From Polynomials to Metric Graphs

Madeline Brandt

Polynomials and Polytopes
TU Berlin
June 10, 2017

Tropical Geometry

Goal: Turn questions about algebraic varieties into questions about polyhedral complexes.

Why: The polyhedral complex retains some information about the original variety that we are interested in.

Valuation

Definition

A valuation is a function $v: K \rightarrow \mathbb{R} \cup\{\infty\}$ satisfying:

1. $v(a)=\infty$ if and only if $a=0$,
2. $v(a b)=v(a)+v(b)$
3. $v(a+b) \geq \min \{v(a), v(b)\}$

Let K be an algebraically closed field which is complete with respect to a non-trivial valuation $v: K^{*} \rightarrow \mathbb{R}$.

Example

The Puiseux series: $\mathbb{C}\{\{t\}\}=\left\{f=\sum_{k=k_{0}}^{\infty} c_{k} t^{k / n} \mid c_{k} \in \mathbb{C}, n \in \mathbb{Z}\right\}$ Valuation: $v(f)=k / n$, where k is the smallest index with $c_{k} \neq 0$.

Tropicalization of Algebraic Varieties

Let $I \subset K\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ be an ideal and $V(I)=X \subset\left(K^{*}\right)^{n}$ be an algebraic subvariety of the torus. Then the tropicalization of X is:

$$
\operatorname{Trop}(X)=\left\{\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \in X=V(I)\right\}
$$

If the variety X is a hypersurface defined by a single polynomial $f=\sum c_{a} x^{a}$, then this is the same as the collection of points $x \in \mathbb{R}^{n}$ where

$$
\min _{a \in \mathbb{Z}^{n}}\left(v\left(c_{a}\right)+x \cdot a\right)
$$

is attained twice.

Tropicalizing Plane Curves: Newton Polytope and Subdivision

$$
f(x, y, z)=-2^{8} x^{3} y-2 x^{2} y^{2}-2^{8} x y^{3}-2^{3} x^{2} y-2^{3} x y^{2}-x y-2 x^{3}-2 y
$$

Tropicalizing Plane Curves: Newton Polytope and Subdivision

$$
f(x, y, z)=-2^{8} x^{3} y-2 x^{2} y^{2}-2^{8} x y^{3}-2^{3} x^{2} y-2^{3} x y^{2}-x y-2 x^{3}-2 y
$$

Example: Depends on embedding

$$
f(X, Y, Z)=-2^{8} X^{3} Y-2 X^{2} Y^{2}-2^{8} X Y^{3}-2^{3} X^{2} Y Z-2^{3} X Y^{2} Z-X Y Z^{2}-2 X^{3} Z-2 Y Z^{3}
$$

Change coordinates:

$$
\begin{aligned}
X= & x+y-z, Y=x-y-z, Z=-5 x-5 y-7 z \\
f= & 41 x^{4}+1530 x^{3} y+3508 x^{3} z \\
& +1424 x^{2} y^{2}+2490 x^{2} y z-2274 x^{2} z^{2} \\
& +470 x y^{3}+680 x y^{2} z-930 x y z^{2}+ \\
& 772 x z^{3}+535 y^{4}-350 y^{3} z \\
& -1960 y^{2} z^{2}-3090 y z^{3}-2047 z^{4},
\end{aligned}
$$

and now the tropicalization reveals nothing.
Question: How do we find the best tropicalization?

What is a metric graph?

Definition

A metric graph is a triple (G, l, w) where:

- G is a connected graph,
- $l: E(G) \rightarrow \mathbb{R}_{>0}$ gives the edge lengths,
- $w: V(G) \rightarrow \mathbb{Z}_{\geq 0}$ is a weight function on the vertices.

We require that every weight 0 vertex has degree at least 3 .
The genus is $g(G)+\sum_{v \in V} w(v)$.

Semistable Models

If X is a curve defined over the Puiseux series, we will now think of X as a family of curves X_{t} with parameter t which is nice for $t \neq 0$ and X_{0} is possibly singular.

We need the special fiber X_{0} to be semistable: has at worst nodal singualrities.

Theorem (Semistable reduction theorem)
We can always "replace" the (potentially non-semistable) curve X_{0} obtained by setting $t=0$ with another semistable curve.

Dual Graph

The dual graph to a semistable curve with irreducible components C_{1}, \ldots, C_{n} is the graph with vertices v_{i} corresponding to the components, and an edge whenever the components intersect. If C_{i} has genus g_{i}, then $w\left(v_{i}\right):=g_{i}$.

Tropicalization and Metric Graphs

How does this relate back to tropicalization?
If one has a faithful tropicalization, the structure seen in the tropicalization is the same as in this metric graph [BPR13].

However, it can be difficult to certify faithfulness. It is not known how to certify a faithful tropicalization in general [BPR16, BBCar].

My goal is to be able to find this metric graph in an algorithmic way just from polynomial equations defining a curve.

Hyperelliptic Curves and Ramification Points

$$
\begin{gathered}
\begin{array}{c}
\text { hyperelliptic } \\
\text { curve }
\end{array} \leftrightarrow \begin{array}{c}
y^{2}=f(x), \\
\operatorname{deg}(f)=2 g+2
\end{array}
\end{gathered} \leftrightarrow \begin{gathered}
\text { double cover of } \mathbb{P}^{1} \\
\text { ramified at roots of } f
\end{gathered}
$$

$$
y^{2}=(x-1)(x-1-t)(x-2)(x-2-t)(x-3)(x-3-t)
$$

trop

Algorithm for $\mathcal{M}_{0,2 g+2} \rightarrow \mathcal{M}_{0,2 g+2}^{\text {trop }}$

This algorithm is described in [RSS14].

$$
p=(1,1+t, 2,2+t, 3,3+t)
$$

1. Let $w_{i j}$ be a vector of $\binom{n}{2}$ pairwise differences of the points p_{k}.

$$
w=(t, 1,1+t, 2,2+t, 1-t, 1,2-t, 2, t, 1,1+t, 1-t, 1, t)
$$

2. The vector $d_{i j}:=N-2 v\left(w_{i j}\right)$ for large N is a distance vector on a tree: $d_{i j}$ is the distance between leaves i and j.

$$
d=(2,4,4,4,4,4,4,4,4,2,4,4,4,4,2)
$$

3. Use the neighbor joining algorithm to reconstruct the tree.

Tropicalizations of Hyperelliptic Curves

Theorem

For every tree, there is exactly one metric graph which is a degree 2 admissible cover of that tree. This gives an algorithm for abstract tropicalization of hyperelliptic curves.

Conclusion

Next:

1. Tropicalizing plane quartics.

2. Tropicalizing curves $y^{p}=f(x)$.

References:

- Barbara Bolognese, Madeline Brandt, and Lynn Chua, From curves to tropical jacobians and back, Combinatorial Algebraic Geometry (G.G. Smith and B. Sturmfels, eds.), to appear.
- Matthew Baker, Sam Payne, and Joseph Rabinoff, On the structure of non-Archimedean analytic curves, Tropical and non-Archimedean geometry, Contemp. Math., vol. 605, Amer. Math. Soc., Providence, RI, 2013, pp. 93-121.
- , Nonarchimedean geometry, tropicalization, and metrics on curves, Algebraic Geometry 3 (2016), no. 1, 63-105.
- Melody Chan, Tropical hyperelliptic curves, Journal of Algebraic Combinatorics. An International Journal 37 (2013), no. 2, 331-359.
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998.
- Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015.

Qingchun Ren, Steven V. Sam, and Bernd Sturmfels, Tropicalization of classical moduli spaces, Mathematics in Computer Science 8 (2014), no. 2, 119-145.

