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1 Introduction

Tropical geometry is a new subject which creates a bridge between the two is-
lands of algebraic geometry and combinatorics. It has many fascinating connec-
tions to other areas as well. The aim of this lecture is to introduce tropical ge-
ometry and to provide a glimpse of a research area in tropical geometry, namely,
computing abstract tropicalizations of curves.

2 Background

Definition 2.1. The Puiseux series K is the field of formal power series with
rational exponents and nonzero coefficients in C:

c(t) = c1t
a1 + c2t

a2 + · · ·

for ai an increasing sequence of rational numbers which have a common denom-
inator.

The Puiseux series are equipped with a special function v : K → R, called the
valuation. The valuation is given by taking v(c) = a1. The Puiseaux series are
algebraically closed.

Tropicalization is a process we apply to varieties over a field with a valuation.
The Puiseux series are not the only field with a valuation, but to simplify matters
we only use this example in this talk.
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We denote by R the set of all elements with nonnegative valuation. It is a
local ring with maximal ideal m given by all elements with positive valuation.
The quotient ring is denoted by k and it is called the residue field.

3 Hypersurfaces

Hypersurfaces are the most natural starting place for studying tropical geometry.
Consider the ring K[x±11 , . . . , x±1n ] of Laurent polynomials over K.

Definition 3.1. Given a Laurent polynomial

f =
∑
u∈Zn

cux
u,

we define its tropicalization to be the real valued function on Rn that is obtained
by replacing each cu by its valuation and preforming all additions and multipli-
cations in the tropical semiring (R,⊕,⊗):

trop(f)(w) = min
u∈Zn

(val(cu) + u ·w) .

Classically, the variety of the Laurent polynomial f is a hypersurface in the
algebraic torus Tn = (K∗)n. We now define the tropical hypersurface associated
to f.

Definition 3.2. The tropical hypersurface trop(V(f)) is the set

{w ∈ Rn | the minimum in trop(f)(w) is achieved at least twice}

Theorem 3.3 (Kapranov). The set trop(V(f)) is the same as

{(v(y1), . . . , v(yn)) | (y1, . . . , yn) ∈ V(f)}

Example 3.4. Here we compute the tropical line, which is the classic first exam-
ple. Let f = x+ y+ 1 in the field C{{t}}. Then,

trop(f)(w) = min (0+ (1, 0) ·w, 0+ (0, 1) ·w, 0) ,

= min(w1, w2, 0).

So, where is this minimum achieved twice? We can break this down in to 3 cases.
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1. w1 and 0 are the winners: This happens when w1 = 0 and w2 ≥ 0. So, this
is the ray pos(e2).

2. w2 and 0 are the winners: This happens when w2 = 0 and w1 ≥ 0. So, this
is the ray pos(e1).

3. w1 and w2 are the winners: This adds to our tropical variety the ray pos(−1,−1).

So, the tropical variety is pictured in Figure 1

Figure 1: The tropical line studied in Example 3.4.

In practice, when you wish to compute a tropical hypersurface, there is a very
practical method (this is especially good in two dimensions).

Proposition 3.5. Let f ∈ K[x±11 , . . . , x±1n ] be a Laurent polynomial. The tropical hyper-
surface trop(V(f)) is the (n − 1)-skeleton of the polyhedral complex dual to the regular
subdivision of the newton polytope of f induced by the weigths val(cu) on the lattice
points in Newt(f).

I didn’t define most of the terms in this proposition, but hopefully from the
next example it will make sense how to use it.

Example 3.6. Consider the plane curve over the Puiseux series in t defined by
the equation

f(x, y, z) = txz2 + tyz2 + xyz+ txy2 + tx2y.

To find the embedded tropical hypersurface corresponding to this curve, we do
the following. Make the Newton polygon, which is the convex hull of the expo-
nent vectors. Then, find the regular subdivision induced from the weights given
by the valuations of the coefficients. Then, the tropical curve will be dual to this
(and rotated 180 degrees).
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At this point, we have found the embedded tropicalization of V(f).
Now, we repeat this computation, but first we will do a change of coordinates.

Consider

f(x− y− z, y− x− z, z+ x+ y) = − x3 − y3 + z3

+ more middle terms
+ terms higher order in t.

Then, we can compute the embedded tropicalization again.

We notice now that we have two very different answers, even though we were
tropicalizing the same curve. Perhaps, this should be disturbing– shouldn’t there
be a way to associate a “tropical curve” to each isomorphism class of algebraic
curve?

4 Abstract Tropicalization

Now, our goal is to define an object called the abstract tropicalization which can
be associated to every curve, and does not depend on the embedding.

Let C be a smooth curve over K. Given some equations defining the curve
C, the coefficients of these equations will possibly involve the uniformizer t.
Informally, we can think of the uniformizer t as “going to zero,” and when t = 0,
we will see some special and possibly singular behavior. Generically, the curve
will be smooth, but it could limit to something singular. More formally, we need
a model of the curve.
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Definition 4.1. We say a model C for a curve C over K is a flat and finite type
scheme over R whose generic fiber is isomorphic to C. We call this model
semistable if the special fiber

Ck = C×R k

is a semistable curve over k, meaning:

1. It is reduced, connected, and only has nodal singularites;

2. every rational component has at least 2 singular points.

Definition 4.2. The dual graph of Ck has vertices corresponding to the irreducible
components of Ck, and edges corresponding to nodes.

Here is an example of a schematic of the special fiber of a curve C and on the
right, its dual graph.

To define the abstract tropicalization of the curve C, we add a bit of extra
data.

1. Vertex Weights: we add weights to the vertices by assigning to each vertex
the genus of the corresponding component.

2. Edge Lengths: We add edge lengths in the following way. Given an edge
corresponding to a node q between two components Ci and Cj, the comple-
tion of the local ring OC,q is isomorphic to R[[x, y]]/(xy− f) where v(f) > 0.
Then, we define the length of the edge eij to be v(f).

So, why is this hard? Depending upon the equations that the curve arrives
to you with, the singularities when t = 0 could be worse than nodes. By the
semistable reduction theorem, we are always guaranteed in the abstract that we
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can replace a bad special fiber with a good one. However, this process is not
algorithmic, and this proves to be the main difficulty in finding the abstract trop-
icalization of a curve in explicit examples.

The problem of computing the abstract tropicalization has been studied in
several classes of curves.

1. In genus 1, the answer has been known for some time; one simply takes
the valuation of the j-invariant of the curve and if it is negative, then the
abstract tropicalization will be a cycle of length negative of this valuation.

2. The problem of computing the Berkovich skeleton for genus 2 curves was
done systematically by studying the ramification data in [RSS14] and using
Igusa invariants in [Hel16].

3. In the case of hyperelliptic curves, this problem was studied in [Cha13] and
later solved in [BBCar] using ramification data and admissible covers. In
[Hel17], Helminck presents criteria to reconstruct Berkovich skeleta using
Laplacians on metric graphs.

4. We [Brandt-Helminck] have also applied these techniques to the superellip-
tic case, to obtain an algorithm for tropicalizing superelliptic curves.
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