can perform computations on the space, and these
computations can quickly answer questions about the matroid:

• Realizability

• Projective Uniqueness



Matroids

Matroids are well studied objects which provide a combinatorial
abstraction of linear independence in vector spaces.

Definition
A rank d + 1Matroid on n elements is a subset B of

({1,...,n}
d+1

)
called the bases of the matroid, satisfying:

• B is nonempty,

• If A,B ∈ B and a ∈ A\B then there exists b ∈ B\A such that
A\{a} ∪ {b} ∈ B.



Realizable Matroids

Given a vector space V over a field k and vectors v1, . . . , vn ∈ V
spanning V , the collection of subsets of {1, . . . , n} indexing bases of
V gives a matroid which we denote M[V ].

Such a matroid is called realizable over k, and v1, . . . , vn are called
a realization.

There are examples of matroids which are not realizable. This
depends very much on the field.



Example

Consider the rank 3 matroid M[V ] for V
whose vectors are

v1 = (−2,−2, 1), v2 = (−1, 1, 1),
v3 = (0, 4, 1), v4 = (2,−2, 1),
v5 = (1, 1, 1), v6 = (0, 0, 1).

Projecting onto the plane z = 1, this can
be visualized as the points of intersection
of four lines in the plane.



Slack matrix

Let M = M[V ] be a realizable matroid with realization V . The
hyperplanes of the matroid are collections of the v1, . . . , vn which
are contained in a subspace of dimension d .

Definition
The slack matrix of the matroid M = M[V ] over k is the n× h
matrix SM = V>W , where

• W is the matrix whose columns are the hyperplane defining
normals,

• V is the matrix with columns v1, . . . , vn.



Slack matrix: Example




1 −2 −2 1
2 −1 1 1
3 0 4 1
4 2 −2 1
5 1 1 1
6 0 0 1

H1 H2 H3 H4 H5 H6 H7

123 246 345 156 25 14 36[ ]−3 3 6 −3 0 0 4
1 3 2 3 2 4 0
−4 0 −8 0 −2 8 0

=

H1 H2 H3 H4 H5 H6 H7

123 246 345 156 25 14 36


1 0 −12 −24 0 −6 0 −8
2 0 0 −12 6 0 12 −4
3 0 12 0 12 6 24 0
4 −12 0 0 −12 −6 0 8
5 −6 6 0 0 0 12 4
6 −4 0 −8 0 −2 8 0



Properties of Slack Matrices

Here are some of the important properties of slack matrices.

Lemma
The rows of a slack matrix SM form a realization of the matroid M.

Theorem (B-Wiebe)
A matrix S ∈ kn×h is the slack matrix of some realization of M if and
only if both of the following hold:

1. supp(S) = supp(SM[V ])

2. rank(S) = d + 1.

These are algebraic conditions on the entries of the matrix.



The Slack Ideal

The symbolic slack matrix of matroid M is the matrix SM(x) with
rows indexed by elements i ∈ E , columns indexed by hyperplanes
Hj ∈ H(M) and (i, j)-entry{

xij if i /∈ Hj

0 if i ∈ Hj.

The slack ideal of M is the saturation of the ideal generated by the
(d + 2)-minors of SM(x), namely

IM : =
〈
(d + 2)−minors of SM(x)

〉
:

 n∏
i=1

∏
j:i 6∈Hj

xij

∞ ⊂ k[x].



Example

H1 H2 H3 H4 H5 H6 H7

123 246 345 156 25 14 36


1 0 x12 x13 0 x15 0 x17
2 0 0 x23 x24 0 x26 x27
3 0 x32 0 x34 x35 x36 0
4 x41 0 0 x44 x45 0 x47
5 x51 x52 0 0 0 x56 x57
6 x61 0 x63 0 x65 x66 0

Now, we take the 4× 4 minors and saturate...



Example

There are 72 binomial generators of its slack ideal:

deg 2 x36x65 + x35x66, x26x63 − x23x66, x15x63 − x13x65, x56x61 − x51x66, x45x61 − x41x65,
x27x56 + x26x57, x36x52 − x32x56, x17x52 − x12x57, x47x51 − x41x57, x17x45 + x15x47,
x35x44 − x34x45, x27x44 − x24x47, x26x34 − x24x36, x15x32 − x12x35, x17x23 − x13x27

deg 3 x47x56x65 − x45x57x66, x17x56x65 + x15x57x66, x12x56x65 + x15x52x66, x26x47x65 + x27x45x66,
x26x44x65 + x24x45x66, x17x26x65 − x15x27x66, x17x56x63 + x13x57x66, x12x56x63 + x13x52x66,
x27x45x63 + x23x47x65, x24x45x63 + x23x44x65, x12x36x63 + x13x32x66, x24x35x63 + x23x34x65,
x23x57x61 + x27x51x63, x15x57x61 + x17x51x65, x13x57x61 + x17x51x63, x35x52x61 + x32x51x65,
x15x52x61 + x12x51x65, x13x52x61 + x12x51x63, x26x47x61 + x27x41x66, x23x47x61 + x27x41x63,
x13x47x61 + x17x41x63, x36x44x61 + x34x41x66, x26x44x61 + x24x41x66, x23x44x61 + x24x41x63,
x35x47x56 + x36x45x57, x34x47x56 + x36x44x57, x17x35x56 − x15x36x57, x35x47x52 + x32x45x57,
x34x47x52 + x32x44x57, x27x34x52 + x24x32x57, x13x26x52 + x12x23x56, x36x45x51 + x35x41x56,
x32x45x51 + x35x41x52, x12x45x51 + x15x41x52, x36x44x51 + x34x41x56, x32x44x51 + x34x41x52,
x26x44x51 + x24x41x56, x27x36x45 − x26x35x47, x17x32x44 + x12x34x47, x15x23x44 + x13x24x45,
x17x26x35 + x15x27x36, x13x26x35 + x15x23x36, x15x27x34 + x17x24x35, x15x23x34 + x13x24x35,
x17x26x32 + x12x27x36, x13x26x32 + x12x23x36, x17x24x32 + x12x27x34, x13x24x32 + x12x23x34

deg 4 x27x35x52x63 − x23x32x57x65, x17x36x44x63 − x13x34x47x66, x24x35x57x61 − x27x34x51x65,
x23x34x52x61 − x24x32x51x63, x12x36x47x61 − x17x32x41x66, x13x32x44x61 − x12x34x41x63,
x15x26x44x52 − x12x24x45x56, x13x26x45x51 − x15x23x41x56, x12x23x44x51 − x13x24x41x52



Slack Realization Space

Suppose there are t variables in SM(x). The slack variety is the
variety V(IM) ⊂ kt .

Theorem (B-Wiebe)
Let M be a rank d + 1 matroid. Then V is a realization of M if and
only if SM[V ] ∈ V(IM) ∩ (k∗)t .



Non-Realizability

We now discuss how the slack variety can be used to study
realizability of the matroid.

Theorem (B-Wiebe)
A matroid M has a realization over k if and only if V(IM) ∩ (K∗)t is
nonempty.

In other words, if the slack ideal IM = 〈1〉 over k, then M is not
realizable over k. If k is algebraically closed and M is not realizable
over k, then IM = 〈1〉.



Non-Realizability: Example

We now study the Fano matroid, whose nonbases are lines and
circle below. It has 7 hyperplanes given by the collinear triples and
the circle. It is known to only be realizable over characteristic 2.

H1 H2 H3 H4 H5 H6 H7

126 014 456 025 036 234 135



0 x01 0 x03 0 0 x06 x07
1 0 0 x13 x14 x15 x16 0
2 0 x22 x23 0 x25 0 x27
3 x31 x32 x33 x34 0 0 0
4 x41 0 0 x44 x45 0 x47
5 x51 x52 0 0 x55 x56 0
6 0 x62 0 x64 0 x66 x67

Over Q, one may verify in Macaulay2 that the slack ideal IM = 〈1〉.
Over F2, we find that the slack ideal is generated by 126 binomials,
and that the all ones slack matrix is the only point on this variety.



Projective Uniqueness

We say two realizations V and V ′ of a matroid M are projectively
equivalent if V ′ = AVB for some A ∈ GL(kd+1) and B is a
k∗-multiple of a permutation matrix.

Lemma
Two realizations of a matroid M are projectively equivalent if and only
if their slack matrices are the same up to row and column scaling.

So, the slack variety is closed under the action of the torus
(k∗)n × (k∗)h, which acts by row and column scaling.



Projective Uniqueness

We can select an element of a projective equivalence class in the
following way.

Lemma
Let T be a maximal tree in the bipartite non-incidence graph of the
matroid. Given a realization of M and its slack matrix SM, we can
always row and column scale SM to have ones in the entries
corresponding to edges of T .

Then, we obtain the scaled slack ideal.



Projective Uniqueness: Example

We now consider the non-Fano matroid.

H1 H2 H3 H4 H5 H6 H7 H8 H9
126 014 456 025 036 234 35 13 15



0 x01 0 x03 0 0 1 x07 1 x09
1 0 0 1 x14 x15 1 0 0 0
2 0 1 x23 0 x25 0 x27 x28 x29
3 x31 1 x33 x34 0 0 0 0 x39
4 1 0 0 x44 x45 0 x47 x48 x49
5 1 1 0 0 1 1 0 x58 0
6 0 x62 0 1 0 1 1 x68 1

.
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Projective Uniqueness: Example

We compute over Q in Macaulay2 that the scaled slack ideal
consists entirely of linear equations, and the scaled slack variety
contains a single point:

1 0 1 0 0 1 1 1 1
0 0 1 1 −1 1 2 0 0
0 1 −1 0 1 0 −1 −1 1
−1 1 −1 1 0 0 0 −2 0
1 0 0 −1 1 0 −1 1 1
1 1 0 0 1 1 0 0 2
0 1 0 1 0 1 1 −1 1


.

So, the nonfano matroid is projectively unique over Q.



Conclusion

In this talk, we:

1. Made a new realization space for matroids

2. Demonstrate how to use this space to test for realizability

3. Demonstrate how to use this to test for projective uniqueness

Thank You
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