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The Cantor Polynomials:

(ty)? | x+3y
2 T2

glx,y) = L 4 20

)

Fueter and Poélya proved that these are the only quadratic packing
polynomials on N2,



SECTORS

For all o € R>, let

I() is called a sector.



SECTORS

For all o € R>, let

» a € N: Solved by Stanton.

« a ¢ Q: Nathanson conjectured that
there are no packing polynomials
on I(a).

o o € Q: we solved.

I() is called a sector.
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EXAMPLE

Example:
This is a packing polynomial on
1(8/5), and

2
p(x,y)=4(x—§> —x+y.

Definition: Let p be a quadratic packing polynomial on /(). Then
pis a k-stair polynomial if for any two consecutive integral points
r, s along a line with slope —"—, we have p(r) — p(s) = *k.

m—1’




PrREvVIOUS RESULT

Theorem (Stanton)
Letn/m > 1, and (n, m) = 1. If I(n/m) has a quadratic packing
polynomial p, then n|(m — 1) and

m—1

p(x,y) =3 (X - = y)2 + linear terms.




PrREvVIOUS RESULT

Theorem (Stanton)
Letn/m > 1, and (n, m) = 1. If I(n/m) has a quadratic packing
polynomial p, then n|(m — 1) and

m—1

p(x,y) =3 (X - y)2 + linear terms.

This implies that all packing polynomials on sectors I(n/m) are
k-stair polynomials for some k.
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We will say that two packing polynomials p on I(«) and g on I(3)
are equivalent if there exists a linear bijection T from I(«) to I(3)
such that

p=gqoT.
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EQUIVALENCE

We will say that two packing polynomials p on I(«) and g on I(3)
are equivalent if there exists a linear bijection T from I(«) to I(3)
such that

p=gqoT.

n/m<1ton/m>1:




PROPERTIES OF k-STAIR POLYNOMIALS

A 3-stair packing polynomial on 1(12/7):

9 19
1 2
16 38
24 5
3 69
49 89




MAIN RESULT: NECESSARY FORM

Let [ = ged(n,m— 1).

Theorem (Brandt)
Let p be a k-stair packing polynomial on I(n/m), where m # 1. Then

(up to equivalence) k = ”’fq mod 7, and

plxcy) = § (x = 519" (1= 4) o A

The expression for p(x, y) only depends on n, m, and k.
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MAIN RESULT: SUFFICIENT CONDITIONS

Theorem (Brandt)
The following results give the k-stair packing polynomials on sectors

I(2) for all k (up to equivalence).

1.
2.
3.

I-stair polynomials: n | (m — 1)? and eitherm = 1orm— 1| n.
2-stair polynomials: m=9 mod 16 and n = 5z(m — 1),
3-stair polynomials: m = 10 mod 27 or m =19 mod 27 and
n=5(m—1)>~

There are no k-stair packing polynomials for k > 4.



FUTURE DIRECTIONS

1. Prove that there are no packing polynomials of degree greater
than 2 on sectors of R?.

« Fueter and Pélya conjectured that this was true on N2.

+ Lew and Rosenberg have proved that there are no degree 3 or 4
packing polynomials on N2.



FUTURE DIRECTIONS

1. Prove that there are no packing polynomials of degree greater
than 2 on sectors of R?.

« Fueter and Pélya conjectured that this was true on N2.

+ Lew and Rosenberg have proved that there are no degree 3 or 4
packing polynomials on N2.

2. Prove that there are no packing polynomials on irrational
sectors. (Nathanson)
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