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An Enumerative Problem

Given

• m points in general position

• a degree d

• a dimension n

• a number of nodes k

We may ask: how many complex k-nodal degree d hypersurfaces in
Pn
C are there passing through the m points?

For correct values of m, d , n and k this is a finite number.
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Example: Cubic Surfaces

Parametrize cubic surfaces X in P3 by their coe�icients:

X = V (f ),

f (x, y, z,w) = a300x3 + a210x2y + · · ·+ a000w3.

This gives a P19 of cubic surfaces.

If I fix a point [x0 : y0 : z0 : w0] ∈ P3, the collection of all cubic
surfaces passing through that point forms a hyperplane in P19.
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Degree of the discriminant

The singular cubic surfaces form a variety ∆ of degree 32 and
codimension 1 in P19 called the discriminant.

the degree of the
discriminant

=
the number of singular cubic surfaces
passing through 18 generic points

= 32

The singular locus of the discriminant is reducible:

sing(∆) = {binodal cubic surfaces} ∪ {cuspidal cubic surfaces}

Each of these is a codimension 2 variety in P19.
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280

�estion
How many binodal cubics are there through 17 generic points?
Equivalently, what is the degree of the binodal locus of cubics in P19?

Theorem (Vainsencher)
There are 2(d − 2)(4d3 − 8d2 + 8d − 25)(d − 1)2 complex binodal
degree d surfaces in P3 through

(d+3
3

)
− 3 points in general position.

Se�ing d = 3, we see that there 280 binodal cubic surfaces
through 17 points in general position.
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Main �estion and Result

�estion
Can the number 280 of binodal cubics through 17 general points be
derived tropically?

Tropical methods have been able to provide counts of nodal plane
curves (Mikhalkin, Brugallé, Gathmann, Markwig, ...).

Theorem (B-Geiger)
There are 39 tropical binodal cubic surfaces through 17 points in
Mikhalkin’s position containing separated singularities. They
give rise to 214 complex binodal cubic surfaces through 17 points.
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Why can we count tropically?

Given 280 binodal cubic surfaces through 17 points, their
tropicalizations would pass through the tropicalizations of the 17
points.

So, we would have

280 =
∑
S

mult(S),

where the sum is over all binodal tropical cubic surfaces through the
tropicalizations of the 17 points, and mult(S) is the number of
classical binodal cubics tropicalizing to S.

If we count all tropical binodal cubic surfaces through our points
with multiplicities, we will recover the true count.
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Mikhalkin position

An arbitrary choice of points will not be well-suited for tropical
counting.

We use the following special configuration (Mikhalkin,
Markwig-Markwig-Shustin):

Definition
Points in R3 are in Mikhalkin position if they are distributed with
growing distances on a line {λ · (1, η, η2)|λ ∈ R} ⊂ R3, where
0 < η � 1.

Tropical surfaces through these points have well-understood
Newton subdivisions (Markwig-Markwig-Shustin).

This allows us to study only 39 subdivisions of the Newton polytope
of a cubic surface (compared to 344,843,867).
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Singular tropical surfaces

Definition
The tropicalization of a δ-nodal surface is called a δ-nodal tropical
surface.

For us, there are only a few types of singularities that can occur.
They are in the portion of the tropical surface dual to the following
figures which could appear in the Newton subdivision
(Markwig-Markwig-Shustin):
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Separated nodes

Definition
Two nodes in a tropical surface are separated if the topological
closures of the cells in the surface containing the nodes have empty
intersection.

As we count, we do encounter some cases with unseparated nodes.
At this time, we do not understand whether these surfaces can
actually occur and with what multiplicity to count them.

This is why we only have 214 surfaces in our count instead of 280.
The remaining 66 tropical surfaces all have unseparated nodes.
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Overview of strategy

We follow (Markwig-Markwig-Shustin-Shaw).

La�ice path: Each point in the point configuration is contained in
the interior of a 2-dimensional cell. Encode this in the Newton
polytope by a la�ice path.

Floor plan: We can look at each slice in the x direction of the
Newton polytope independently, obtaining subdivisions of
polytopes dual to curves of degrees 3, 2, and 1.

Subdivision: We can complete this to a subdivision by the smooth
extension algorithm.

Test for separatedness: Check the nodes are separated.

Multiplicities: Count with multiplicity.
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Example: la�ice path



Example: floor plan



Example: bipyramid



Example: count with multiplicity 8



Complexes that could be dual to two nodes



Conclusion

1. Tried to understand how to count tropical binodal cubic
surfaces through 17 points.

2. Found 214 surfaces with separated nodes.

3. Still need to understand 9 cases which account for the
remaining 66 surfaces.

Thank You
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