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Abstract. In this talk we will explore Dressians of matroids. Dressians have many lives: they
parametrize tropical linear spaces, their points induce regular matroid subdivisions of the matroid
polytope, they parametrize valuations of a given matroid, and they are a tropical prevariety formed
from certain Plücker equations. We show that initial matroids correspond to cells in regular ma-
troid subdivisions of matroid polytopes, and we characterize matroids that do not admit any proper
matroid subdivisions. An efficient algorithm for computing Dressians is presented, and its imple-
mentation is applied to a range of interesting matroids. If time permits, we will also discuss an
ongoing project extending these ideas to flag matroids.

1. Intro

We begin with some notions from tropical geometry and matroid theory.

Definition 1.1. A matroid of rank d on n elements is a collection B ⊂
([n]
d

)
called the bases of M

satisfying:

(B0) B is nonempty,
(B1) Given any σ, σ ′ ∈ B and e ∈ σ ′\σ, there is an element f ∈ σ such that σ\{f} ∪ {e} ∈ B.

A matroidM is called realizable over K if there exist vectors v1, . . . , vn ∈ Kd such that the bases
of Kd from these vectors are indexed by the bases ofM:

B =

{
σ ∈

(
[n]

d

)
| {vσ1 , . . . , vσd} is a basis of Kd

}
.

In this case, we writeM =M[v1, . . . , vn].
The uniform matroid Ud,n is the matroid with basis set

([n]
d

)
.

Let K be an algebraically closed field with a valuation valK. The Grassmannian G(d, n) ⊂ P(
n
d)−1

is the image of Kd×n under the Plücker embedding, which sends a d× n-matrix to the vector of its
d × d minors. This vector is called the Plücker coordinates of the matrix. The Grassmannian is a
smooth algebraic variety defined by equations called the Plücker relations, which give the relations
among the maximal minors of the matrix. Points of this variety correspond to d-dimensional
linear subspaces of Kn.

The open subset G0(d, n) of the Grassmannian parametrizes subspaces whose Plücker coordi-
nates are all nonzero. Points in this variety correspond to equivalence classes of matrices where
no minor vanishes. In other words, these are matrices which give the uniform matroid of rank d
on [n].

We now recall the definition of the tropical Grassmannian and Dressian of a matroid, as in
[MS15]. Let M be a matroid of rank d on the set E = [n]. For any basis σ of M, we introduce a
variable pσ. Consider the Laurent polynomial ring K[p±1σ | σ is a basis ofM] in these variables.
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Let GM be the collection of polynomials obtained from the three-term Plücker relations by setting
all variables not indexing a basis to zero. More precisely, these are the equations

GM =

{
pSijpSkl − pSikpSjl + pSilpSjk : S ∈

(
n

d− 2

)
, i 6= j 6= k 6= l, and pσ = 0 if σ 6∈ B

}
.

Let IM be the ideal generated by GM. We call IM the matroid Plücker ideal of M, and refer to
elements of GM as matroid Plücker relations.

The points of the variety V(IM) correspond to realizations of the matroidM in the following
sense. Points in V(IM) give equivalence classes of d× n matrices whose maximal minors vanish
exactly when those minors are indexed by a nonbasis ofM.

Definition 1.2. We will call V(IM) the matroid Grassmannian ofM. The variety V(IM) is empty if
and only ifM is not realizable over K. Its tropicalization GrM = trop(V(IM)) is called the tropical
Grassmannian ofM.

Definition 1.3. The Dressian DrM of the matroid M is the tropical prevariety obtained by inter-
secting the tropical hypersurfaces corresponding to elements of GM:

DrM =
⋂
f∈GM

trop(V(f)).

By definition, we have that GrM ⊆ DrM, and equality holds if and only if the matroid Plücker
relations form a tropical basis.

2. Matroid Polytopes and Valuations

The matroid polytope PM ofM is the convex hull of the indicator vectors of the bases ofM:

PM = conv{eσ1 + · · ·+ eσd | σ ∈ B}.

The dimension of PM is n− c, where c is the number of connected components ofM [FS05].
The following celebrated result gives a simple way to check whether or not a polytope is a

matroid polytope.

Theorem 2.1 (GGMS Theorem, 4.2.12 in [MS15]). A polytope P with vertices in {0, 1}n+1 is a matroid
polytope if and only if every edge of P is parallel to ei − ej.

Points in the Dressian of M have an interesting relationship to the matroid polytope of M.
Every vector w in R|B|/R1 induces a regular subdivision ∆w of the polytope PM. A subdivision
of the matroid polytope PM is a matroid subdivision if all of its edges are translates of ei − ej.
Equivalently, by Theorem 2.1, this implies all of the cells of the subdivision are matroid polytopes.

Proposition 2.2 (Lemma 4.4.6, [MS15]). Let M be a matroid, and let w ∈ R|B|. Then w lies in the
Dressian DrM if and only if the corresponding regular subdivision ∆w of PM is a matroid subdivision.

Question 2.3. What is the relationship of these smaller matroids appearing in regular matroid
subdivisions of the matroid polytope to the original matroidM?

The lineality space of a tropical (pre)variety T is the largest linear space L such that for any
point w ∈ T and any point v ∈ L, we have that w+ v ∈ T .

All matroids admit the trivial subdivision of their matroid polytope as a regular matroid
subdivision, so the Dressian DrM is nonempty for all matroids M. This gives us the lineality
space of the Dressian, as we see in the following proposition.
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Proposition 2.4 ([OPS18] , [DW92]). LetM be a matroid, and let c be the number of connected compo-
nents of M. The lineality space of DrM has dimension n − c (in R|B|/R1) and is given by the image of
the map Rn → R|B| given by ei 7→∑B3i eB.

We now discuss valuated matroids, as in [DW92].

Definition 2.5. Let M be a matroid on E = {1, . . . , n} of rank d and bases B. Let v : B → R ∪∞
be a vector so that the pair (M,v) satisfies the following version of the exchange axiom:

(V0) for B1, B2 ∈ B and e ∈ B1\B2, there exists an f ∈ B2\B1 with B ′1 = (B1\{e}) ∪ {f} ∈ B,
B ′2 = (B2\{f}) ∪ {e} ∈ B, and v(B1) + v(B2) ≥ v(B ′1) + v(B ′2).

We will call v a valuation on M, and the pair (M, v) is called a valuated matroid (See [DW92] for
details).

It is known that valuations on a matroidM are exactly the points in DrM [MS15]. Indeed, the
above condition asserts exactly that the tropicalized matroid Plücker relations hold.

Definition 2.6. Let M be a matroid with bases B and let v ∈ DrM. Then the initial matroid Mv

is the matroid whose bases are Bv = {σ ∈ B | v(σ) is minimal}. Given a matroid M, the initial
matroids ofM are the matroidsM ′ such that there exists a v ∈ DrM withMv =M ′.

Theorem 2.7. Let M be a matroid with matroid polytope PM, let v be a valuation on M, let L be the
lineality space of the Dressian ofM, and let ∆v be the matroid subdivision of PM induced by v. Then,

∆v = {P(Mw) | w ∈ v+ L}.

Example 2.8. LetM = U2,4, the uniform rank 2 matroid on 4 elements; B = {01, 02, 03, 12, 13, 23}.
We now study the Dressian ofM. In this case, GM ⊂ C[p01, p02, p03, p12, p13, p23] consists of the

single equation p03p12−p02p13+p01p23. So, we have that the Dressian DrM and the Grassmannian
GrM coincide, and they are both described by

min{p03 + p12, p02 + p13, p01 + p23} is attained twice.

The Dressian is a 5 dimensional fan with a four dimensional lineality space. Let the basis for R|B|

be given by {e01, e02, e03, e12, e13, e23}. Then, The lineality space is given by

L = span ((1, 1, 1, 0, 0, 0), (1, 0, 0, 1, 1, 0), (0, 1, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1)) .

The Dressian DrM has 3 maximal cones which are each generated by a ray. The rays are spanned
by the points

r01,23 = (1, 0, 0, 0, 0, 1) r02,13 = (0, 1, 0, 0, 1, 0) r03,12 = (0, 0, 1, 1, 0, 0).

The matroid polytope PM is the hypersimplex ∆(2, 4), which is an octahedron. Each of the cones
of DrM corresponds to a subdivision of PM in to two pyramids. Let us study points in the cell
of GrM containing r01,23. The point r01,23 induces a subdivision where the two maximal cells are
the pyramids which are the convex hulls of

P01 = conv{e01, e02, e03, e12, e13}, P23 = conv{e23, e02, e03, e12, e13}.

The matroid Mr01,23 has bases {02, 03, 13, 12}. Its matroid polytope is the square face which is
shared by they pyramids p01 and p23. Over C{{t}}, we can realizeM with the matrix[

1 1 1 1

1+ t 1+ 2t t 2t

]
,

3



and the resulting Plücker vector valuates to r01,23. This matrix reduces to a matrix over C whose
matroid isMr01,23 . Alternatively, we can also realizeM with the matrix[

1 1 1 1

1 2 3 3+ t2

]
.

The Plücker coordinate of this matrix valuates to

v = (0, 0, 0, 0, 0, 2) = r01,23 − (1, 0, 0, 0, 0,−1) ∈ r01,23 + L.

The matroid Mv is the matroid with bases {01, 02, 03, 12, 13}, whose matroid polytope is p01.
Additionally, the matrix above reduces to a matrix over C whose matroid is exactlyMv.

3. Rigidity

We say a matroid is rigid if the only regular matroid subdivision of the matroid polytope is the
trivial subdivision.

Proposition 3.1 ([OPS18],[DW92]). All binary matroids are rigid [OPS18, DW92] and every finite
projective space of dimension at least two is rigid [DW92].

Let M1 and M2 be matroids with disjoint ground sets E1 and E2 respectively, and basis sets
B1 and B2 respectively. The direct sum of M1 and M2 is the matroid M1 ⊕M2 with ground set
E1 ∪ E2 and bases B1 ∪ B2 such that B1 ∈ B1 and B2 ∈ B2. A matroid is connected if it cannot be
written as the direct sum of other matroids. The number of connected components of a matroid
is the number of connected matroids it is a direct sum of.

Proposition 3.2. LetM be a rank d matroid on n elements. ThenM is rigid if and only if every matroid
M ′ different fromM withM ′ ≺M has more components thanM.

4. Computation

Using software (for instance, Gfan [Jen]), we may compute tropical prevarieties and varieties.
However, these computations become unfeasible for inputs with many equations or variables. We
can give a reduction algorithm for matroid Plücker relations, which we use in the computations
in the remainder of the paper. In the described coordinates, the Dressian DrM of a matroid M
will have a large linearity space and lineality space (see Figure 1). The linearity space is the affine
span of GrM.

Figure 1. Linearity and Lineality

If the linearity space is a proper affine subspace of R|B|, then the algorithm can be used to
reduce the number of variables and equations by giving equations whose prevariety is equivalent

4



via projection onto the linearity space. The generators GM described above will typically have
many binomials because they are obtained from trinomials by setting some of the variables to 0.
Binomials introduce linearity into GrM:

xy− zw = 0
trop−−→ min x+ y, z+w achieved twice ↔ x+ y = z+w.

So, the basic idea of the algorithm is to substitute x 7→ zw/y in all equations (one has to be a bit
careful in doing this).

Consider the rank 3 matroidM? on {0, 1, . . . , 9} with nonbases given by the figure.

Figure 2. The star matroidM?.

Proposition 4.1. Modulo lineality and intersecting with a sphere, the Dressian DrM? is a 2 dimensional
polyhedral complex with 30 vertices, 65 edges, and 20 triangles. It is depicted in Figure ??. In characteristic
0, the Grassmannian GrM? is a graph with 30 vertices and 55 edges. It is depicted in Figure ?? in the
darker color.

We take the generators GM? and make a new generating set whose tropical prevariety will not
have linearity. Initially, we are working with 1260 equations in 110 unknowns. After applying
the reduction algorithm, we have 73 equations in 17 unknowns.

Present work: Extending the ideas in this talk to flag matroids, with Chris Eur, Leon Zhang,
and Matt Baker.
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