Packing Polynomials on Sectors of \mathbb{R}^2

Madeline Brandt

Reed College, Portland, OR mbrandt@reed.edu

January 11, 2015

Introduction

Let $I \subset \mathbb{Z}^2$. A **packing polynomial** on I is a polynomial $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f \mid_I$ is a bijection from I to \mathbb{N} .

Introduction

Let $I \subset \mathbb{Z}^2$. A **packing polynomial** on I is a polynomial $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f \mid_I$ is a bijection from I to \mathbb{N} .

The Cantor Polynomials:

Fueter and Pólya proved that these are the only quadratic packing polynomials on \mathbb{N}^2 .

SECTORS

For all $\alpha \in \mathbb{R}_{>0}$, let

 $I(\alpha)$ is called a **sector**.

Sectors

For all $\alpha \in \mathbb{R}_{>0}$, let

 $I(\alpha)$ is called a **sector**.

- $\alpha \in \mathbb{N}$: Solved by Stanton.
- $\alpha \notin \mathbb{Q}$: Nathanson conjectured that there are no packing polynomials on $I(\alpha)$.
- $\alpha \in \mathbb{Q}$: we solved.

EXAMPLE

Example:

This is a packing polynomial on I(8/5), and

$$p(x, y) = 4\left(x - \frac{y}{2}\right)^2 - x + y.$$

EXAMPLE

Example:

This is a packing polynomial on I(8/5), and

$$p(x, y) = 4\left(x - \frac{y}{2}\right)^2 - x + y.$$

Definition: Let p be a quadratic packing polynomial on $I(\frac{n}{m})$. Then p is a k-stair polynomial if for any two consecutive integral points r, s along a line with slope $\frac{n}{m-1}$, we have $p(r) - p(s) = \pm k$.

PREVIOUS RESULT

Theorem (Stanton)

Let $n/m \ge 1$, and (n, m) = 1. If I(n/m) has a quadratic packing polynomial p, then $n|(m-1)^2$ and

$$p(x,y) = \frac{n}{2} \left(x - \frac{m-1}{n}y\right)^2 + linear terms.$$

PREVIOUS RESULT

Theorem (Stanton)

Let $n/m \ge 1$, and (n, m) = 1. If I(n/m) has a quadratic packing polynomial p, then $n|(m-1)^2$ and

$$p(x,y) = \frac{n}{2} \left(x - \frac{m-1}{n}y\right)^2 + linear terms.$$

This implies that all packing polynomials on sectors I(n/m) are k-stair polynomials for some k.

EQUIVALENCE

We will say that two packing polynomials p on $I(\alpha)$ and q on $I(\beta)$ are **equivalent** if there exists a linear bijection T from $I(\alpha)$ to $I(\beta)$ such that

$$p = q \circ T$$
.

EQUIVALENCE

We will say that two packing polynomials p on $I(\alpha)$ and q on $I(\beta)$ are **equivalent** if there exists a linear bijection T from $I(\alpha)$ to $I(\beta)$ such that

$$p = q \circ T$$
.

k-stair to -k-stair

EQUIVALENCE

We will say that two packing polynomials p on $I(\alpha)$ and q on $I(\beta)$ are **equivalent** if there exists a linear bijection T from $I(\alpha)$ to $I(\beta)$ such that

$$p = q \circ T$$
.

 $n/m < 1 \text{ to } n/m \ge 1$:

PROPERTIES OF *k***-STAIR POLYNOMIALS**

A 3-stair packing polynomial on I(12/7):

Main Result: Necessary Form

Let
$$l = \gcd(n, m - 1)$$
.

Theorem (Brandt)

Let p be a k-stair packing polynomial on I(n/m), where $m \neq 1$. Then (up to equivalence) $k \equiv \frac{m-1}{l} \mod \frac{n}{l}$, and

$$p(x,y) = \frac{n}{2} \left(x - \frac{m-1}{n} y \right)^2 + \left(1 - \frac{kl}{2} \right) x + \frac{2(1-m)+kl(m+1)}{2n} y + c.$$

The expression for p(x, y) only depends on n, m, and k.

Theorem (Brandt)

Theorem (Brandt)

The following results give the k-stair packing polynomials on sectors $I(\frac{n}{m})$ for all k (up to equivalence).

1. 1-stair polynomials: $n \mid (m-1)^2$ and either m=1 or $m-1 \mid n$.

Theorem (Brandt)

- 1. 1-stair polynomials: $n \mid (m-1)^2$ and either m=1 or $m-1 \mid n$.
- **2.** 2-stair polynomials: $m \equiv 9 \mod 16$ and $n = \frac{1}{16}(m-1)^2$.

Theorem (Brandt)

- **1.** 1-stair polynomials: $n \mid (m-1)^2$ and either m=1 or $m-1 \mid n$.
- **2.** 2-stair polynomials: $m \equiv 9 \mod 16$ and $n = \frac{1}{16}(m-1)^2$.
- 3. 3-stair polynomials: $m \equiv 10 \mod 27$ or $m \equiv 19 \mod 27$ and $n = \frac{1}{27}(m-1)^2$.

Theorem (Brandt)

- **1.** 1-stair polynomials: $n \mid (m-1)^2$ and either m=1 or $m-1 \mid n$.
- **2.** 2-stair polynomials: $m \equiv 9 \mod 16$ and $n = \frac{1}{16}(m-1)^2$.
- 3. 3-stair polynomials: $m \equiv 10 \mod 27$ or $m \equiv 19 \mod 27$ and $n = \frac{1}{27}(m-1)^2$.
- **4.** There are no k-stair packing polynomials for $k \geq 4$.

FUTURE DIRECTIONS

- 1. Prove that there are no packing polynomials of degree greater than 2 on sectors of \mathbb{R}^2 .
 - Fueter and Pólya conjectured that this was true on \mathbb{N}^2 .
 - Lew and Rosenberg have proved that there are no degree 3 or 4
 packing polynomials on N².

FUTURE DIRECTIONS

- 1. Prove that there are no packing polynomials of degree greater than 2 on sectors of \mathbb{R}^2 .
 - Fueter and Pólya conjectured that this was true on \mathbb{N}^2 .
 - Lew and Rosenberg have proved that there are no degree 3 or 4
 packing polynomials on N².
- 2. Prove that there are no packing polynomials on irrational sectors. (Nathanson)

ACKNOWLEDGMENTS

- Joseph Gallian
- The University of Minnesota Duluth Research Experience for Undergraduates in Mathematics Program, including the advisors and visitors to the program.
- This research was supported by the National Science Foundation (grant number DSF 1358659) and the National Security Agency (NSA grant H98230-13-1-0273).
- This presentation was supported by a Reed College Undergraduate Research Opportunity Grant.