The Degree of $\operatorname{SO}(n)$
Madeline Brandt
joint with Juliette Bruce, Taylor Brysiewicz, Robert Krone, and Elina Robeva University of California, Berkeley

Goal

The goal of this project [1] was to compute the degree of the special orthogonal group as an algebraic variety

$\mathrm{SO}(n)$

The group $\mathrm{SO}(n)$ is defined as

$$
\mathrm{SO}(n):=\mathrm{SO}(n, \mathbb{C})=\left\{M \in \operatorname{Mat}_{n, n}(\mathbb{C}) \mid \operatorname{det} M=1, \quad M^{t} M=\operatorname{Id}\right\}
$$

The equations defining $\mathrm{SO}(n)$ are polynomials in the entries of the matrix, so that $\mathrm{SO}(n)$ is an algebraic variety

Degree of an algebraic variety
The projective closure projective closure \bar{X} of an embedded affine variety X is the smallest projective variety containing X

The degree of a complex variety X is the maximum number of intersection points of X, with a linear space L of complementary dimension. This maximum will be achieved as long as the L is chosen generically

Sample values

This is now sequence [A280921] on OEIS [5].

\mathbf{n}	degree of $\mathrm{SO}(n)$
2	2
3	8
4	40
5	384
6	4768
7	111616
8	3433600
9	196968448
10	14994641408

Using symbolic Gröbner basis techniques, one can verify these values on a home laptop (for example, in Macaulay2 [4]) up to $n=5$.

Main Theorem

$$
\operatorname{deg} \mathrm{SO}(n)=2^{n-1} \operatorname{det}\left(\binom{2 n-2 i-2 j}{n-2 i}\right)_{1 \leq i, j \leq\left\lfloor\frac{n}{2}\right\rfloor}
$$

Main ingredient for proof

The main ingredient of the proof was the following theorem of Kazarnovskii [2]

Let G be a connected reductive group of dimension m and rank r over an algebraically closed field. If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation with finite kernel then

$$
\operatorname{deg} \overline{\rho(G)}=\frac{m!}{|W(G)|\left(e_{1}!e_{2}!\cdots e_{r}!\right)^{2}|\operatorname{ker}(\rho)|} \int_{C_{V}}\left(\check{\alpha}_{1} \check{\alpha}_{2} \cdots \check{\alpha}_{l}\right)^{2} d v
$$

where $W(G)$ is the Weyl group, e_{i} are Coxeter exponents, C_{V} is the convex hull of the weights, and $\check{\alpha}_{i}$ are the coroots.

Non-Intersecting Lattice Paths

Using the Gessel-Viennot lemma [3], we can recast this result in terms of lattice paths
$\operatorname{deg} \mathrm{SO}(n)=2^{n-1}(\#\{$ Non-Intersecting Lattice Paths from A to B $\})$
where the positions of A and B are given by $a_{i}=(2 i-n, 0), b_{j}=(0, n-2 j)$ where $1 \leq i, j \leq\left\lfloor\frac{n}{2}\right\rfloor$.

The 24 non-intersecting lattice paths corresponding to $\operatorname{deg}(\mathrm{SO}(5))$.

References

[1] Madeline Brandt et al. "The degree of SO(n)". In: Combinatorial Algebraic Geometry. Fields Inst. Commun. 80. Fields Inst. Res. Math. Sci., 2017, pp. 207-224.
1] Madeline Brandt et al. "The degree of SO(n)". In: Combinatorial Algebraic Geometry. Fields Inst. Commun. 80. Fields Inst. Res. Math. Sci., 2017, pp. 207-224.
2] Harm Derksen and Gregor Kemper. Computational Invariant Theory. Vol. 130. Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin He
[3] Ira Gessel and Gerard Viennot. Binomial determinants, paths, and hook length formulae . In: Advances in mathematics 58.3 (1985), pp. 300-321
tru Available at http://www.math.uiuc.edu/Macaulay2/
[5] Sequence A280921 in the Online Encyclopedia of Integer Sequences. Available at http://oeis.org.

