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Goal

The goal of this project [1] was to compute the degree of the special orthogonal

group as an algebraic variety.

SO(n)

The group SO(n) is defined as

SO(n) := SO(n,C) =
{
M ∈ Matn,n(C) | detM = 1, M tM = Id

}
.

The equations defining SO(n) are polynomials in the entries of the matrix, so

that SO(n) is an algebraic variety.

Degree of an algebraic variety

The projective closure projective closure X of an embedded affine variety X

is the smallest projective variety containing X .

The degree of a complex variety X is the maximum number of intersection

points of X , with a linear space L of complementary dimension. This maxi-

mum will be achieved as long as the L is chosen generically.

Sample values

This is now sequence [A280921] on OEIS [5].

n degree of SO(n)

2 2

3 8

4 40

5 384

6 4768

7 111616

8 3433600

9 196968448

10 14994641408

Using symbolic Gröbner basis techniques, one can verify these values on a

home laptop (for example, in Macaulay2 [4]) up to n = 5.

Main Theorem

deg SO(n) = 2n−1 det

((
2n− 2i− 2j

n− 2i

))
1≤i,j≤bn2c

Main ingredient for proof

The main ingredient of the proof was the following theorem of Kazarnovskii [2].

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If ρ : G→ GL(V ) is a representation with

finite kernel then,

degρ (G) =
m!

|W (G)|(e1!e2! · · · er!)2| ker(ρ)|

∫
CV

(α̌1α̌2 · · · α̌l)2dv.

where W (G) is the Weyl group, ei are Coxeter exponents, CV is the convex hull of the weights, and α̌i are the coroots.

Non-Intersecting Lattice Paths

Using the Gessel-Viennot lemma [3], we can recast this result in terms of lattice paths:

deg SO(n) = 2n−1(#{Non-Intersecting Lattice Paths from A to B})
where the positions of A and B are given by ai = (2i− n, 0), bj = (0, n− 2j) where 1 ≤ i, j ≤ bn2c.

The 24 non-intersecting lattice paths corresponding to deg(SO(5)).
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