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6.1: Holomorphic differentials

Given a lattice Λ in C, we have associated a nonsingular cubic curve CΛ in P2
defined by the equation

y2z = 4x3 − g2(Λ)xz
2 − g3(Λ)z

3.

Now, we wish to know whether given a curve CΛ, can we recover the lattice
Λ? In order to do this, we now introduce some new concepts.

Definition 1. A piecewise smooth path in a Riemann surface S is a continu-
ous map γ from a closed interval [a, b] ⊂ R to S such that if φ : U → V is a
holomorphic chart on an onpen subset U of S and [c, d] ⊂ γ−1(U) then

φ ◦ γ : [c, d]→ V

is a piecewise smooth path in V ⊂ C. The path is closed if γ(a) = γ(b).
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Definition 2. A meromorphic function on a Riemann surface S is a function
f : S → P1 which is holomorphic (in the sense of Riemann surfaces) and is not
identically∞ on any connected compoenent of S.

Remark 3. A holomorphic function f : S → C on a compact Riemann surface
S is a constant. However, there are many interesting meromorphic functions
f : S→ P1.

Example 4. Let C be an irreducible projective curve defined by P[x, y, z] = 0.
By a rational function on C − Sing(C), we mean a meromorphic function on
C− Sing(C) of the form

[x : y : z] 7→ S(x, y, z)

T(x, y, z)

where S and T are homogeneous polynomials of the same degree and T does
not vanish everywhere on C. If S and T both have degree k, then

S(λx, λy, λz)

T(λx, λy, λz)
=
λkS(x, y, z)

λkT(x, y, z)

so the function is well-defined.

Now, we will introduce meromorphic differentials, which we plan to integrate
later.

Definition 5. Let f and g be meromorphic functions on a Riemann surface S.
Then we say that

f dg

is a meromorphic differential on S, and if f ′ and g ′ are also meromorphic func-
tions on S, we say that

f dg = f ′ dg ′

if for every holomorphic chart φ : U→ V we have

(f ◦ φ−1)(g ◦ φ−1) ′ = (f ′ ◦ φ−1)(g ′ ◦ φ−1) ′.

Remark 6. There are some technical comments in the book following this defini-
tion, including an alternative definition of “meromorphic differential”. We skip
this now in the interest of time.
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Definition 7. We say that the meromorphic differential f dg has a pole at a point
p in S if whenever φ : U → V is a holomorphic chart on U 3 p, we have that
φ(p) is a pole of the meromorphic function (f ◦ φ−1)(g ◦ φ−1) ′. We call f dg a
holomorphic differential if it has no poles.

As promised, we now integrate.

Definition 8. If f dg is a holomorphic differential on S then the integral of f dg
along a piecewise-smooth path γ : [a, b]→ S is∫

γ

f dg =

∫b
a

(f ◦ γ(t)) · (g ◦ γ) ′(t) dt

Then, one must check that this is well-defined up to equivalence of holomor-
phic differentials (if this interests you see Remark 6.12).

Remark 9. If we re-parametrize tha path (i.e., give a map φ : [c, d]→ [a, b] which
is piecewise smooth) then the integral along γ ◦ φ equals the integral along γ
(checked explicitly in remark 6.13).

Example 10. If the Riemann surface S is C, then∫
γ

f dg =

∫
γ

f(x)g ′(x) dz

is the integral of f(z)g ′(z) along γ in the usual sense of complex analysis.

Example 11. If g : S → C is a holomorphic mapping on any Riemann surface S
then ∫

γ

dg = g(γ(b)) = g(γ(a)).

Definition 12. If ψ : S → R is a holomorphic mapping between Riemann sur-
faces S and R, and if f dg is a holomorphic differential on R then we define a
holomorphic differential ψ ∗ (f dg) on S by

ψ ∗ (f dg) = (f ◦ψ)d(g ◦ψ).

Then If γ : [a, b]→ S is a piecewise-smooth path in S we have∫
γ

ψ ∗ (f dg) =
∫b
a

(f ◦ψ ◦ γ(t))(g ◦ψ ◦ γ) ′(t) dt =
∫
ψ◦γ
f dg.
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Let C be an irreducible projective curve in P2 defined by a polynomial P. An
abelian integral is an integral of the form∫

γ

f dg

where f and g are rational functions on C− sing(C) and γ is a piecewise-smooth
path in C−sing(C) not passing through any poles of the meromorphic differential
f dg.

We usually assume that C is not the line at infinity defined by z = 0 and take
the function g to be

[x : y : z] 7→ x

z
.

We often then work in the affine coordinates [x : y : 1] and write dx for dg.
In affine coordinates f becomes a rational function R(x, y) of x and y in the usual
sense, and our integral is written∫

γ

f dg =

∫
γ

R(x, y)dx,

where we now regard y as a multivalued function of x via the equation P(x, y, 1)
which defines C in affine coordinates.

The integral is called an elliptic integral is C is an elliptic curve, meaning it
is defined by an equation

y2 = (x− α1) · · · (x− αk),

where k = 3, 4. If k is larger then C is called a hyperelliptic curve and the
integral

∫
y
f dg is called a hyperelliptic integral.

Recall our lattice Λ ⊂ C and biholomorphism u : C/Λ → CΛ. We have a
meromorphic differential on CΛ given in in homogeneous coordinates [x, y, 1] by
y−1 dx. Let

η = u ∗ (y−1 dx).

Then η is a meromorphic differential on C/Λ. Moreover, we will show it is
holomorphic. If

π : C→ C/Λ

is given by π(z) = Λ+ z then

π ∗ η = π ∗ u ∗ (y−1dx) = (u ◦ π) ∗ (y−1dx) = (p ′)−1dp = (p ′)−1p ′dz = dz,
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where x : C → C denotes the identity function, and p(z) is the function used in
defining u from 2 lectures ago. Since π is locally a holomorphic bijection with
holomorphic inverse and dz is a holomorphic differential on C it follows that η
has no poles, so η is a holomorphic differential on C/Λ. Since u is a holomor-
phic bijection with holomorphic inverse it follows that y−1 dx is a holomorphic
differential on CΛ.

Let λ ∈ Λ and define a path γ ′ : [0, 1] → C by t 7→ tλ. If γ = π ◦ γ ′, then
γ(t) = Λ + tλ, so γ(0) = γ(1). Hence, γ is a piecewise smooth closed path in
C/Λ. Then, ∫

γ

η =

∫
γ ′
π ∗ η =

∫
γ ′
dz = γ ′(1) − γ ′(0) = λ.

Given any γ : [a, b] → C/Λ is any piecewise smooth closed path then (by
appendix lemma) we can find a continuous path γ ′ : [a, b]→ C so that π ◦γ ′ = γ
which is also piecewise smooth. Then,∫

γ

η =

∫
γ ′
π ∗ η =

∫
γ ′
dz = γ ′(b) − γ ′(a) ∈ Λ.

We have proved:

Proposition 13.

Λ =

{∫
γ

η | γ is a closed piecewise smooth path in C/Λ
}
.

Corollary 14.

Λ =

{∫
γ

y−1 dx | γ is a closed piecewise smooth path in CΛ

}
.

Hence, we can recover the lattice from the curve CΛ in P2.
Now we are also prepared to describe u−1.

Proposition 15. The inverse of u is given by

u−1(p) = Λ+

∫p
[0:1:0]

y−1 dz

(note: this makes sense because if we have two paths from [0 : 1 : 0] to p then the
difference of their integrals will be an integral over a closed path and hence an element of
Λ.)
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6.2 Abel’s Theorem

Last lecture: we saw that any complex torus C/Λ is biholomorphic to a nonsin-
gular curve CΛ in P2

Today: We study the abelian group structure. The torus C/Λ is an abelian
group under addition. This gives the cubic curve CΛ an induced abelian group
structure.

This can be described completely in terms of the geometry of the curve CΛ
and it is determined by two properties:

1. The identity element is [0 : 1 : 0] (the inflection point).

2. Three points p, q, r add to zero if and only if they are the three points of
indersection of the cubic with a line.

Remark 16. We have already seen (Section 3) that if p0 is an inflection point on a
nonsingular projective cubic C then there is a unique additive group structure on
C satisfying (1) and (2) above. Then, we can view Abel’s theorem as the statement
that the holomorphic bijection

u : C/Λ→ CΛ

is actually a group isomorphism with respect to this croup structure on CΛ and
the quotient group structure on C/Λ.

Remark 17. Recall from earlier that a line in P2 meets a nonsingular cubic curve
C in either (QUIZ):

1. 3 distinct points with multiplicity 1 (3 ordinary intersection points)

2. 2 distinct points with one having multiplicity 1 and one having multiplicity
2 (one ordinary intersection point and one tangent)

3. one point with multiplicity 3 (line is tangent at inflection point)

So for the group, this means that

1. three distinct points p + q + r = 0 iff p, q, r are distinct points on a line in
P2;

2. two points 2p+ q = 0 iff the tangent to CΛ at p passes through q;

3. and 3p = 0 iff p is a point of inflection.
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From this last comment we see that the points of order 1 or 3 are precisely the
inflection points on CΛ. Under the group isomorphism u : C/Λ → CΛ we see
that there are exactly 9 such points in C/Λ, and they can be written in the form

Λ+
j

3
ω1 +

k

3
ω2

where j, k ∈ {0, 1, 2}.
These points form a subgroup of C/Λ isomorphic to Z3×Z3. The three entries

in any row, column, or diagonal add up to Λ + 0: It follows that CΛ has exactly

9 inflection points.
The following collections of these points on CΛ all lie on lines in P2:

Recall from the end of the previous lecture that the inverse of u is given by

u−1(p) = Λ+

∫p
[0:1:0]

y−1dx,

where the integra lis over any piecewise smooth path in CΛ from [0 : 1 : 0] to p.
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Theorem 18 (Abel’s Theorem). If t, v,w ∈ C then

t+ v+w ∈ Λ

if and only if there is a line L in P2 whose intersection with CΛ consists of the points
u(Λ+ t), u(Λ+ v), and u(Λ+w) (allowing for multiplicities).

Equivalently, if p, q, r ∈ CΛ then

Λ+

∫p
[0:1:0]

y−1dx+

∫q
[0:1:0]

y−1dx+

∫ r
[0:1:0]

y−1dx = Λ+ 0

if and only if p, q, r are the points of interesection with a line in P2.

Remark 19. We can interpret Abel’s theorem as an addition formula modulo Λ
for integrals of the form ∫p

[0:1:0]

y−1dx

on CΛ.

For the rest of the talk we will prove Abel’s Theorem.

Proof. First we show that if L is a line in P2, then

Λ+

∫p
[0:1:0]

y−1dx+

∫q
[0:1:0]

y−1dx+

∫ r
[0:1:0]

y−1dx = Λ+ 0

We do this in 3 increasingly general cases.
Case 1: Suppose L is the tangent line z = 0 to CΛ at the point of inflection

[0 : 1 : 0]. Then p = q = r, so the equality we wish to prove is trivial.
Case 2: Suppose that L is a line of the form cy = bz. Then L meets CΛ in 3

points:

p1(b, c) = [a1, b, c]

p2(b, c) = [a2, b, c]

p2(b, c) = [a2, b, c]

where a1, a2, a3 are the roots of the polynomial

QΛ(x, b, c) = b
2c− 4x3 + g2(Λ)xc

2 + g3(Λ)c
3.
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Define a map µ : P1 → C/Λ by

µ[b, c] = Λ+

∫p1(b,c)
[0:1:0]

y−1dx+

∫p2(b,c)
[0:1:0]

y−1dx+

∫p3(b,c)
[0:1:0]

y−1dx

where the integrals are over any paths in C. This map µ is well defined. We now
give two lemmas.

Lemma 20. µ : P1 → C is holomorphic.

Lemma 21. Any holomorphic map from P1 to C is constant.

The proof of the first lemma will be given when the proof of Abel’s theorem
is complete. The second lemma is clear by homework exercises: P1 is compact so
its image under a holomorphic map to C is a constant.

By the appendix Lemma there is a continuous map µ̃ : P1 → C such that
µ = π◦µ̃. Since the inverse of the restriction of π to a suitable open neighborhood
of any a ∈ C defines a holomorphic chart on a neighborhood of Λ + a in C/Λ
and µ is holomorphic, it follows that µ̃ is holomorphic. By the second lemma, it
is therefore a constant. Thus µ is a constant map.

By case 1, µ[1, 0] = Λ+ 0, so we have that µ[b, c] = Λ+ 0 for all [b, c] ∈ P1.
Case 3: Suppose now that L is any line in P2. Then the equation for L can be

written in the form
sx+ t(cy− bz) = 0,

for some s, t not both zero and b, c both not zero. Fix b, c and define a map
ν : P1 → C/Λ by

ν[s, t] = Λ+

∫q1(s,t)
[0:1:0]

y−1dx+

∫q2(s,t)
[0:1:0]

y−1dx+

∫q3(s,t)
[0:1:0]

y−1dx

where q1(s, t), q2(s, t), q3(s, t) are the points of intersection of CΛ with the line
sx+ t(cy− bz) = 0.

As in case 2 this map ν is holomorphic and hence constant. From case 2 we
also know that ν[0, 1] = Λ + 0 so for all [s, t] ∈ P1 we have ν[s, t] = Λ + 0. This
completes one direction of the proof up to the unproven lemma.

Conversely, suppose that t, v,w ∈ C and t+ v+w ∈ Λ. Let

p = u(Λ+ t), q = u(Λ+ v), r = u(Λ+w).
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Let L be the line through p, q or tangent at p = q if that is the case. Then, L meets
CΛ in p, q and another point r̃. Then by what we have just proved,

u−1(p) + u−1(q) + u−1(r̃) = Λ+ 0

= Λ+ t+ v+w

= u−1(p) + u−1(q) + u−1(r)

Hence u−1(r) = u−1(r̃) and so r = r̃. This completes the proof up to the lemma.

Lemma 22. µ : P1 → C is holomorphic, where

µ[b, c] = Λ+

∫p1(b,c)
[0:1:0]

y−1dx+

∫p2(b,c)
[0:1:0]

y−1dx+

∫p3(b,c)
[0:1:0]

y−1dx

Proof. For all but finitely many b ∈ C the partial derivative

dQλ

dx
(x, y, z)

of the polynomial QΛ defining CΛ is nonzero at (a, b, 1) when a is a root of
the polynomial QΛ(x, b, 1) in x. For such a, b, the polynomial QΛ(x, b, 1) has 3
distinct roots, a1, a2, a3 and

p1 = [ai, b, 1]

By the implicit function theorem applied to QΛ(x, y, 1) there are open neigh-
borhoods U and v1, V2, V3 of b and a1, a2, a3 in C and holomorphic functions
gi : U→ Vi such that if x ∈ Vi and y ∈ U then

QΛ(x, y, 1) = 0 ↔ z = gi(y).

Hence there are holomorphic maps ψi : U→ CΛ given by

ψi(w) = [gi(w), w, 1].

We may choose V1, V2, V3 to be disjoint. This means that ifw ∈ U then g1(w), g2(w), g3(w)
are distinct roots of QΛ(x,w, 1) and so

pi(w, 1) = [gi(w), w, 1] = ψi(w).
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Thus if γ is a path in U from b to w then ψi ◦ γ is a path in CΛ from pi(b, 1) to
pi(w, 1) and ∫

ψi◦γ
y−1dx =

∫
γ

g ′i(w)

w
dw.

Thus

µ[w, 1] = µ[b, 1] +

3∑
i=1

∫w
b

g ′i(y)

y
dy

where the integrals are over any path. Since g ′i(u) = 0 when y = 0 the functions
g ′i(y)/y are holomorphic on U so their integrals from b to w are holomorphic
functions of w near b. Thus µ is holomorphic in a neighborhood of [b, 1]. Thus
we have shown that µ is holomorphic except at possibly finitely many points of
P1. By an appendix theorem it now suffices to show that µ is continuous, which
is left as an exercise.

11


