The slack realization space of a matroid

Madeline Brandt and Amy Wiebe

AMS Sectional Meeting
Spring Western Sectional Meeting
April 15, 2018

Goal

Goal: Make spaces whose points correspond to realizations of a matroid, and study that space to learn about the matroid.

Why: We can perform computations on the space, and these computations can quickly answer questions about the matroid:

- Realizability
- Projective Uniqueness

Matroids

Matroids are well studied objects which provide a combinatorial abstraction of linear independence in vector spaces.

Definition

A rank $d+1$ Matroid on n elements is a subset \mathcal{B} of $\binom{\{1, \ldots, n\}}{d+1}$ called the bases of the matroid, satisfying:

- \mathcal{B} is nonempty,
- If $A, B \in \mathcal{B}$ and $a \in A \backslash B$ then there exists $b \in B \backslash A$ such that $A \backslash\{a\} \cup\{b\} \in \mathcal{B}$.

Realizable Matroids

Given a vector space V over a field k and vectors $v_{1}, \ldots, v_{n} \in V$ spanning V, the collection of subsets of $\{1, \ldots, n\}$ indexing bases of V gives a matroid which we denote $M[V]$.

Such a matroid is called realizable over k, and v_{1}, \ldots, v_{n} are called a realization.

There are examples of matroids which are not realizable. This depends very much on the field.

Example

Consider the rank 3 matroid $M[V]$ for V whose vectors are

$$
\begin{array}{ll}
v_{1}=(-2,-2,1), & v_{2}=(-1,1,1), \\
v_{3}=(0,4,1), & v_{4}=(2,-2,1), \\
v_{5}=(1,1,1), & v_{6}=(0,0,1) .
\end{array}
$$

Projecting onto the plane $z=1$, this can be visualized as the points of intersection of four lines in the plane.

Slack matrix

Let $\mathcal{M}=\mathcal{M}[V]$ be a realizable matroid with realization V. The hyperplanes of the matroid are collections of the v_{1}, \ldots, v_{n} which are contained in a subspace of dimension d.

Definition

The slack matrix of the matroid $M=M[V]$ over k is the $n \times h$ matrix $S_{M}=V^{\top} W$, where

- W is the matrix whose columns are the hyperplane defining normals,
- V is the matrix with columns v_{1}, \ldots, v_{n}.

Slack matrix: Example

Properties of Slack Matrices

Here are some of the important properties of slack matrices.

Lemma

The rows of a slack matrix S_{M} form a realization of the matroid \mathcal{M}.

Theorem (B-Wiebe)

A matrix $S \in k^{n \times h}$ is the slack matrix of some realization of M if and only if both of the following hold:

1. $\operatorname{supp}(S)=\operatorname{supp}\left(S_{M[V]}\right)$
2. $\operatorname{rank}(S)=d+1$.

These are algebraic conditions on the entries of the matrix.

The Slack Ideal

The symbolic slack matrix of matroid \mathcal{M} is the matrix $S_{M}(\mathbf{x})$ with rows indexed by elements $i \in E$, columns indexed by hyperplanes $H_{j} \in \mathcal{H}(M)$ and (i, j)-entry

$$
\begin{cases}x_{i j} & \text { if } i \notin H_{j} \\ 0 & \text { if } i \in H_{j} .\end{cases}
$$

The slack ideal of M is the saturation of the ideal generated by the $(d+2)$-minors of $S_{M}(\mathbf{x})$, namely

$$
I_{M}:=\left\langle(d+2)-\text { minors of } S_{M}(\mathbf{x})\right\rangle:\left(\prod_{i=1}^{n} \prod_{j: i \notin H_{j}} x_{i j}\right)^{\infty} \subset k[\mathbf{x}] .
$$

Example

	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	H_{7}
	123	246	345	156	25	14	36
1	0	χ_{12}	x_{13}	0	χ_{15}	0	x_{17}
2	0	0	χ_{23}	χ_{24}	0	X_{26}	${ }_{27}$
3	0	χ_{32}	0	X_{34}	χ_{35}	χ_{36}	0
4	x_{41}	0	0	χ_{44}	χ_{45}	0	X_{47}
5	x_{51}	χ_{52}	0	0	0	χ_{56}	X 57
6	χ_{61}	0	x_{63}	0	X_{65}	X_{66}	0

Now, we take the 4×4 minors and saturate...

Example

There are 72 binomial generators of its slack ideal:

deg 2	$\begin{array}{ll} \hline x_{36} x_{65}+x_{35} x_{66}, & x_{26} x_{63}-x_{23} x_{66}, x_{15} x_{63}-x_{13} x_{65}, x_{56} x_{61}-x_{51} x_{66}, x_{45} x_{61}-x_{41} x_{65}, \\ x_{27} x_{56}+x_{26} x_{57}, & x_{36} x_{52}-x_{32} x_{56}, x_{17} x_{52}-x_{12} x_{57}, \\ x_{47} x_{51}-x_{41} x_{57}, & x_{17} x_{45}+x_{15} x_{47}, \\ x_{35} x_{44}-x_{34} x_{45}, & x_{27} x_{44}-x_{24} x_{47}, \\ x_{26} x_{34}-x_{24} x_{36}, & x_{15} x_{32}-x_{12} x_{35}, x_{17} x_{23}-x_{13} x_{27} \\ \hline \end{array}$
de	$\begin{aligned} & x_{47} x_{56} x_{65}-x_{45} x_{57} x_{66}, x_{17} x_{56} x_{65}+x_{15} x_{57} x_{66}, x_{12} x_{56} x_{65}+x_{15} x_{52} x_{66}, x_{26} x_{47} x_{65}+x_{27} x_{45} x_{66}, \\ & x_{26} x_{44} x_{65}+x_{24} x_{45} x_{66}, x_{17} x_{26} x_{65}-x_{15} x_{27} x_{66}, x_{17} x_{56} x_{63}+x_{13} x_{57} x_{66}, x_{12} x_{56} x_{63}+x_{13} x_{52} x_{66}, \\ & x_{27} x_{45} x_{63}+x_{23} x_{47} x_{65}, x_{24} x_{45} x_{63}+x_{23} x_{44} x_{65}, x_{12} x_{36} x_{66}+x_{13} x_{32} x_{66}, x_{24} x_{35} x_{63}+x_{23} x_{34} x_{65}, \\ & x_{23} x_{57} x_{61}+x_{27} x_{51} x_{63}, x_{15} x_{57} x_{61}+x_{17} x_{51} x_{65}, x_{13} x_{57} x_{61}+x_{17} x_{51} x_{63}, x_{35} x_{52} x_{61}+x_{32} x_{51} x_{65}, \\ & x_{15} x_{52} x_{61}+x_{12} x_{51} x_{65}, x_{13} x_{52} x_{61}+x_{12} x_{51} x_{63}, x_{26} x_{47} x_{61}+x_{27} x_{41} x_{66}, x_{23} x_{47} x_{61}+x_{27} x_{41} x_{63}, \\ & x_{13} x_{47} x_{61}+x_{17} x_{41} x_{63}, x_{36} x_{44} x_{61}+x_{34} x_{41} x_{66}, x_{26} x_{44} x_{61}+x_{24} x_{41} x_{66}, x_{23} x_{44} x_{61}+x_{24} x_{41} x_{63}, \\ & x_{35} x_{47} x_{56}+x_{36} x_{45} x_{57}, x_{34} x_{47} x_{56}+x_{36} x_{44} x_{57}, x_{17} x_{35} x_{56}-x_{15} x_{36} x_{57}, x_{35} x_{47} x_{52}+x_{32} x_{45} x_{57}, \\ & x_{34} x_{47} x_{52}+x_{32} x_{44} x_{57}, x_{27} x_{34} x_{52}+x_{24} x_{32} x_{57}, x_{13} x_{26} x_{52}+x_{12} x_{23} x_{56}, x_{36} x_{45} x_{51}+x_{35} x_{41} x_{56}, \\ & x_{32} x_{45} x_{51}+x_{35} x_{41} x_{52}, x_{12} x_{45} x_{51}+x_{15} x_{41} x_{52}, x_{36} x_{44} x_{51}+x_{34} x_{41} x_{56}, x_{32} x_{44} x_{51}+x_{34} x_{41} x_{52}, \\ & x_{26} x_{44} x_{51}+x_{24} x_{41} x_{56}, x_{27} x_{36} x_{45}-x_{26} x_{35} x_{47}, x_{17} x_{32} x_{44}+x_{12} x_{34} x_{47}, x_{15} x_{23} x_{44}+x_{13} x_{24} x_{45}, \\ & x_{17} x_{26} x_{35}+x_{15} x_{27} x_{36}, x_{13} x_{26} x_{35}+x_{15} x_{23} x_{36}, x_{15} x_{27} x_{34}+x_{17} x_{24} x_{35}, x_{15} x_{23} x_{34}+x_{13} x_{24} x_{35}, \\ & x_{17} x_{26} x_{32}+x_{12} x_{27} x_{36}, x_{13} x_{26} x_{32}+x_{12} x_{23} x_{36}, x_{17} x_{24} x_{32}+x_{12} x_{27} x_{34}, x_{13} x_{24} x_{32}+x_{12} x_{23} x_{34} \\ & \hline \end{aligned}$
deg 4	

Slack Realization Space

Suppose there are t variables in $S_{M}(\mathbf{x})$. The slack variety is the variety $\mathcal{V}\left(I_{M}\right) \subset k^{t}$.

Theorem (B-Wiebe)
Let \mathcal{M} be a rank $d+1$ matroid. Then V is a realization of \mathcal{M} if and only if $S_{M[V]} \in \mathcal{V}\left(I_{M}\right) \cap\left(k^{*}\right)^{t}$.

Non-Realizability

We now discuss how the slack variety can be used to study realizability of the matroid.

Theorem (B-Wiebe)
A matroid \mathcal{M} has a realization over k if and only if $\mathcal{V}\left(I_{M}\right) \cap\left(K^{*}\right)^{t}$ is nonempty.

In other words, if the slack ideal $I_{M}=\langle 1\rangle$ over k, then M is not realizable over k. If k is algebraically closed and M is not realizable over k, then $I_{M}=\langle 1\rangle$.

Non-Realizability: Example

We now study the Fano matroid, whose nonbases are lines and circle below. It has 7 hyperplanes given by the collinear triples and the circle. It is known to only be realizable over characteristic 2.

0
1
2
3
4
5
6 $\left[\begin{array}{ccccccc}H_{1} & H_{2} & H_{3} & H_{4} & H_{5} & H_{6} & H_{7} \\ 126 & 014 & 456 & 025 & 036 & 234 & 135 \\ x_{01} & 0 & x_{03} & 0 & 0 & x_{06} & x_{07} \\ 0 & 0 & x_{13} & x_{14} & x_{15} & x_{16} & 0 \\ 0 & x_{22} & x_{23} & 0 & x_{25} & 0 & x_{27} \\ x_{31} & x_{32} & x_{33} & x_{34} & 0 & 0 & 0 \\ x_{41} & 0 & 0 & x_{44} & x_{45} & 0 & x_{47} \\ x_{51} & x_{52} & 0 & 0 & x_{55} & x_{56} & 0 \\ 0 & x_{62} & 0 & x_{64} & 0 & x_{66} & x_{67}\end{array}\right]$

Over \mathbb{Q}, one may verify in Macaulay 2 that the slack ideal $I_{M}=\langle 1\rangle$. Over \mathbb{F}_{2}, we find that the slack ideal is generated by 126 binomials, and that the all ones slack matrix is the only point on this variety.

Projective Uniqueness

We say two realizations V and V^{\prime} of a matroid M are projectively equivalent if $V^{\prime}=A V B$ for some $A \in G L\left(k^{d+1}\right)$ and B is a k^{*}-multiple of a permutation matrix.

Lemma

Two realizations of a matroid M are projectively equivalent if and only if their slack matrices are the same up to row and column scaling.

So, the slack variety is closed under the action of the torus $\left(k^{*}\right)^{n} \times\left(k^{*}\right)^{h}$, which acts by row and column scaling.

Projective Uniqueness

We can select an element of a projective equivalence class in the following way.

Lemma

Let T be a maximal tree in the bipartite non-incidence graph of the matroid. Given a realization of M and its slack matrix $S_{\mathcal{M}}$, we can always row and column scale S_{M} to have ones in the entries corresponding to edges of T.

Then, we obtain the scaled slack ideal.

Projective Uniqueness: Example

We now consider the non-Fano matroid.

Projective Uniqueness: Example

We compute over \mathbb{Q} in Macaulay2 that the scaled slack ideal consists entirely of linear equations, and the scaled slack variety contains a single point:

$$
\left(\begin{array}{ccccccccc}
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & -1 & 1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 0 & -1 & -1 & 1 \\
-1 & 1 & -1 & 1 & 0 & 0 & 0 & -2 & 0 \\
1 & 0 & 0 & -1 & 1 & 0 & -1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & -1 & 1
\end{array}\right) .
$$

So, the nonfano matroid is projectively unique over \mathbb{Q}.

Conclusion

In this talk, we:

1. Made a new realization space for matroids
2. Demonstrate how to use this space to test for realizability
3. Demonstrate how to use this to test for projective uniqueness

Conclusion

In this talk, we:

1. Made a new realization space for matroids
2. Demonstrate how to use this space to test for realizability
3. Demonstrate how to use this to test for projective uniqueness

Thank You

