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Goal: Make algebraic varieties whose points correspond to realizations of a
matroid.

Why: Once we have an albebraic variety describing realizations of a matroid,
we can perform computations on the space, and these computations can quickly
answer questions about the matroid. For example, we study the questions of:
Realizability, Projective Uniqueness

1 Matroids

Catchphrase: matroids are objects which give a combinatorial abstraction of lin-
ear independence in vector spaces.

Definition 1. A rank d+ 1 Matroid on n elements is a subset B of
(
{1,...,n}
d+1

)
called

the bases of the matroid, satisfying:

• B is nonempty,

• If A,B ∈ B and a ∈ A\B then there exists b ∈ B\A such that A\{a}∪{b} ∈ B.

Example 2 (Realizabele Matroids). Given a vector space V over a field k and
vectors v1, . . . , vn ∈ V spanning V , the collection of subsets of {1, . . . , n} indexing
bases of V gives a matroid which we denote M[V]. Such a matroid is called
realizable over k, and v1, . . . , vn are called a realization.

There are examples of matroids which are not realizable. The question of
whether or not a given matroid is realizable depends very much on the choice of
field.
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Definition 3. Let M = M[V] be a realizable matroid with realization V . The
hyperplanes of the matroid are collections of the v1, . . . , vn which are contained
in a subspace of dimension d.

Example 4. Consider the rank 3 matroid M[V] for V
whose vectors are

v1 = (−2,−2, 1), v2 = (−1, 1, 1),

v3 = (0, 4, 1), v4 = (2,−2, 1),

v5 = (1, 1, 1), v6 = (0, 0, 1).

Projecting onto the plane z = 1, this can be visualized as
the points of intersection of four lines in the plane. The
hyperplanes of this matroid are the four lines, together
with the lines joining 2↔ 5, 3↔ 6, and 1↔ 4.

2 Slack Matrices

Definition 5. The slack matrix of the matroid M = M[V] over k is the n × h
matrix SM = V>W, where

• W is the matrix whose columns are the hyperplane defining normals,

• V is the matrix with columns v1, . . . , vn.

Example 6. Consdier the matroid from the previous example. Using the realiza-
tion discussed there, we can compute a slack matrix for this matorid as follows.




1 −2 −2 1
2 −1 1 1
3 0 4 1
4 2 −2 1
5 1 1 1
6 0 0 1

H1 H2 H3 H4 H5 H6 H7

123 246 345 156 25 14 36[ ]
−3 3 6 −3 0 0 4
1 3 2 3 2 4 0
−4 0 −8 0 −2 8 0

=

H1 H2 H3 H4 H5 H6 H7

123 246 345 156 25 14 36


1 0 −12 −24 0 −6 0 −8
2 0 0 −12 6 0 12 −4
3 0 12 0 12 6 24 0
4 −12 0 0 −12 −6 0 8
5 −6 6 0 0 0 12 4
6 −4 0 −8 0 −2 8 0

In particular, we form and zero pattern of the matrix. The rows correspond to
points of the matroid and the columns correspond to hyperplanes of the matroid.
There is a zero in the matrix whenever a poitn is contained in a hyperplane, and
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a nonzero entry otherwise. We think of this value as recording the “slack” of that
point with respect to that hyperplane.

Lemma 7. The rows of a slack matrix SM form a realization of the matroid M.

Theorem 8 (B-Wiebe). A matrix S ∈ kn×h is the slack matrix of some realization of M
if and only if both of the following hold:

1. supp(S) = supp(SM[V])

2. rank(S) = d+ 1.

We note that these are algebraic conditions on the entries of the matrix. Given
a matrix whose entries are distinct varibles, the first part of the theorem asserts
that some of the variables are equal to zero. The second part of the theroem
asserts that all (d+ 2)× (d+ 2) minors of the matrix vanish.

3 Slack Ideal

The symbolic slack matrix of matroid M is the matrix SM(x) with rows indexed
by elements i ∈ E, columns indexed by hyperplanes Hj ∈ H(M) and (i, j)-entry{

xij if i /∈ Hj
0 if i ∈ Hj.

The slack ideal ofM is the saturation of the ideal generated by the (d+2)-minors
of SM(x), namely

IM : =
〈
(d+ 2) − minors of SM(x)

〉
:

 n∏
i=1

∏
j:i 6∈Hj

xij

∞
⊂ k[x].

Theorem 9 (B-Wiebe). Let M be a rank d+ 1 matroid. Then V is a realization of M if
and only if SM[V ] ∈ V(IM) ∩ (k∗)t.

Example 10. Consider again the example from before. Its symbolic slack matrix
is:
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H1 H2 H3 H4 H5 H6 H7
123 246 345 156 25 14 36


1 0 x12 x13 0 x15 0 x17
2 0 0 x23 x24 0 x26 x27
3 0 x32 0 x34 x35 x36 0

4 x41 0 0 x44 x45 0 x47
5 x51 x52 0 0 0 x56 x57
6 x61 0 x63 0 x65 x66 0

Now, we take the 4×4 minors and saturate to obtain its slack ideal. There are
72 binomial generators of its slack ideal:

deg 2 x36x65 + x35x66, x26x63 − x23x66, x15x63 − x13x65, x56x61 − x51x66, x45x61 − x41x65,
x27x56 + x26x57, x36x52 − x32x56, x17x52 − x12x57, x47x51 − x41x57, x17x45 + x15x47,
x35x44 − x34x45, x27x44 − x24x47, x26x34 − x24x36, x15x32 − x12x35, x17x23 − x13x27

deg 3 x47x56x65 − x45x57x66, x17x56x65 + x15x57x66, x12x56x65 + x15x52x66, x26x47x65 + x27x45x66,
x26x44x65 + x24x45x66, x17x26x65 − x15x27x66, x17x56x63 + x13x57x66, x12x56x63 + x13x52x66,
x27x45x63 + x23x47x65, x24x45x63 + x23x44x65, x12x36x63 + x13x32x66, x24x35x63 + x23x34x65,
x23x57x61 + x27x51x63, x15x57x61 + x17x51x65, x13x57x61 + x17x51x63, x35x52x61 + x32x51x65,
x15x52x61 + x12x51x65, x13x52x61 + x12x51x63, x26x47x61 + x27x41x66, x23x47x61 + x27x41x63,
x13x47x61 + x17x41x63, x36x44x61 + x34x41x66, x26x44x61 + x24x41x66, x23x44x61 + x24x41x63,
x35x47x56 + x36x45x57, x34x47x56 + x36x44x57, x17x35x56 − x15x36x57, x35x47x52 + x32x45x57,
x34x47x52 + x32x44x57, x27x34x52 + x24x32x57, x13x26x52 + x12x23x56, x36x45x51 + x35x41x56,
x32x45x51 + x35x41x52, x12x45x51 + x15x41x52, x36x44x51 + x34x41x56, x32x44x51 + x34x41x52,
x26x44x51 + x24x41x56, x27x36x45 − x26x35x47, x17x32x44 + x12x34x47, x15x23x44 + x13x24x45,
x17x26x35 + x15x27x36, x13x26x35 + x15x23x36, x15x27x34 + x17x24x35, x15x23x34 + x13x24x35,
x17x26x32 + x12x27x36, x13x26x32 + x12x23x36, x17x24x32 + x12x27x34, x13x24x32 + x12x23x34

deg 4 x27x35x52x63 − x23x32x57x65, x17x36x44x63 − x13x34x47x66, x24x35x57x61 − x27x34x51x65,
x23x34x52x61 − x24x32x51x63, x12x36x47x61 − x17x32x41x66, x13x32x44x61 − x12x34x41x63,
x15x26x44x52 − x12x24x45x56, x13x26x45x51 − x15x23x41x56, x12x23x44x51 − x13x24x41x52

4 Projectively Unique Matroids

We say two realizations V and V ′ of a matroid M are projectively equivalent if
V ′ = AVB for some A ∈ GL(kd+1) and B is a k∗-multiple of a permutation matrix.

Lemma 11. Two realizations of a matroid M are projectively equivalent if and only if
their slack matrices are the same up to row and column scaling.

Proposition 12. The slack variety is closed under the action of the group Tn,h, where
(k∗)n acts by row scaling and (k∗)h acts by column scaling.

When a matroid is projectively unique, there is a single realization up to
projective transformations; in other words, V(IM) is the toric variety which is the
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closure of the orbit of some realization under the action of Tn,h. This implies√
IM = I(V(IM)) is a toric ideal when M is projectively unique.

Example 13. The matroid from the previous examples is projectively unique.

Question 14. When is a slack ideal toric?

Definition 15. Define the non-incidence graph of matroidM as the bipartite graphGM
with one node for each element of the ground set of M, one node for each hyper-
plane, and an edge between element i and hyperplane Hj if and only if i /∈ Hj.

Example 16. The graph GM4
for matroid M4 with the highlighted cycle corre-

sponding to the binomial x36x65 + x35x66.5

1

3

6

2

4

1 2 3 4 5 6

123 25 246 14 345 36 156

3

Definition 17. Let M be an abstract matroid with realization V . Let s ∈ (k∗)t be
such that s = SM[V]. We define the cycle ideal CV of M[V] to be the ideal

CV =

〈
xc+ − αcxc− : c is a cycle in GM and αc =

sc+

sc−

〉
⊆ k[x] (1)

where c+ and c− are alternating edges from the cycle c.

Theorem 18. The ideal CV is the (scaled) toric ideal which is the kernel of the k-algebra
homomorphism φ : k[x]→ k[r, t, r−1, t−1], which sends xij 7→ si,jritj.

Theorem 19. If the slack ideal of a matroid is cyclic (i.e. equals CV) then M is projec-
tively unique and IM is radical. The converse also holds when k is algebraically closed.
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