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Definition 1. We say points v0, . . . , vn ∈ Rk are affinely independent if they span
an affine n-plane. Another way to view this is that no point is contained in the convex
hull of the other points.

Definition 2. If v0, . . . , vn are affinely independent then the affine simplex σ spanned
by the vi is

σ = (v0, . . . , vn) =

{
n∑
i=0

λivi

∣∣∣∣∣
n∑
i=0

λi = 1, λi ≥ 0

}
.

This is just the convex hull of the points vi. A k-face of σ is any affine simplex spanned
by a subset of size k + 1 of the vi.

Definition 3. A (geometric) simplicial complex K is a collection of affine simplices
such that

1. If σ ∈ K then any face of σ is in K.

2. If σ and τ are in K, then σ ∩ τ is a face of both σ and τ , or is empty.

Example. The following give an example and a nonexample of a simplicial complex.

If K is a simplicial complex then we call |K| = ∪{σ | σ ∈ K} the support of K.

Definition 4. A space X is a triangulatable if there exists a homeomorphism from
|K| to X for some simplicial complex K. The homeomorphism together with K is
called a triangulation of X.
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Example. The following gives a triangulation of the real projective plane. This agrees
with the triangulation given by Polymake.

polytope > application "topaz";
topaz > $r = real_projective_plane();
topaz > print $r->FACETS;
0 1 4
0 1 5
0 2 3
0 2 4
0 3 5
1 2 3
1 2 5
1 3 4
2 4 5
3 4 5

The simplicial complex structure on K gives a cell complex structure on |K|: the
cells are the simplices, with characteristic maps from the simplex into |K|. In this
setting, we get a chain complex whose nth group is free abelian on the n-simplices of
K.

The boundary formula of cellular homology reduces to the following:

∂ < vσ0 , . . . , vσn >=
n∑
i=0

(−1)i < vσ0 , . . . v̂σi , . . . , vσn > .

The reason is because the degree [τ : σ] will be 0 unless τ is a face of σ, and otherwise
is is degree ±1. Since we require ∂∂ = 0, we must have that the signs alternate.

By considering this as a CW -complex, we have shown that the homology of this
chain complex is equal to cellular homology.

Simplicial homology can be cumbersome in the sense that there are usually many
more simplices required than you would need cells to do cellular homology. The real
projective plane requires one cell of each dimension 0, 1, and 2 for cellular homology,
but for simplicial homology one needs 6 vetices, 15 edges and 10 faces. The advantage
is that the boundary maps are very mechanical to compute.

Example. Homology of circle. This comes to us as a triangle. The chain complex is
given by

· · · 0→ Z3 ∂1−→ Z3 ∂0−→ 0
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Let the basis for ∆1 be {e1, e2, e1−e2+e3}, and the basis for ∆0 be {v3−v2, v3−v1, v3}
We now compute the maps ∂0, ∂1:

∂0 =
(
0 0 0

)
∂1 =

1 0 0
0 1 0
0 0 0


Then H0(S

1) = Z, and H1(S
1) is Z3/Z2 = Z. All other homologies will be 0.

Example. Computation of simplicial homology for RP2. Given the simplicial complex
showed above, we have the following chain complex:

· · · 0→ Z10 ∂2−→ Z15 ∂1−→ Z6 ∂0−→ 0

We can compute the boundary maps by hand, or we can use Macaulay2 to compute
the boundary maps. Macaulay2 has implemented Gröbner Basis methods, along with
a correspondence between simplicial complexes and squarefree monomial ideals, to
compute chain complexes for simplicial complexes and their homologies. To do this,
we make a variable for each vertex 0 7→ a, . . . , 5 7→ f, and add one monomial for each
facet.

i1 : loadPackage "SimplicialComplexes"
i2 : R = ZZ[a..f]
i3 : D = simplicialComplex monomialIdeal(a*b*e, a*b*f, a*c*d, a*c*e,
a*d*f, b*c*d, b*c*f, b*d*e, c*e*f, d*e*f)

Of course, the map ∂0 is the 0 map. Macaulay2 tells us that the map ∂1 is

∂1 =


1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 −1 0 0 0 −1 0 0 0 1 1 1 0 0 0
0 0 −1 0 0 0 −1 0 0 −1 0 0 1 1 0
0 0 0 −1 0 0 0 −1 0 0 −1 0 −1 0 1
0 0 0 0 −1 0 0 0 −1 0 0 −1 0 −1 −1


The Smith Normal Form of this matrix has 5 ones on the diagonal, which implies

that H0(RP2) = Z. This was done using the code

i4 : c = chainComplex D
i5 : c.dd_1
i6 : M1=smithNormalForm c.dd_1
i7 : M1_0
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Macaulay2 tells us that the map ∂2 is

∂2 =



−1 −1 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
−1 0 0 0 0 −1 0 0 0 0
0 −1 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 −1 −1
0 0 0 0 0 −1 0 0 1 0
0 0 −1 0 0 0 0 0 0 1
0 0 0 −1 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 −1
0 0 0 0 −1 0 0 −1 0 0


The Smith Normal Form of this matrix has nine 1’s on the diagonal and one 2. This
means that H1(RP2) = Z/2Z. This also tells us that the map is injective, and so
H1(RP2) = 0.

We can verify this computation in Polymake (which does reduced homology):
topaz > print $r->HOMOLOGY;
( 0)
((2 1) 0)
( 0)

The output is interpreted in the following way: The first line give the 0th homology
group to be 0. The second line says that the first homology has one 2-torsion compo-
nent, and no Z component. The third line says that there is no second homology.

How to use Polymake:
We explain the code used in the example for RP2. For more information about

Polymake and Topaz, go to
https://polymake.org/doku.php/release_docs/latest/topaz.html

Polymake code: Explanation:

application "topaz"; Polymake has different "applications,"
Topaz does topology things.
Always need a ; before entering

$s = real_projective_plane(); variables always start with $,
real_projective_plane()
summons a simplicial complex for RP2

print $s->HOMOLOGY; "properties" of an object are always in all caps,
print $s-> FACETS; to see them you type print $s->PROPERTY_NAME.
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