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Algebraic Varieties
tropicalization−−−−−−−→ Tropical varieties /

{x ∈ Kn | f1(x) = · · · = fl(x) = 0} polyhedral complexes

Today: Tropical geometry of curves.

• I will define two different objects which one could call a “tropical curve”.

• Say how these are related.

• My results on how to compute these objects.

1 Geometry over Non-Archimedean fields

Tropical geometry deals with varieties over non-Archimedean fields. Let’s see
how they differ from the fields we are used to dealing with.

Definition 1.1. (K, | · |) is an Archimedean field if it satisfies the Archimedean
axiom: for any x ∈ K∗, there is an n ∈ N such that |nx| > 1.

While this axiom may feel natural and familiar, R and C are essentially the
only fields satisfying this axiom.

A non-Archimedean field is one with a norm | · | which fails this axiom. It
comes with a function called the valuation: valK : K→ R ∪ {∞} defined by:

valK(a) = − log(|a|), valK(0) = ∞.
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Example 1.2. The Puiseux series C{{t}} is:c(t) = c1ta1 + c2ta2 + · · ·
∣∣∣∣∣∣

c1 6= 0, ci ∈ C,
ai an ↗ sequence in Q

w/ common denominator

 ∪ {0}.

The valuation sends c(t) 7→ a1. The norm is |c(t)| = εvalK(c(t)) for ε ∈ (0, 1)

2 Embedded tropicalization

I will now describe how to find the embedded tropicalization of a variety (hy-
persurface) over a non-Archimedean field K.

Definition 2.1. Given a polynomial

f(x) =
∑
a∈Nn

cax
a ∈ K[x1, . . . , xn],

Its tropicalization trop(f) : Rn → R is (obtained by replacing each ca by its valu-
ation and preforming all additions and multiplications in the tropical semiring
(R,⊕,⊗)):

trop(f)(x) = min
a∈Nn

(val(ca) + a · x) .

Just as we can associate a variety to f, we will see how to make a tropical
variety associated to trop(f).

Definition 2.2. The tropical hypersurface associated to trop(f) is the set

{x ∈ Rn | the minimum in trop(f)(x) is achieved at least twice}

Example 2.3. Here we compute the tropical line. Let f = x + y + 1 ∈ C{{t}}[x, y].
Then,

trop(f)(x, y) = min(x, y, 0).

So, where is this minimum achieved twice? We can break this down in to 3 cases.
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Problem: Embedded tropicalizations are not invariant under coordinate change,
and can change quite drastically.

Question 2.4. How do we associate an intrinsic tropical object to a curve?

Example 2.5. Tropicalizing an elliptic curve in normal form y2 = x3 + ax+ b can
only give trees (pictured below).

Theorem 2.6 (Chan-Sturmfels). Every elliptic curve with valK(j) < 0 has an embed-
ding such that the embedded tropicalization is a honeycomb.

The honeycomb “reveals” that the curve has genus 1 and the valuation of j.

3 Abstract tropicalization

Complicated curve
degenerates−−−−−−→ union of simpler curves

We can encode families of curves using algebraic geometry over N.A. fields.

Notation: Let K be a non-Archimedean field.

R = {f ∈ K | valK(f) ≥ 0} Valuation ring: local ring
m = {f ∈ K | valK(f) > 0} unique maximal ideal

k = R/m residue field

Comments on SpecR: Spec(R) is a topological space with two points, one corre-
sponding to the 0 ideal and the other corresponding to m. The point m is closed,
and the closure of the point 0 is all of Spec(R).
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Definition 3.1. Let X be a smooth curve over K. A model X for X is a flat and
finite type scheme over R whose generic fiber X ×R K (fiber over (0), K = residue
field of the point 0) is isomorphic to X. We call this model semistable if it is
proper and the special fiber X ×R k (fiber over the maximal ideal) satisfies:

1. It is reduced, connected, and only has nodal singularities;

2. every rational (isomorphic to P1) component meets the rest of the curve in
at least 2 singular points.

[the adjectives flat, finite type, proper are technical assumptions that ensure the
family is “nice”: e.g., each fiber is of the same dimension, points in general fiber
have unique closures to points in special fiber
irred component: not the union of two proper alg subsets]

Remark 3.2. In the abstract, we are always guaranteed that a semistable model
exists. In practice, it can be difficult to find.

Example 3.3. Consider the curve y2 = x3 + x2 + t4 over C{{t}}. This is a smooth
elliptic curve for t 6= 0. However, when t = 0, we have the curve defined by the
equation y2 = (x+ 1)x2.

Definition 3.4. The abstract tropicalization Γ of X is a metric graph with:

1. Vertices: corresponding to the irreducible components of Xk

2. Edges: corresponding to nodes.

3. Vertex Weights: we add weights to the vertices by assigning to each vertex
the geometric genus of the corresponding component.
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4. Edge Lengths: We add edge lengths in the following way. Given an edge
corresponding to a node q between two components Xi and Xj, the comple-
tion of the local ring OX ,q is isomorphic to R[[x, y]]/(xy− f) where valK(f) >
0. Then, we define the length of the edge eij to be v(f).

Example 3.5. Consider the curve y2 = x3+x2+ t4 over C{{t}}. This is a curve with
self-intersection. This is already a semistable model, and the abstract tropicaliza-
tion is a cycle of length 4. [The formal completion at (0, 0) is R[u, v]/(uv − t4),
where x ′ = x

√
x+ 1, u = y− x ′, and v = y+ x ′]

4 How are these related?

Embedded tropicalization for a “good” embedding gives the abstract trop.

Finding (and certifying) these good embeddings is difficult.

5 Computing abstract tropicalizations

Question 5.1. How do we compute the abstract tropicalization of a curve?

The problem of computing the abstract tropicalization has been studied in
several classes of curves and by multiple approaches.

1. genus 1: the answer has been known for some time; one simply takes the
valuation of the j-invariant of the curve and if it is negative, then the ab-
stract tropicalization will be a cycle of length negative of this valuation.
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2. genus 2: this was done systematically by studying the ramification data
[Ren-Sam-Sturmfels], using Igusa invariants [Helminck], and by finding
good embeddings to do the embedded tropicalization in [Cueto-Markwig].

Theorem 5.2. There is an algorithm for computing the abstract tropicalization of

• hyperelliptic curves (y2 = g(x)) [Bolognese-B-Chua]

• supelliptic curves (ym = g(x)) [B-Helminck]

The procedure can be summarized as follows:

1. Superelliptic and hyperelliptic curves admit a 2:1 map to P1 ((x, y) 7→ x),
ramified over the roots of g. This entire situation tropicalizes to a 2:1 map
of metric graphs Γ → T .

2. T is the tropicalization of P1 together with the marked points. This is a tree,
which is easy to calculate.

3. For hyperelliptic curves, this tree completely determines the structure of
the graph. For superelliptic curves, additional data is provided by studying
divisors on the curve.

6 Conclusion

We looked at 2 different ways to define a tropical curve / think about geometry
over a non-Archimedean field:

1. Embedded tropicalization: easy to compute, not intrinsic

2. Abstract tropicalization: intrinsic but hard to compute

And saw how these objects relate to one another. We also studied the problem of
how to compute abstract tropicalizations, and saw that there is an algorithm to
compute them for superelliptic curves yn = g(x).
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