Packings of Four Equal Circles on Flat Tori

Madeline Brandt ${ }^{1}$ Hanson Smith ${ }^{2}$

${ }^{1}$ Reed College, Portland, OR
${ }^{2}$ Colorado College, Colorado Springs, CO

Grand Valley State Mathematics REU, 2013

Our Goal

Our goal for this summer is to find the optimal (most dense) packing of four equal circles on every flat torus.

Our Goal

Our goal for this summer is to find the optimal (most dense) packing of four equal circles on every flat torus.

An Optimal Packing of Four Equal Circles on a Flat Torus

An Equal Circle Packing and Its Density

An equal circle packing is an arrangement of mutually disjoint circles with the same radii in a container.

An Equal Circle Packing and Its Density

An equal circle packing is an arrangement of mutually disjoint circles with the same radii in a container.

We define its density as $\frac{\text { the area of the circles }}{\text { the area of the container }}$.

The Flat Torus

Intuitively, a flat torus is a parallelogram with opposite sides identified:

The Flat Torus

Intuitively, a flat torus is a parallelogram with opposite sides identified:

Note that this is not the 3 dimensional torus embedded in \mathbb{R}^{3}.

Equivalence Classes

- We can define a torus by thinking of adjacent sides as vectors. We call these vectors basis vectors.

Equivalence Classes

- We can define a torus by thinking of adjacent sides as vectors. We call these vectors basis vectors.
- Two points in the plane are in the same equivalence class if they differ by a integer linear combination of the basis vectors.

Equivalence Classes

- We can define a torus by thinking of adjacent sides as vectors. We call these vectors basis vectors.
- Two points in the plane are in the same equivalence class if they differ by a integer linear combination of the basis vectors.
- We call two points that are equivalent different lifts of each other.

The Moduli Space

By performing density preserving transformations, we can say any torus is equivalent to one with basis vectors as in the figure.

The Moduli Space

By performing density preserving transformations, we can say any torus is equivalent to one with basis vectors as in the figure.

We can therefore associate every torus to a point in the shaded pink region. We call this region the moduli space of flat tori.

Packing Graphs

Definition

Given a packing, we can associate to it a equilateral packing graph, where

Circle Packing

Packing Graph

Packing Graphs

Definition

Given a packing, we can associate to it a equilateral packing graph, where

- vertices correspond to centers of circles

Circle Packing

Packing Graph

Packing Graphs

Definition

Given a packing, we can associate to it a equilateral packing graph, where

- vertices correspond to centers of circles
- edges connect centers of tangent circles

Circle Packing

Packing Graph

Combinatorial Graphs

Given a equilateral packing graph, we can associate to it a combinatorial (multi)graph, where:

Packing Graph

Combinatorial Graph

Combinatorial Graphs

Given a equilateral packing graph, we can associate to it a combinatorial (multi)graph, where:

- edges do not have length and vertices do not have location

Packing Graph

Combinatorial Graph

Combinatorial Graphs

Given a equilateral packing graph, we can associate to it a combinatorial (multi)graph, where:

- edges do not have length and vertices do not have location
- the number of circles and their shared tangencies are still represented

Packing Graph

Combinatorial Graph

Overview of Our Approach

Since any optimal packing will have a packing graph associated to it, we can find all optimal packings on flat tori by starting with all possible combinatorial graphs.
From there, we will:

Overview of Our Approach

Since any optimal packing will have a packing graph associated to it, we can find all optimal packings on flat tori by starting with all possible combinatorial graphs.
From there, we will:

- Eliminate combinatorial graphs which can not correspond to circle packings,

Overview of Our Approach

Since any optimal packing will have a packing graph associated to it, we can find all optimal packings on flat tori by starting with all possible combinatorial graphs.
From there, we will:

- Eliminate combinatorial graphs which can not correspond to circle packings,
- Embed the combinatorial graphs onto tori,

Overview of Our Approach

Since any optimal packing will have a packing graph associated to it, we can find all optimal packings on flat tori by starting with all possible combinatorial graphs.
From there, we will:

- Eliminate combinatorial graphs which can not correspond to circle packings,
- Embed the combinatorial graphs onto tori,
- Construct equilateral packing graphs from the embedded graphs,

Overview of Our Approach

Since any optimal packing will have a packing graph associated to it, we can find all optimal packings on flat tori by starting with all possible combinatorial graphs.
From there, we will:

- Eliminate combinatorial graphs which can not correspond to circle packings,
- Embed the combinatorial graphs onto tori,
- Construct equilateral packing graphs from the embedded graphs,
- Establish which packings are optimal,

Overview of Our Approach

Since any optimal packing will have a packing graph associated to it, we can find all optimal packings on flat tori by starting with all possible combinatorial graphs.
From there, we will:

- Eliminate combinatorial graphs which can not correspond to circle packings,
- Embed the combinatorial graphs onto tori,
- Construct equilateral packing graphs from the embedded graphs,
- Establish which packings are optimal,
- Determine which tori these packings can occur on.

The Combinatorial Graphs we consider

- Using Rigidity Theory it is possible to show that we only need to consider combinatorial graphs with between 7 and 12 edges.

Combinatorial Graph 1

Combinatorial Graph 2

The Combinatorial Graphs we consider

- Using Rigidity Theory it is possible to show that we only need to consider combinatorial graphs with between 7 and 12 edges.

Combinatorial Graph 1

Combinatorial Graph 2

This means we have 825 combinatorial graphs to consider. ${ }^{1}$
${ }^{1}$ we obtained the graphs from Dr. Gordon Royle at The University of Western Australia.

Elimination of the Combinatorial Graphs

To eliminate combinatorial graphs, we noted some restrictions on vertex degree and the number of edges between vertices:

Elimination of the Combinatorial Graphs

To eliminate combinatorial graphs, we noted some restrictions on vertex degree and the number of edges between vertices:

- The minimum degree of each vertex is 3 because we want only optimal packings.

Elimination of the Combinatorial Graphs

To eliminate combinatorial graphs, we noted some restrictions on vertex degree and the number of edges between vertices:

- The minimum degree of each vertex is 3 because we want only optimal packings.
- The maximum degree for each vertex is 6 and only graphs with 12 edges can have a vertex of degree 6 .

Elimination of the Combinatorial Graphs

To eliminate combinatorial graphs, we noted some restrictions on vertex degree and the number of edges between vertices:

- The minimum degree of each vertex is 3 because we want only optimal packings.
- The maximum degree for each vertex is 6 and only graphs with 12 edges can have a vertex of degree 6 .
- Two circles cannot share three or more tangencies as the packing becomes too dense.

Elimination of the Combinatorial Graphs

To eliminate combinatorial graphs, we noted some restrictions on vertex degree and the number of edges between vertices:

- The minimum degree of each vertex is 3 because we want only optimal packings.
- The maximum degree for each vertex is 6 and only graphs with 12 edges can have a vertex of degree 6 .
- Two circles cannot share three or more tangencies as the packing becomes too dense.

Of the 825 , we now have only 14 combinatorial graphs to consider.

Embedding Combinatorial Graphs

Professor William Dickinson, using techniques from Topological
Graph Theory, created a computer program that embeds combinatorial graphs on a flat torus. These graphs are potential packing graphs, but not yet equilateral.

Combinatorial
Graph

Toroidal Embedding 1

Toroidal Embedding 2

Constructing the Packings Geometrically

Because many of the 14 combinatorial graphs had multiple embeddings, there were 31 potential packing graphs to examine.

Combinatorial Graph

Toroidal Embedding

Equilateral
Construction

Constructing the Packings Geometrically

Because many of the 14 combinatorial graphs had multiple embeddings, there were 31 potential packing graphs to examine.

We attempted to construct the potential packing graphs as equilateral packing graphs. Using techniques from Rigidity Theory and comparing densities allowed us to determine the 9 distinct equilateral packing graphs that correspond to optimally dense packings.

Combinatorial Graph

Toroidal Embedding

Equilateral
Construction

The Correspondence Between a Packing and the Moduli Space

An equilateral packing graph will have a lot of structure, leaving only a small number of free parameters.

One of our 9 optimal packings

The Correspondence Between a Packing and the Moduli Space

An equilateral packing graph will have a lot of structure, leaving only a small number of free parameters.

One of our 9 optimal packings
Lifts of the same circle will determine basis vectors, so the equilateral packing graph determines which tori it embeds on.

The Correspondence Between a Packing and the Moduli Space

Main Result

Theorem

The globally maximally dense packings of four equal circles on flat tori are given by the packing graphs which occupy the following regions in the moduli space.

Each region corresponds to a packing graph which represents the most dense packing on those tori.

Main Result

Theorem

The globally maximally dense packings of four equal circles on flat tori are given by the packing graphs which occupy the following regions in the moduli space.

Each region corresponds to a packing graph which represents the most dense packing on those tori.

Density in the Moduli Space

This is a plot of the density of the optimally dense packing for a given point in the moduli space.

Tori in the pink regions have more dense optimal packings, while tori in the blue regions have less dense optimal packings.

Density in the Moduli Space

The yellow dots show tori with the highest optimal packing density, $\frac{\pi}{\sqrt{12}} \approx 0.9$.

Density in the Moduli Space

The yellow dot shows the torus with the lowest optimal packing density, near 0.7.

Acknowledgements

We would like to thank our advisor, Professor William Dickinson.

This work was partially supported by National Science Foundation grant DMS-1262342, which funds a Research Experience for Undergraduates program at Grand Valley State University.

Thank You!

