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Abstract

The Grassmannian GrM of a realizable matroid M is an algebraic variety
which provides an example of a realization space for the matroid M . In this
talk, we give a brief introduction to tropical geometry, and then we study the
properties of two tropical objects related to GrM , namely its tropicalization and
a tropical prevariety called the Dressian, whose points give all regular matroid
subdivisions of the matroid polytope of M . We will compute examples and study
them in detail. No prior knowledge of tropical geometry is assumed.

1 Some Tropical Geometry
Let K be an algebraically closed field. A valuation on K is a function v : K → R∪∞
satisfying the following properties:

1. v(a) =∞ if and only if a = 0,

2. v(ab) = v(a) + v(b),

3. v(a+ b) ≥ min(v(a), v(b))

Example. The trivial valuation sends all nonzero elements to 0 and 0 to ∞. The
puiseux series

C{{t}} =

{
∞∑
i=1

ait
bi/n | ai ∈ C, bi increasing integer sequence, n ∈ N

}

has a valuation sending an element of the above form to b1/n.

In tropical geometry, we study varieties inside the torus (K∗)n.

Definition 1. Let I be an ideal in K[x±10 , . . . , x±1n ], where K is a field with nontrivial
valuation. The tropical variety over K associated to I is the closure in Rn+1 of

trop(V (I)) = {(v(y0), . . . , v(yn)) | (y0, . . . , yn) ∈ V (I)}.
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By the Structure Theorem for Tropical Varieties (Theorem 3.3.5, [MS15]), this is
the support of a a balanced, weighted polyhedral complex which is pure of the same
dimension as the variety. Moreover, it is connected through codimension 1.

By the Fundamental Theorem of Tropical Algebraic Geometry (Theorem 3.2.3,
[MS15]), this coincides with ⋂

f∈I

trop(V (f))

where trop(V (f)) is the tropical hypersurface associated to the polynomial f (See
Definition 3.1.1, [MS15]).

By a theorem, for every ideal there exists a finite set B called a tropical basis
over which it is sufficient to take the above intersection. However, it can be difficult to
find such a B. In light of this, a set of the form⋂

f∈B′

trop(V (f))

where B′ is any collection of generators for I is called a tropical prevariety.

2 Grassmannians of Matroids
The Grassmannian (with the Plücker embedding) G(r,m) ⊂ P(m

r )−1 is the image
of Kr×m under the Plücker embedding, which sends a matrix to the vector of its
r × r minors, its Plücker coordinates. It is a smooth algebraic variety defined
by equations called the Plücker relations. Points of this variety correspond to r-
dimensional linear subspaces of Km.

We now study the open subset G0(r,m) of the Grassmannian, which parametrizes
subspaces whose Plucker coordinates are all nonzero, and its tropicalization. This is
defined by the Plücker relations in the Laurent polynomial ring in

(
m
r

)
variables. Points

in this variety correspond to matrices where no Plücker coordinate (minor) vanishes.
In other words, these are matrices which give the uniform matroid of rank r on [m].

More generally, let M be a matroid of rank r on the set E = [m]. For any basis σ
of M , we introduce a variable pσ. From here, we make a Laurent polynomial ring over
the field K:

K[p±1σ | σ is a basis of M ].

Let IM be the ideal in this ring whose generators are obtained from the Plücker relations
by setting all variables not indexing a basis to zero. The Plücker relations can be
obtained in Macaulay2 by writing Grassmannian(r-1,m-1).

The variety GrM = V (IM) is the realization space of the matroid M , in the
following sense. Points in GrM correspond to equivalence classes of r × m matrices
that realize the matroid M . Equivalently, this is the variety of all r-dimensional linear
subspaces of Km whose nonzero Plucker coordinates are the bases of M . This variety
is empty if and only if M is not realizable over K.
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3 Tropical Grassmannian and Dressian
The tropicalization trop(GrM) of the realization space is called the tropical Grass-
mannian of M . We note here that when the rank is 2, the generators for IM described
above form a tropical basis. Otherwise, they almost always do not.

Definition 2. TheDressianDrM of the matroidM is the tropical prevariety obtained
by intersecting the tropical hypersurfaces of the described generators for IM .

By definition, we have that trop(GrM) ⊆ DrM , and equality holds if and only if
the quadratic Plücker relations form a tropical basis. So, when r = 2 we have equality,
and typically when r ≥ 3 we do not have equality.

4 Matroid subdivisions and the Dressian
The matroid polytope of M is the convex hull of the indicator vectors of the bases
of M .

Theorem 1 (GGMS Theorem, 4.2.12 in [MS15]). A polytope P with vertices in {0, 1}n+1

is a matroid polytope if and only if every edge of P is parallel to ei − ej.

A subdivision of the matroid polytope PM is a matroid subdivision if all of its
edges are translates of ei−ej. Then, every cell of the subdivision is a matroid polytope.
Every vector w in R|B|/R1 induces a regular subdivision ∆w of the polytope PM .

Proposition 1. Let M be a matroid, and let w ∈ R|B|. Then w lies in the Dressian
DrM if and only if the corresponding regular subdivision is a matroid subdivision.

Example. Let M = U(2, 4), the uniform rank 2 matroid on 4 elements (every pair is
a basis).

First, we compute the tropical Grassmannian and Dressian. To do this, we need to
find IM . The Plücker relations for Gr(2, 4) ⊂ C[p01, p02, p03, p12, p13, p23] are given by a
single equation

p03p12 − p02p13 + p01p23.

These were computed in Macaulay2. Then, the tropical Grassmannian equals the
Dressian (since we are in the hypersurface case). We can compute the tropical variety
in gfan. This tells us the following data:

The ambient dimension is 5, the dimension of the tropical variety is 5, the lineality
dimension is 4, and there are 3 rays (which form the maximal cones):

(−2, 1, 1, 1, 1,−2)

(1,−2, 1, 1,−2, 1)

(1, 1,−2,−2, 1, 1)
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My “cartoon” for what this looks like is given below. For each plane in the picture
one should imagine a 5-dimensional linear space.

Now, let us study the matroid polytope. The ground set E = {0, 1, 2, 3} has 4
elements, and any two elements together form a basis. So, the matroid polytope is
given by the hypersimplex

∆(2, 4) = conv((1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)),

and it looks like

We can compute in Polymake the regular subdivisions corresponding to points in
our fan, and confirm that they are matroidal. For example, the subdivision given by
the first ray has weight vector

w = (2,−1,−1,−1,−1, 2)

which subdivides the polytope in to two rectangular pyramids, the top half and the
bottom half. Each of these is a matroid polytope corresponding to setting either p01
or p34 to 0 (making the corresponding pair a non-basis).
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5 What else is known about tropical Grassmannians
and Dressians?

One large area of study is the relationship of tropical linear spaces to tropicalized
linear spaces, and the way in which these objects are parametrized by the Dressian and
tropical Grassmannian respectively. We will not go into detail on this correspondence
in the talk but the interested reader may look at [MS15], Chapter 4.

Here we give some open questions related to Dressians and the results in each of
these directions.

1. What is the dimension of the Dressian, and what sorts of subdivisions to the
maximal cones correspond to?

In [JS17] the authords give bounds on the dimension (theorem 31).

In [HJJS09], they show that the dimension of the dressian Dr(3, n) is of order
O(n2). It is later proved in [JS17] that for fixed d the dimension of the Dressian
is of order O(nd−1)

2. Characterize rays of Dr(3, n) (i.e., coarsest matroid subdivisions of ∆(3, n)).
[HJJS09]

Some amount of highly detailed work exhibiting specific types of rays is given in
[JS17].

3. Are all rays of Dr(3, n) also rays of Gr(3, n)? [HJJS09] What about in general
[HJS14]?

The authors show ([JS17], Corollary 42) that this is false for r = 4, n ≥ 11 and
r ≥ 5, n ≥ 10. It is known to be true for r = 3 and a few small n.

4. Is it feasible to compute Gr(3, 8) [HJS14]?

In [HJJS09] they compute the tropical Dressian and Grassmannian for the case
(3,7).

5. Is it feasible to compute Dr(4, 8) [HJS14]?

In [HJS14], they compute the Dressian for the (3, 8) case.

6. Are there interesting examples of matroids and their Dressians?

In [HJJS09], the authors also compute the Dressian and Grassmannian for the
Pappus matroid, and give an in-depth analysis of the corresponding matroid
subdivisions of the matroid polytope.
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