From Polynomials to Metric Graphs

Madeline Brandt

Polynomials and Polytopes TU Berlin

June 10, 2017

Tropical Geometry

Goal: Turn questions about algebraic varieties into questions about polyhedral complexes.

Why: The polyhedral complex retains some information about the original variety that we are interested in.

Valuation

Definition

A valuation is a function $v : K \to \mathbb{R} \cup \{\infty\}$ satisfying:

1.
$$v(a) = \infty$$
 if and only if $a = 0$,

2.
$$v(ab) = v(a) + v(b)$$

3.
$$v(a+b) \ge \min\{v(a), v(b)\}$$

Let *K* be an algebraically closed field which is complete with respect to a non-trivial valuation $v : K^* \to \mathbb{R}$.

Example

The Puiseux series: $\mathbb{C}\{\{t\}\} = \{f = \sum_{k=k_0}^{\infty} c_k t^{k/n} \mid c_k \in \mathbb{C}, n \in \mathbb{Z}\}$ Valuation: v(f) = k/n, where k is the smallest index with $c_k \neq 0$.

Tropicalization of Algebraic Varieties

Let $I \subset K[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ be an ideal and $V(I) = X \subset (K^*)^n$ be an algebraic subvariety of the torus. Then the tropicalization of X is:

$$\mathsf{Trop}(X) = \{ (v(x_1), \ldots, v(x_n)) \in \mathbb{R}^n \mid (x_1, \ldots, x_n) \in X = V(I) \}$$

If the variety X is a hypersurface defined by a single polynomial $f = \sum c_a x^a$, then this is the same as the collection of points $x \in \mathbb{R}^n$ where

$$min_{a\in\mathbb{Z}^n}(v(c_a)+x\cdot a)$$

is attained twice.

Tropicalizing Plane Curves: Newton Polytope and Subdivision

 $f(x, y, z) = -2^{8}x^{3}y - 2x^{2}y^{2} - 2^{8}xy^{3} - 2^{3}x^{2}y - 2^{3}xy^{2} - xy - 2x^{3} - 2y$

Tropicalizing Plane Curves: Newton Polytope and Subdivision

Example: Depends on embedding

$$f(X, Y, Z) = -2^{8}X^{3}Y - 2X^{2}Y^{2} - 2^{8}XY^{3} - 2^{3}X^{2}YZ - 2^{3}XY^{2}Z - XYZ^{2} - 2X^{3}Z - 2YZ^{3}$$

Change coordinates:
$$X = x + y - z, \ Y = x - y - z, \ Z = -5x - 5y - 7z$$

$$f = 41x^{4} + 1530x^{3}y + 3508x^{3}z + 1424x^{2}y^{2} + 2490x^{2}yz - 2274x^{2}z^{2} + 470xy^{3} + 680xy^{2}z - 930xyz^{2} + 772xz^{3} + 535y^{4} - 350y^{3}z + 1960y^{2}z^{2} - 3090yz^{3} - 2047z^{4},$$

and now the tropicalization reveals nothing.

Question: How do we find the best tropicalization?

What is a metric graph?

Definition

A metric graph is a triple (G, l, w) where:

- *G* is a connected graph,
- $l: E(G) \to \mathbb{R}_{>0}$ gives the edge lengths,
- $w: V(G) \to \mathbb{Z}_{\geq 0}$ is a weight function on the vertices.

We require that every weight 0 vertex has degree at least 3. The genus is $g(G) + \sum_{v \in V} w(v)$.

Semistable Models

If X is a curve defined over the Puiseux series, we will now think of X as a family of curves X_t with parameter t which is nice for $t \neq 0$ and X_0 is possibly singular.

We need the special fiber X_0 to be semistable: has at worst nodal singualrities.

Theorem (Semistable reduction theorem)

We can always "replace" the (potentially non-semistable) curve X_0 obtained by setting t = 0 with another semistable curve.

Dual Graph

The dual graph to a semistable curve with irreducible components C_1, \ldots, C_n is the graph with vertices v_i corresponding to the components, and an edge whenever the components intersect. If C_i has genus g_i , then $w(v_i) := g_i$.

Tropicalization and Metric Graphs

How does this relate back to tropicalization?

If one has a faithful tropicalization, the structure seen in the tropicalization is the same as in this metric graph [BPR13].

However, it can be difficult to certify faithfulness. It is not known how to certify a faithful tropicalization in general [BPR16, BBCar].

My goal is to be able to find this metric graph in an algorithmic way just from polynomial equations defining a curve.

Hyperelliptic Curves and Ramification Points

Algorithm for $\mathcal{M}_{0,2g+2} \rightarrow \mathcal{M}_{0,2g+2}^{trop}$

This algorithm is described in [RSS14].

$$p = (1, 1 + t, 2, 2 + t, 3, 3 + t)$$

- 1. Let w_{ij} be a vector of $\binom{n}{2}$ pairwise differences of the points p_k . w = (t, 1, 1 + t, 2, 2 + t, 1 - t, 1, 2 - t, 2, t, 1, 1 + t, 1 - t, 1, t)
- 2. The vector $d_{ij} := N 2v(w_{ij})$ for large N is a distance vector on a tree: d_{ij} is the distance between leaves *i* and *j*.

$$d = (2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2)$$

3. Use the neighbor joining algorithm to reconstruct the tree.

Tropicalizations of Hyperelliptic Curves

Theorem

For every tree, there is exactly one metric graph which is a degree 2 admissible cover of that tree. This gives an algorithm for abstract tropicalization of hyperelliptic curves.

Conclusion

Next:

- 1. Tropicalizing plane quartics.
- **2.** Tropicalizing curves $y^p = f(x)$.

References:

- Barbara Bolognese, Madeline Brandt, and Lynn Chua, From curves to tropical jacobians and back, Combinatorial Algebraic Geometry (G.G. Smith and B. Sturmfels, eds.), to appear.
- Matthew Baker, Sam Payne, and Joseph Rabinoff, On the structure of non-Archimedean analytic curves, Tropical and non-Archimedean geometry, Contemp. Math., vol. 605, Amer. Math. Soc., Providence, RI, 2013, pp. 93–121.
- Monarchimedean geometry, tropicalization, and metrics on curves, Algebraic Geometry 3 (2016), no. 1, 63–105.
- Melody Chan, <u>Tropical hyperelliptic curves</u>, Journal of Algebraic Combinatorics. An International Journal 37 (2013), no. 2, 331–359.
- Joe Harris and Ian Morrison, <u>Moduli of curves</u>, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998.
- Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015.
- Qingchun Ren, Steven V. Sam, and Bernd Sturmfels, <u>Tropicalization of classical moduli spaces</u>, Mathematics in Computer Science 8 (2014), no. 2, 119–145.