Invariants of Matrix Tuples

Madeline Brandt

March 14, 2019

In this talk I will discuss invariants of tuples of matrices under two different group actions:

1. Simultaneous Conjugation
2. Left-Right Action

For the entire talk, let K be an algebraically closed field of characteristic 0 , and let d and n be positive integers.

1 Simultaneous Conjugation

Consider the action of $S L_{n}(K)$ on d-tuples of matrices given by

$$
Z \cdot\left(X_{1}, \ldots, X_{d}\right) \mapsto\left(Z^{-1} X_{1} Z, \ldots, Z^{-1} X_{d} Z\right)
$$

for $Z \in S L_{n}(K)$ and $X_{1}, \ldots, X_{d} \in M_{n \times n}(K)$.
Each matrix gives n^{2} variables, so we have $m=d \cdot n^{2}$ total variables.
Question 1. Which polynomials in the $d \cdot n^{2}$ variables are invariant under this action?

Pop Quiz: Can you name some invariants? (trace, determinant...)
Claim 2. The following collection of polynomials are invariants:

$$
\left\{\operatorname{tr}\left(X_{i_{1}} \cdots X_{i_{t}}\right) \mid i_{j} \in[d]\right\}
$$

Proof.

$$
\begin{aligned}
\operatorname{tr}\left(A \cdot\left(X_{i_{1}} \cdots X_{i_{t}}\right)\right) & =\operatorname{tr}\left(A^{-1} X_{i_{1}} A \cdots A^{-1} X_{i_{t}} A\right) \\
& =\operatorname{tr}\left(A^{-1} X_{i_{1}} \cdots X_{i_{t}} A\right) \\
& =\operatorname{tr}\left(X_{i_{1}} \cdots X_{i_{t}}\right)
\end{aligned}
$$

Because $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
Proposition 3 (Procesi, Formanek, Razmyslov, Donkin). The polynomials

$$
\left\{\operatorname{tr}\left(X_{i_{1}} \cdots \cdots X_{i_{t}}\right) \mid t \leq n^{2}, \mathfrak{i}_{j} \in[d]\right\}
$$

generate the ring of invariants (when K is algebraically closed and characteristic 0).
Example 4. Let $d=1, n=2$. Then the generators are

$$
\begin{array}{ll}
\operatorname{tr}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & \operatorname{tr}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{2}\right) \quad \ldots \text { and } 2 \text { more } \\
=a+d & =a^{2}+2 b c+d^{2}
\end{array}
$$

Since the determinant is an invariant, we should be able to write

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

in terms of these. We see that

$$
a d-b c=\frac{1}{2}\left((a+d)^{2}-\left(a^{2}+2 b c+d^{2}\right)\right)
$$

Pros: these polynomials are explicit, have low degrees, and can be computed easily.
Cons: the generating set has size $(d+1)^{n^{2}}$, which is exponential in n.
By applications of Noether Normalization the size of the generating invariants can be much smaller in principle.

Question 5. Is there a more efficient way to obtain a generating set?
Theorem 6 (Mulmuley, Forbes - Shpilka). There is a deterministic polynomial time algorithm to solve the following problem: given two tuples of rational matrices, determine if the closure of their orbits under simultaneous conjugation intersect.

Proof. The proof idea is in two steps:

1. (Mulmuley) Give a probabilistic polynomial time algorithm by obtaining sufficiently random linear combinations of the invariants by using only polynomially many random bits.
2. (Forbes - Shpilka) De-randomize.

2 Left-Right Action

We now consider the following action by $\mathrm{SL}_{n}(\mathrm{~K}) \times \mathrm{SL}_{n}(\mathrm{~K})$ given by

$$
(Z, W) \cdot\left(X_{1}, \ldots, X_{d}\right) \mapsto\left(Z^{-1} X_{1} W, \ldots Z^{-1} X_{d} W\right)
$$

for $(Z, W) \in S L_{n}(K)$ and $X_{1}, \ldots, X_{d} \in M_{n \times n}(K)$.
Again, we have n^{2} variables in each matrix, for a total of $d \cdot n^{2}$ variables.
Question 7. Which polynomials in the $d \cdot n^{2}$ variables are invariant under this action?

Pop quiz: What are some invariants under this action? (det...)
Proposition 8. (Many people over several papers) The following collection of polynomials generate the invariants:

$$
\left\{\operatorname{det}\left(C_{1} \otimes X_{1}+\cdots+C_{d} \otimes X_{d}\right) \mid C_{i} \in M_{k}(K), k \in \mathbb{N}\right\}
$$

Here, $\mathrm{C} \otimes \mathrm{X}$ makes an $n k \times n k$ block matrix with blocks $\mathrm{c}_{\mathfrak{i j}} X$.
Pros: concisely described
Cons: infinite
There exits some bound on k, the dimension of the matrix coefficients C_{i}. After many improvements, Derksen and Makam proved that $k \leq n^{2}$.

Theorem 9. (Many people, source gives no single reference) There is a probabilistic polynomial time algorithm to solve the following problem. Given two tuples of rational matrices $\left(A_{1}, \ldots, A_{d}\right),\left(B_{1}, \ldots, B_{d}\right)$ to determine if the closure of their orbits under the left-right action intersect. In the case that all B_{i} are 0 , there is a deterministic algorithm.

