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Introduction
We will let R = k[x1, . . . , xr].

Definition 1. A free resolution of an R-module M is a complex

F : · · · → Fn
φn−→ · · · → F1

φ1−→ F0

of free R modules such that coker(φ1) = F0/im(φ1) = M and such that F is exact.
The image of the map φi is called the i-th syzygy module of M .

A free resolution is minimal if the image of each of the maps φi is contained in
mFi−1, where m = (x1, . . . , xn), meaning the corresponding matrices contain no entries
from the field k. Informally, we may think of a free resolution being minimal if each of
the matrices corresponding to these maps has no entries in the field k. Otherwise, we
would have a relation among the bases and so some of them were not strictly necessary.

Example Let I = (x2, y3, z6) ⊂ Q[x, y, z] = R. To resolve R/I, we must first find the
kernel of the map φ1 : R

3 → R is given by the matrix [x2 y3 z6] whose image is I. In
this case, we can do this by eyeballing, and so we get φ2 : R

3 → R3 is given by y3 0 z6

−x2 z6 0
0 −y3 −x2

 .
Then, we may compute the kernel of the above map, to find φ3 : R→ R3 is [z6 −x2 y3]T .
Then we have successfully computed this free resolution by repeatedly computing ker-
nels of maps.
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A Computer Experement
In Macaluay2 we can compute free resolutions of R/I:

R = QQ[x,y,z]
I = ideal(x2,y3,z6)
rs = res I
rs.dd

This will show you the resolution we computed by hand. How does Macaulay2
compute free resolutions? A first guess is that it does this in the same way we did it:
by repeatedly computing kernels. Here is some code that computes free resolutions in
this way:

badRes = I -> (
f := gens I;
L:= {};
while f != 0 do
(L = append(L,f);
f =gens ker gens image f);
append(L,f);
chainComplex(L))

You can load this command into Macaulay2 by dowloading the file badres.M2,
navigating yourself to the appropriate directory, and typing

load "badres.M2"

Then, we will compare the output of Macaulay2’s res command and my badRes
command. Notice that the generators are the same, but out of order. This is the first
indication that something different is going on.

Now, compute

clearAll
R = QQ[x_0 .. x_14]
load "badres.M2"
I = ideal vars R
time badRes I
time res I

We can see that badRes takes much more time. I have compared the times below
in the following plot:
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where the x-axis is n the number of variables, and the y-axis is time used to compute
the free resolution of I = (x1, . . . , xn). Blue dots are for res and red dots are for badRes.
We can see that badRes computes much more slowly than res.

This indicates Macaulay2 is computing free resolutions differently than the way we
first guessed.

Free Resolutions for Free
The efficient algorithm used by Macaulay2 for computing free resolutions is originally
do to Schreyer [Sch91].

Let F be a free R module with basis and let M be a submodule of F . Fix a
monomial order for F . Let G = {g1, . . . , gt} be generators of M . Let

mij =
in(gi)

gcd(in(gi), in(gj))
,

and
S(gi, gj) = mjigi −mijgj,

for all pairs i, j for which gi and gj involve the same basis element of F .
Buchberger’s Algorithm tells us that when we compute S(gi, gj) and the remainder

rij of this S-polynomial upon division by G, then if rij is nonzero, we add this to G and
continue pairwise testing the members of G. Buchberger’s criterion says that we are
done when rij = 0 for all i and j in {1, . . . , t}. So, for each i and j, when we compute
a Gröbner basis, we have already computed something of the form

S(gi, gj) =
∑
u

f (ij)
u gu + rij.

If G is a Gröbner basis, then by Buchberger’s criterion, rij = 0. Then we have,

0 =
∑
u

f (ij)
u gu −mjigi +mijgj.
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This is a syzygy on the gi.

Let
⊕

Rεi be a free module with basis εi corresponding to the gi. Let

φ :
⊕

Rεi → F, εi 7→ gi.

Let τij =
∑

u f
(ij)
u εu −mjiεi +mijεj.

Theorem 1 (Schreyer 15.10 [Eis95]). The τij defined above generate the syzygies on
the gi. In a monomial ideal, the syzygies are generated by the S-polynomials.

Additionally, the τij are a Gröbner basis for the syzygies with respect to the order
>, where > is the monomial order on

⊕
Rεj defined by taking mεu > nεv iff

in(mgu) > in(ngv) with respect to the order on F , or

in(mgu) = in(ngv) but u < v.

Under this ordering, we also have in(τij) = mjiεi.

So, given a module M , to compute a free resolution we do the following. First
compute a Gröbner basis for M , and using Buchberger’s criteria as above, compute
the syzygies on the Gröbner basis elements. To obtain the syzygies on the original
generators of M , substitute into these syzygies the expressions for the Gröbner basis
elements in terms of the original generators.

Example Let g1 = x2 and g2 = xy + y2. Use the lex order where x > y. Last week,
Liz showed us that we obtain a Gröbner basis if we add in the polynomial

g3 = y3 = yg1 − xg2 + yg2.

Now, we test for Buchberger’s criterion, and find that

r12 = 0 = yg1 − xg2 + yg2 − g3,
r23 = 0 = y2g2 − xg3 − yg3,
r13 = 0 = y3g1 − x2g3.

Then set

τ12 = yε1 − xε2 + yε2 − ε3,
τ23 = y2ε2 − xε3 − yε3,
τ13 = y3ε1 − x2ε3.

.
So far, we know that g1, g2, g3 form a Gröbner basis and that τ12, τ23, τ13 generate

the syzygies on them.
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To obtain the syzygies on the original generators, we recall that g3 = yg2+(y−x)g2.
So, we set τ12 = 0, and substitute ε3 = yε1 − xε2 + yε2 into the expressions for τ23, τ13.
Then we find that

τ23 = (−xy − y2)ε1 + x2ε2, τ13 = (y3 − x2y)ε1 + (−x2y + x3)ε2.

However, this is not minimal since τ13 = (−y+x)τ23, and so the syzygies on the original
generators are completely generated by τ23.

This algorithm is what Macaulay2 uses to compute free resolutions, and this is
much more efficient than repeatedly computing kernels. Furthermore, it can give us
the entire free resolution, since the τij give a Gröbner basis for the first Syzygy module.

Hilbert Syzygy Theorem
We are now ready to prove Hilbert’s Syzygy Theorem, so we will restate it below.

Theorem 2 (Hilbert Syzygy Theorem 15.11 [Eis95]). Suppose that the gi are arranged
such that whenever in(gi) and in(gj) involve the same basis element ε of F , say in(gi) =
niε and in(gj) = njε with ni, nj ∈ R, we have i < j implies ni > nj in the lexicographic
order. If the variables x1, . . . , xs are missing from the initial terms of the gi, then

1. The variables x1, . . . , xs+1 are missing from the in(τij)

2. F/(g1, . . . , gt) has a free resolution of length less than or equal to r − s.

In particular, every finitely generated R-module has a free resolution of length less than
or equal to r.

By the previous theorem, we have that in(τij) = mjiεi. Since in(gi) ≥ in(gj) we
have that mi ≥ mj in the lex order. Then xs+1 appears in mi with at least as high a
power as in mj, so it does not appear in mji. This proves (1).

For (2), we proceed by induction. First, suppose r − s = 0. Then none of the xi
appear in the in(gi), so then in(g1, . . . , gt) is the free submodule of F generated by the
εi which appear in the in(gi). Let F ′ be the free module generated by the other εj, and
consider

F ′ ⊂ F → F/(g1, . . . , gt).

Since F/(g1, . . . , gt) has a basis of monomials in F ′ (Theorem 15.3: {monomials}\in(M)
generates F/M) this is actually an isomorphism, so F/(g1, . . . , gt) is free.

Now suppose r − s > 0. By (1), we have that x1, . . . , xs+1 are missing from the
τij. We may order the τij so that they satisfy the same hypotheses as those on the gi.
Then by induction, ⊕

Rεi/({τij})

has a free resolution of length r − s − 1. Then putting this together with the map
φ :
⊕

Rεi → F , we get the desired free resolution of F/(g1, . . . , gt).
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Free Resolutions of Monomial Ideals: 3 Variables
Let R = k[x, y, z], and let I = (m1, . . . ,mr) be a monomial ideal in R. As we saw in
the previous section, the first syzygies of I are generated by the S-polynomials:

σij =
lcm(mi,mj)

mi

εi −
lcm(mi,mj)

mj

εj.

There are
(
r
2

)
of these in total, but they do not generate the syzygies minimally.

Definition 2. Define a graph associated to I called the Buchberger graph Buch(I).
The vertex set will be the numbers {1, . . . , r} and there will be an edge {i, j} whenever
there is no mk such that mk | lcm(mi,mj) and the degree of mk is different from
lcm(mi,mj) in every variable that occurs in lcm(mi,mj).

Then we have the following proposition:

Theorem 3 ([MS99]). The syzygies on I are generated by the σij such that {i, j} is
an edge of Buch(I).

In fact, we can obtain the entire free resolution from this graph Buch(I). Suppose
Buch(I) is planar, and Buch(I) has v vertices, e edges, and f faces. Then

FG : 0→ Rf δF−→ Re δE−→ Rv → R→ 0

is a free resolution, where for an edge eij,

δE(eij) = σij,

and for a face W ,

δF (W ) =
∑
e∈W

± lcm(v ∈ R)
mij

,

where the sign is positive when the edge is oriented clockwise around W .
One complication is that the graph Buch(I) is not necessarily planar, and will not

always give a minimal free resolution. However, in the case when I is strongly generic,
the graph Buch(I) is planar, connected, and gives a minimal free resolution of I. So
when I is not strongly generic, we may approximate it by a strongly generic ideal to
obtain a planar graph which we may specialize to I. Then, removing extra edges, this
planar graph will give a minimal free resolution of I.

Theorem 4 ([MS99]). Every monomial ideal I in k[x, y, z] has a minimal free resolu-
tion by some planar graph.

Example Let I = (x2, xy, y2, yz, z2, xz). Then Buch(I) is
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If we approximate I by the ideal Iε = (x2, xy1.1, y2, yz1.1, z2, x1.1z) ⊂ k[x1/10, y1/10, z1/10],
then Buch(Iε) is

If we consider this as a subgraph of Buch(I) in the natural way, then we notice that
one edge on the interior triangle will be redundant, because yεxz−zεxy = (yεxz−xεyz)+
(xεyz − zεxy), so we can remove one of these edges to obtain:

Then a minimal free resolution of I is given by

0→ R3 → R8 → R6 → R→ 0.
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In general, for the ideal I = (x, y, z)m, we can take the same triangle graph but scaled
up, and for each “down" triangle, remove an edge (it will be redundant for the same
reason as above). Counting the vertices, edge, and faces, a free resolution in this case
is given by

0→ R(
n+1
2 ) → Rn(n+2) → R(

n+2
2 ) → R→ 0.

These “geometric” resolutions can be extended for higher variables.

Conclusions
We found that some syzygies are computed while computing a Gröbner basis of an
ideal, and in fact, these syzygies generate all syzygies on the ideal. This observation
gives an efficient method for computing free resolutions, and gives a geometric method
for finding free resolutions of some monomial ideals.
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