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Abstract

This thesis explores the relationship between two theorems from extremal combina-
torics: the Erdgs-Ko-Rado theorem and the Baranyai theorem. Seven proofs of the
Erdgs-Ko-Rado theorem are given, and the proof of the Baranyai theorem is also
presented. We provide a discussion of the wreath conjecture, an extension of the
Baranyai theorem, and subsequently give a proof that the wreath conjecture implies
the Erdgs-Ko-Rado theorem.






Introduction

Extremal combinatorics is a field of mathematics that addresses questions of the size
of finite objects given that the objects satisfy certain constraints. Hypergraphs, an
object of study in extremal combinatorics, are a generalization of graphs where an
edge can contain any number of vertices. In this thesis, we will explore the relationship
between two theorems about uniform hypergraphs (hypergraphs in which all edges
have the same size).

The first theorem is the Erdds-Ko-Rado theorem, which bounds the size of an
intersecting hypergraph. As an example, suppose that Europe has twenty-four lan-
guages, and you wish to assemble a group of diplomats such that each diplomat in
the group speaks exactly four languages, and any two diplomats speak a common
language. What is the maximum number of diplomats?

The second theorem is the Baranyai theorem, which guarantees the existence of
a certain decomposition of a complete uniform hypergraph. As an example, suppose
now that we have a group of nine diplomats such that any set of three diplomats can
communicate using one of eighty-four total languages, and only three diplomats speak
every language. The diplomats are attending a conference which lasts all twenty-eight
days of February. Each day at lunch, the diplomats want to sit at a tables with three
seats such that by the end of the conference, each diplomat spoke a different language
each day at lunch. Is this possible?

For some cases, the Baranyai theorem implies the Erdds-Ko-Rado theorem. This
leads us to ask whether there is a way to expand the Baranyai theorem so that it
implies the Erdgs-Ko-Rado theorem in general.

Ideally, all material discussed in this thesis would be accessible to a careful reader
who has taken a semester or more of proof based mathematics. In some places, a
background in linear algebra is also necessary. We will begin by discussing some ap-
plications of hypergraphs to other sciences.

Many problems in extremal combinatorics originate from other areas of study
because scientists often model systems in the real world using graphs. A graph is a
collection of wvertices (which can be thought of as points or nodes) and edges which
join any two of the vertices. In recent years, some scientists have started using
hypergraphs to describe these systems as well, because hypergraphs can convey more
information than a graph can. A hypergraph is like a graph, except that a single edge
can connect any number of vertices; we think of the vertices as being contained in
the edge. We will illustrate examples in which scientists have used hypergraphs to
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successfully study biological networks, social networks, and computer science.

In [25], Klamt, Haus, and Theis introduce hypergraphs as a way to study biological
networks that have previously been studied with graphs, but are limited by these
models. For example, biologists model ecosystems as a set of species with interactions,
and they model proteins as a networks of amino acids. Other examples include neural
networks and food webs. Usually, these networks are represented by graphs, where
the vertices represent units in the network, and edges represent interactions among
the units. However, using graphs to represent these complex interactions can have
limitations. Many relationships in biological networks are more complicated than
what can be represented by a graph. If some process has more than two participants,
then this relationship cannot be represented by a graph. Hypergraphs, however, can
resolve this issue. For example, in protein-protein interaction networks, we have a
set of proteins and a set of complexes (a group of associated proteins). Here, the
proteins would form the vertices of a hypergraph, and the complexes would form the
edges of the hypergraph. A problem related to experimental design is to determine
the minimal subset of proteins that would cover all complexes. Formally, if X is the
set of proteins and H is the collection of complexes, we are looking for a set M C X
such that for any h € H, there is an m € M such that m € h. This problem can not
be solved with a graph, but can be solved with a hypergraph.

In [11], Estrada and Rodriguez-Velazquez study complex networks with hyper-
graphs. Complex networks appear in almost all sciences, and usually they are repre-
sented by directed graphs, where the vertices are people, molecules, or computers, and
the edges indicate some relationship between them. This includes the Internet, social
networks, food webs, metabolic networks, and protein-protein interaction networks.
Frequently, graphs do not provide a complete description of the relationships. For ex-
ample, let a collaboration network consist of a collection of authors, the vertices, and
let two authors share an edge whenever they have co-authored a paper. For example,
in Figure 1, we have the collaboration network between Erddés, Bollobas, Daykin,
Frankl, Lovasz, and Katona. However, from this graph we only know whether a pair
of mathematicians has collaborated. We cannot tell whether Bollobas and Daykin
have published a paper together without Erdés, since the edge between Bollobas and
Daykin may result from a paper published by Bollobés, Daykin and Erdds together.
We also do not know if Erdés, Frankl, and Lovasz have published a paper together. A
natural way to fix this problem would be to represent such systems with hypergraphs,
as we have done in Figure 2. This tells us that Bollobéas, Daykin and Erd&s had a
paper together, but Bollobas and Daykin have not written a paper with just the two
of them. On the other hand, Erdés, Frankl, and Lovasz do not have a paper together,
but each pair of them does have a paper together.

Estrada and Rodriguez-Velazquez studied one such collaboration network, and
created the corresponding hypernetwork. When determining the most “central” au-
thor for each network, they came up with completely different results for the two
models because an author who participates in many different collaboration groups
may not have many coauthors if the groups are small, while an author with many
coauthors may not have many collaboration groups if all coauthors are in one group.

The authors also studied food webs in ecosystems. A competition graph has as
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FErdés Bollobas Erdbs Bollobas

Katona Daykm Katona Daykzn
Lovasz Frankl Lovdsz Frankl
Figure 1: A collaboration network. Figure 2: A collaboration hypernetwork.

its vertices the species in an ecosystem, and two vertices share an edge when they
compete for the same prey. The problem with this model is that it does not give
any information about when a group of species competes for the same prey, while a
hypergraph can represent this type of information.

In [28], Liu and Wu apply hypergraphs to the declustering problem. The declus-
tering problem is to partition data across multiple disks which can be accessed in
parallel to reduce query response time. There are many different types of systems
that need to access large amounts of complex data. Liu and Wu propose a hypergraph
model to formulate the declustering problem in very general cases, where data items
may have different sizes or queries might have different access frequencies.

To do this, they define a weighted hypergraph, where the vertex set is the set of
data items, and the edges of the hypergraph each correspond to one of the queries,
and consist of the set of data items that must be accessed in parallel for that query.
Each edge is then weighted with the frequency of the query. Then the problem is to
find a partition of the vertices which respects the disk capacities and minimizes the
expected query response time. The authors show that hypergraph declustering is an
NP complete problem, therefore any fast algorithm will not give the optimal solution.
They use a greedy algorithm to find a heuristic solution.

The authors conduct experiments to compare the performance of their method
against various other declustering methods. They vary the number of disks, the num-
ber of data items, and the number of queries. In almost all cases, they find that the
hypergraph models outperform the other methods.

Outline

Chapter 1 contains the necessary definitions, and gives a brief discussion of the Erd&s-
Ko-Rado theorem and the Baranyai theorem.

Chapter 2 gives all seven known proofs of the Erdgs-Ko-Rado theorem, each using
different ideas, including permutations, linear algebra, linearly independent polyno-
mials, and the Kruskal-Katona theorem.
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Chapter 8 discusses several extensions and applications of the Erdés-Ko-Rado theo-
rem. This includes a study of extremal sets under the Erdgs-Ko-Rado conditions, a
rephrasing of the Erdds-Ko-Rado theorem in terms of independent sets and an ex-
ploration of higher orders of independence, a discussion of Sperner sets, and a lower
bound on the chromatic number of the Kneser graph.

Chapter 4 gives the complete proof of the Baranyai theorem and its corollaries, in-

Vo cl

cluding Baranyai’s “integer making” lemmas and his induction step.

Chapter 5 presents the wreath conjecture and discusses recent developments in that
area, including a connected version of Baranyai’s theorem, and a decomposition of
complete uniform hypergraphs into Hamilton-Berge cycles. We briefly discuss the
possibility that wreath decomposition is NP-complete, and discuss a reformulation of
the problem in terms of graphs.

Chapter 6 explains why we do not think that the Erdds-Ko-Rado theorem can be
proved from the Baranyai theorem, and also shows that the wreath conjecture im-

plies the Erdés-Ko-Rado theorem.

Appendiz A contains the Mathematica code used for the computations in this thesis.
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Notation
Symbol Meaning
|A| The cardinality of a set A.

P(A)
Ky
]
(a,b)
(&)
vy ()
Sij
a(H)
X

n
k,l,r,s,d
Y
H, F
e fg

T,V,Ww

The power set of A, or the collection of all subsets of the set A.
The set of all k-subsets of the set {1,...,n}.

The set {1,...,n}.

The greatest common divisor of a and b.

The binomial coefficient, “n choose k”.

The degree of the vertex x in the hypergraph H.

The vertex exchange operation (see Chapter 2 Section 1).
The l-shadow of the hypergraph H (see Chapter 2 Section 3).
Usually denotes the ground set or vertex set.

Usually denotes the size of the vertex set.

Usually denote integers.

Usually denote indices.

Usually denote hypergraphs.

Usually denote edges of a hypergraph.

Usually denote vertices of a hypergraph.






Chapter 1

Definitions and Setup

We begin with a formal discussion of the basic definitions, providing examples where
appropriate. Then, we will introduce the Erd&s-Ko-Rado theorem and the Baranyai
theorem.

1.1 Hypergraphs

Let k be a positive integer. If X is a set, and | X| = n, then we will denote the set of
all k-subsets (subsets of size k) by K*. Let P(X) denote the power set of X.

Definition 1.1.1. A hypergraph on X is a set H C P(X). A k-uniform hypergraph
is a hypergraph H such that H C K*.

In this new framework, a usual combinatorial graph is a 2-uniform hypergraph.
We will call X the ground set or vertex set of H, and elements of X will be called
vertices. We will call H the edge set, and elements of H will be called hyperedges
or simply edges. We will usually use the letters e, f, g to denote edges, and z,v for
vertices.

Definition 1.1.2. Let H be a hypergraph on X and let x € X. The degree or valency
of zis vy(x) = [{e € H | x € e}|, or simply v(z) when the context is clear. We will
call H a d-regular hypergraph if vy (x) = vy(2') = d for all x,2" € X. We will call H
an almost reqular hypergraph if the valencies of any two vertices differ by at most 1.

Example The Fano plane is the hypergraph displayed below, where each of the six
straight lines represent a single edge, and the circle represents an edge. The Fano
plane is a 3-uniform, 3-regular intersecting hypergraph on seven vertices with seven
edges.
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1.2 Intersecting Hypergraphs

Recall the example from the introduction about diplomats: suppose that the world
has n languages, and you wish to assemble a group of diplomats such that each
diplomat in the group speaks exactly k languages, and any two diplomats speak a
common language. Furthermore, no two diplomats speak exactly the same set of
languages. What is the maximal size of the group of diplomats? This question
can be answered by the Erdgs-Ko-Rado Theorem, which is a central theorem from
extremal combinatorics concerning the maximum number of edges in an intersecting
hypergraph.

Definition 1.2.1. A hypergraph H is called intersecting if for all ey, e; € H, we have
that |e; Ney| > 1. We say that H is l-intersecting if for all e1,es € H, we have that
|€1 N 62| Z {.

Relating this back to the example about diplomats, we would consider a hyper-
graph H on X where X is the set of languages, and each edge in H is the set of
languages known by a diplomat. Then, the question of how many diplomats we may
have translates to a question about how large an intersecting hypergraph can be.
In the case when H is not necessarily uniform, or the diplomats can each know an
arbitrary number of languages, we claim that |H| < 27! where n = | X|. To see this,
place the elements of P(X) into pairs {e, X\e} for each e € P(X). Any intersecting
hypergraph may have at most one element of each of these pairs present in its edge
set. Since |P(X)| = 2", there are 2"~! pairs and so |H| < 2"~!. Note that we may
achieve this upper bound by taking some v € X, and letting the edge set be all sub-
sets of X which contain v. It turns out that this is the maximal configuration, so in
the largest possible collection of diplomats, all diplomats speak a common language.

Now consider the case when H is a k-uniform hypergraph, or each diplomat speaks
exactly k languages. If n < 2k, then any subset of X*®) will be intersecting, so we
can have H = K”. If n = 2k, then we may again pair the edges in K* into {e, X\e}
pairs. Then an intersecting hypergraph may have at most one edge from each pair,

for an upper bound of
1 n\ (n-—1
2\k/)  \k-1
edges.

What happens when n > 2k? Consider a hypergraph H where for some v € X,
we have that
H={ec K'|vecel
n—1

Then H is a k-uniform intersecting hypergraph with (kfl) edges. Is this maximal,
and are there any other constructions which yield a hypergraph of this size?

Theorem 1.2.2 (Erdds, Ko, Rado [10]). Let k > 2, n > 2k, and ‘H be an intersecting
k-uniform hypergraph on X, with n = |X|. Then

n—1
<
= ()
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with equality if and only if for some v € X, we have H = {e € KF | v € e}.

There are many proofs of this theorem, which we will discuss in Chapter 2. For
now, we will introduce the Baranyai theorem.

1.3 Factorizations of Hypergraphs

We now reconsider the diplomat seating problem given in the introduction: suppose
that we have a group of n diplomats such that any set of k diplomats shares a language,
and each language is spoken by exactly k diplomats. Then there are (Z) languages
spoken in total. The diplomats are attending a conference which lasts (Zj) days.
During lunch, each diplomat is asked to sit at a table with %k seats such that by the
end of the conference, each diplomat spoke a different language each day at lunch. Is
this possible? Clearly, we must require that k divides n, because the n diplomats must
split evenly into groups of size k each day for lunch. When this condition is satisfied,
there will be n/k tables at lunch each day, and since (n/k)(}_{) = (}), each language
will be spoken at exactly one table on one day of the conference. From the outset, it
seems possible to find a seating arrangement for the diplomats. For example, if there
are 4 diplomats and each pair of diplomats speaks a different language, then we have
the scenario in Figure 1.1.

y Bulgarian
ASQ Dutch

Day 1 Day 2 Day 3

English

French

Figure 1.1: A solution for the diplomat seating problem when n = 4 and k = 2.

It was proved by Baranyai in 1975 that as long as k divides n, this problem has a
solution. It turns out that to solve the problem, we must find a factorization of K~.

Definition 1.3.1. Let d be a positive integer. A d-factor of a hypergraph H is a set
of edges H' C H such that vy (z) = d for all x € X. A d-factorization of H is a
partition of H into d-factors:

H=H,U---UH,

where the H; are d-factors and H; NH; = 0 for ¢ # j. If H is 1-factorizable, we will
simply call H factorizable, and its 1-factorization will be called a factorization.

Returning to our example, Figure 1.1 gives a factorization of KZ, and the seating
arrangement on a given day is a factor. Furthermore, the graph K2 can be factorized
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by arranging 2n— 1 of the vertices into a regular (2n—1)-gon, and leaving the excluded
vertex to the outside. Then, for each factor, we draw parallel lines connecting vertices
in the polygon. This will leave one leftover vertex from inside the polygon, which
will be connected to the excluded vertex. Doing this in all possible ways gives a
factorization. See Figure 1.2 for such a factorization of K3.

Figure 1.2: A 1-factorization of K2, where each color represents a factor.

The graph K3, can be 2-factored by making the factors cycles in the graph. See
Figure 1.3 for a 2-factorization of K2.

Figure 1.3: A 2-factorization of KZ, where each color represents a factor.

Note that if K¥ is factorizable then k divides n, as we observed before. It turns
out that this necessary condition is also sufficient. This assertion had been around in
a vague form for more than 100 years before it was proved by Baranyai.

Theorem 1.3.2 (Baranyai [3|). The complete graph KF is factorizable if and only if
k diwides n.

The proof of the Baranyai theorem is quite difficult and will be the subject of
Chapter 4.
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Now we will show that the Baranyai theorem immediately implies the Erdés-Ko-
Rado theorem in the case where k divides n. Consider H, a k-uniform hypergraph on
n vertices. Let Hy, Ha,...,H; be a factorization of K*. Then H contatins at most
one edge from each of the factors H;, so |H| < I, and

- n\k [(n-—1
S \k)n \k-—1)’
so we have that [H| < (}7]).

This leads us to ask the following question: is there a way to expand this proof
to show that the Baranyai theorem implies the Erdés-Ko-Rado theorem in general?

Is there a generalization of the Baranyai theorem that implies the Erdés-Ko-Rado
theorem in all cases? These are the questions we wish to answer in this thesis.






Chapter 2

Proofs of the Erdds-Ko-Rado
Theorem

Erdés had many publications with Rado, and began corresponding with him in early
1934 when Rado was a German refugee in Cambridge and Erdés was in Budapest [9].
Their first joint paper was done with Chao Ko, and contained the Erd&s-Ko-Rado
Theorem. Erdds writes that the paper was essentially finished in 1938, and that one
of the reasons it was not published until 1961 was that at the time there was relatively
little interest in combinatorics. Another reason was that in 1938, the three separated:
Ko returned to China, Erdés went to Princeton, and Rado stayed in England. Erdégs
says that the Erdgs-Ko-Rado Theorem is “perhaps our most quoted result”’[9]. The
Erdss-Ko-Rado Theorem, referenced by hundreds of other papers, opened the way
for the rapid development of extremal combinatorics.

Recall from the introduction that the Erdés-Ko-Rado Theorem states that if & > 2,
n > 2k, and H is an intersecting k-uniform hypergraph on n vertices, then

n—1
< .
e ()

There are many known proofs of this theorem, some of which are outlined in [16].
Here we will present all currently known proofs.

2.1 Shifting: The Original Proof

The original proof of the theorem given by Erdés, Ko, and Rado in [10] uses an idea
called shifting, which replaces the edges of a hypergraph with new ones such that
some key properties are preserved.

Definition 2.1.1. Let H C P(X), where X = {z1,...,2,}. Let 1 <i < j <n. The
exzchange operation S;; : P(X) — P(X) is defined by

sty - { VU ) g e o () U1 )

otherwise.

Then we define SZ]<H) = {S”(f> | f S H}
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We note that |S;;(H)| = |H|, and that |S;;(f)| = |f| for all f € H. See Appendix
A.3 for Mathematica code which performs the exchange operation.

Proposition 2.1.2. If H C P(X), and H is l-intersecting, then so is S;;(H).
Proof. Let f1, fo € Sij(H). Then there are several possibilities.
1. If fl,fQ € H, then |f1 ﬂf2| > 1.

2. If f e H, and fo & H, then fo = {z;} U (f5\{z;}) for some f; € H. Regarding
f1, one of the following is true. If x; € fi, then [foN fi| > 1+ |f5N fi| —1 =1L
If z; & f1, then |fi 0 fof = |f3N fi] = 1. Lastly, if {z;} U (fi\{z;}) € H, then
since | f3 N ({x;} U (fi\{z;}))| >, we have that [ +1 < |f5 N fi| = |fo N fi| + 1.

3. Lastly, if fi, fo & H, then |fi N fol = |f 01 f3] > L
Therefore, S;;(#) is l-intersecting. O

Proof of the theorem. Let k > 2, n > 2k, and H be an intersecting k-uniform hyper-
graph on X, with n = |X|. The original proof applied induction on n, and proved
the theorem for all k& < n/2. The base case, n = 2k, was discussed in Chapter 1.
Now, suppose that n > 2k, and that the theorem is true for all smaller n. Define
inductively Ho = H, and H; = S;,,(H;_1), for any i € {0,...,n — 1}. Then by the
proposition, |H| = |H,_1|, and H,,_; C KF is intersecting.

Define G ={f e H,1 |z, & [}, and F = {f\{z,} | vz, € f € H,_1}. Clearly,
|| = |G| + | F|. Then since G is intersecting, and has n — 1 vertices, we have by the

inductive hypothesis that
n—2
G| < )
o< (;27)

Then it suffices to show that |F| < (Z:;), since this would imply |H| < (Z:f) + (Z:;) =
n—1
(k 1S)ince Fis a (k— 1)-uniform hypergraph on n — 1 vertices, if F' is intersecting then
the theorem is proved by the inductive hypothesis. Suppose that there are f, f' € F
such that f N f" = 0. Since |f U f'| =2(k — 1) < n — 1, there is an z;, where i < n,
such that x; & fU f'. Let h = fU{x,}. Then h € H,,_;. Since x,, € h, we have that
h € H (because x, was never shifted out). Therefore, h € H; for all 1 <i <n — 1.
Then S;,(h) = h, so h was never replaced. This can happen only if (fU{z;}) € H;_1
(since z; & h,x, € h). However, (fU{z;})N(f ' U{z,}) =0, which is a contradiction
because they are both members of the intersecting hypergraph H,,_. m

2.2 Cyclic Permutations: Katona’s Proof

This clever proof was given by Katona in [23]. It works by counting in two ways the
number of cyclic extensions of an edge.
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Proof. Let H be intersecting, k-uniform, on n vertices, and let n > 2k+1. We will say
that a cyclic permutation of the vertices of ‘H extends an edge e € H if the vertices of
e appear in consecutive positions of the permutation when the permutation is written
in cycle notation. For example, the edge {z1, z2, 23} is extended by the permutation
(x4 w5 x1 T3 T2), but is not extended by the permutation (x4 1 =5 x3 3).

There are k!(n — k)! cyclic permutations extending an edge e. On the other hand,
a cyclic permutation can be the extension of at most k edges. To see this, suppose
(x1,...,2) is one of the edges in the cycle. Then for all 4, 1 <1 < k — 1, there is at
most 1 edge which contains precisely one of {x;, x;.1} by the intersecting property.

The number of cyclic permutations of {1,...,n} is (n — 1)!, so
HE(n— k) < k(n —1)!
—— ——
# cyclic extensions # potential cyclic extensions
Then,
k(n —1)!
< N )
"= o=
B (n—1)!
(k= 1D)!(n—k)!

-(:20)

2.3 Shadows: Daykin’s Proof

Daykin uses a version of the Kruskal-Katona theorem to prove the Erd&s-Ko-Rado
theorem. First, we will define a shadow.

Definition 2.3.1. Given a k-uniform hypergraph H and an integer [, where 1 <[ < k,
the [-shadow 9; of H will be:

§iI(H) = {g € K | for some f € H, we have g C f}.

Given |H| = m, what can we say about the size of 6;(H)? It is clear that |6;(H)| <
(*)H|, where equality holds if and only if |f N f’| < holds for all distinct f, f' € H.
Can we get a lower bound for §;(#)? The following consequence of the Kruskal-
Katona theorem by Lovasz answers this question.

Theorem 2.3.2 (Kruskal- Katona |26, 22|). Let H be a k-uniform hypergraph, and
suppose |H| > (}) for some x > k. Then

16,(H)| > (?) for all 0 <1< k.



16 Chapter 2. Proofs of the Erdés-Ko-Rado Theorem

We will present a proof of Theorem 2.3.2 which was given by Daykin in [6].

Proposition 2.3.3. Let H C K¥, and let 1 <i < j <n. Then
Or-1(5i5(H)) C Si(0k—1(H))
Proof. There are several cases which we must examine. Let f € §x_1(S;;(H)).

1. fz;,2; ¢ f, then then f € §;_1(#H) (Since either fU{z;} or fU{x;} is in H).
Then since x; ¢ f, we have that S;;(f) = f, so f € S;;(dx—1(H)).

2. If z; € f, and x; € f, then there exists a v € X such that f U {v} € S;;(H).
Since x;,z; € f, we have that f U {v} € H. Then f € 6,_1(H), and since
z;,x; € f, we have that f € S;;(0x—1(H)).

3. If x; € f, and x; ¢ f, then there exists a v € X such that fU {v} € S;;(H).
Since x; € f, we have that S;;(f U {v}) = fU{v}, so fU{v} € H. Therefore,
f € dx—1(H). Now, it matters what v from before was. If v = z;, then (f\{z;})U
{z;} € 6p—1(H), so Si;(f) = f. If v # x;, then there exists f' € H such that
fr=((FUfvh)\{z;}) Ui}, so fA\{v} = (F\{2;}) Ui} € 01 (H). Therefore,
Sij(f) = [, s0 f € Sij(op-1(H)).

4. If z; € f, and z; & f, then there exists a v € X such that f U {v} € S;;(H).
Either fU{v} € H or (f\{z;})U{v}U{z;} € H. In the first case, f € dp_1(H),
and so since x; ¢ f, we have that S;;(f) = f. In the other case, we have that
(f\{z:}) U{x;} € 0k_1(H). Therefore, in either case, f € S;;(dx—1(H)).

O

Continuing with the proof of the Kruskal-Katona theorem, we define inductively
Hi =H, and H; = S1;(Hi—1), for 2 < i < n. Then, we then have that

|0k—1(Hn)| < |0—1(H)]-
Therefore, we may consider H,, instead.
Claim 2.3.4.
1. k-1 (Hn)| 2 [Ha(D)] + [0k—1(Ha(1))], where Hy(1) = {e\{z1} € Hn | 21 € €]
2. 0 1(Ha(1)) C Ho(1), where Hp(1) ={e € H, | 71 € H}.
Proof.

1. By definition, H,,(1) C 0x_1(H,), and {{z1}Ug | g € dx_1(Hn(1))} C dp_1(Hn)-
These families are disjoint, so the claim holds.

2. Choose (g, h) with h € H,(1) and g C h such that |g| = k — 1. Let {z;} = h\g.
The only way h survived Sy; is if ' = g U {x1} € H,;_1, so that b’ € H,.
Therefore, g € H,(1).
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]

Proof of Kruskal-Katona. Apply induction on k and for a given k, apply induction
on |H| as well. The case where |H| = 1 is trivial. First, suppose that |#,(1)| < (7).
By 2 from Claim 1 above, |H,(1)| > k, so we ensure that x —1 > k. Now, notice that

==l = () - (7 21) = (7))

Applying the induction hypothesis and using 2 again, we find that

0] sl 2 (17 1),

which is a contradiction.
Therefore, |H,(1)| > ({~}). By inductive the hypothesis, we know that |05_o(H (1)) >

(z:;), and so by (1) in the claim above, we have

051 (Ha)| 2 [Ha(D)] + [84—2(Ha (1))
“(o)+65)
-5

Now, we will prove the Erdés-Ko-Rado theorem from the Kruskal-Katona theorem.
This proof was given in [5].

Proof of Erdés-Ko-Rado. Suppose that H C K, with n > 2k, and H > (Zj) =

("~}). Define G = {X\f | f € H} C K'*. By the Kruskal-Katona theorem, we

have that |6,(G)| > (1), so |H| + [6:(G)| > (1—]) + (".") = (}). Therefore, there
is an f € HNog(G). Since f € 6 (G), we have that f C X\ f’ for some f' € H, so

f N f =0. But this is a contradiction, since H is intersecting. O

]

2.4 Linear Algebra: Lovasz’ Proof

This proof by Lovéasz appears in [30], and utilizes linear algebra to prove the Erd&s-
Ko-Rado theorem.

Let N = (Z), and Aj,..., Ay be an arbitrary ordering of the k-subsets of X. For
an intersecting hypergraph H C KF. let

X(H) = (Xl,---,XN)

be its characteristic vector: x; = 1 if A; € H, and x; = 0 if A; € H. Let B be any
N x N real symmetric matrix whose entries b;; are 0 whenever A; N A; # 0. Let I be
the N x N identity matrix, and let J be the N x N matrix whose entries are all 1s.
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Claim 2.4.1. If B+ I — ¢J is positive semidefinite for some ¢ > 0, then |H| < 1/c.

Proof. Let w = x(H), and consider y = w(B+1—cJ)w?. By assumption, wBw? = 0.
Also, wiw? = |H|, and wJw? = |H|?. Therefore, y = |H| — c|H|?>. By semi-
definiteness, we have that y > 0, so that c|H|* < |H|, or [H| < 1/c. O

Now, to prove the theorem, we only need to show that for some choice of the

matrix B, and for ¢ = (Zj) _1, we have that B+ I —c¢J is positive semidefinite. Then

define the matrix B = (b;;) by

by — { (P AN =0

0 otherwise.

We will compute the eigenvalues of B.

First, the vector u = (1,...,1) is a common eigenvector of B, I, and J. The
eigenvalue of B is ”T_k, since A; is disjoint from (";k) edges, we get (";k) (";ﬁl)fl =
"T_k. The eigenvalue for I is clearly 1, and for J it is ( ) The all 1’s vector u is

annihilated by B+ I — ¢J:

n—k n—1\"/n n n
Bu+Iu—cJu= ? u—l—u—(k_l) (k)u_EU_EU_O'

Therefore, the eigenvalue of v for B+ I — ¢J is 0.
Now, we will find the remaining eigenvectors v of B, and show that the following
hold:

n

k

1. The eigenvalue for I of v is 1 (this is true for any v).
2. An eigenvector for J is v, with eigenvalue 0.
3. An eigenvector for B is v, with eigenvalue greater than or equal to —1.

Together, these statements ensure that all eigenvalues of B + I — ¢J are greater than
or equal to 0, which gives positive semi definiteness for B + I — ¢J.

The following collection of vectors have eigenvalue —1 with B. For each (z,y),
where z,y € X, define v(x,y) = (vy,...,vy) with

1 if AN {x,y}={r}
0 otherwise.

First, note that these are eigenvectors of J with eigenvalue 0.

Claim 2.4.2. B v(z,y) = -v(z,y)
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Proof. 1f B; is the ith row of B, then the ith entry of Buv(x,y) is B; - v(x,y).

If A;n{z,y} = {z,y}, then A; is only disjoint from edges not containing {z,y},
so only those entries will be nonzero in B;, but in v(x,y), those entries will be 0.
Therefore, B; - v(z,y) =0 = v;.

If A;n{x,y} =0, then A; is disjoint from an equal number of edges containing x
and edges containing y, so in B-v(z,y) these terms cancel, so that B-v(z,y) = 0 = v;.

If A;n{x,y} = {z}, then any edge disjoint from A; does not contain z, so there is
a nonzero term in B -v(z,y) if and only if y € A;. There are (";ﬁ;l) of these vectors,
so that

n—k—1\/n—k—1\"
pate= (T (Y L,

and similarly for the case where A; N {z,y} = {y}.
Therefore, v(z,y) is an eigenvector of B with eigenvalue —1. O

The v(z,y) span a n — 1 dimensional vector space. To see this, let z € X. Form
a basis for the subspace spanned by v(x,y) by taking the set 5 = {v(z,z) | v € X}.
Then, for any vy, y, € X, it is easy to verify that v(y;,y2) = v(z,y2) —v(z,y1). Then
B is clearly linearly independent, and a spanning set for the v(z,y), and |5 =n — 1.

Then what are the remaining (Z) — (n—1) — 1 eigenvectors for B? For 2 < i <k,
and any two disjoint i-element sets of X,

O:{.Tl,...,l‘i} D:{yl,...,yl‘},
Define u(C, D) = {uy,...,uy} by

"y (=1)P4lif |A; N {x, 9} = 1 holds for 1 <1 <
i=Y 0 else.

Claim 2.4.3. Bu(C, D) = (—1) <Zk;£§

Proof. Set 6 = (n;le)_l. Compute the rth entry v, of Bu(C, D). This is the dot
product of u and the rth row of B.

Suppose first that [A, N {x;,y}| =1 for 1 <1 <
nonzero entry is for A € K* to satisfy AN (CU D) =
A, are complementary inside of C'U D). Therefore,

v — (-1)5(“ ;f;’>u

If |A, N {x;,y}| = 2 for some [, then there is no way to get a nonzero term, so
v, = 0.

Consider the case where |A, N {z;,y;}| = 0. There are an equal number of A, A’
such that AN {x;, y} = {x;} and A"’ N {x, 1} = {yi}. Therefore, since these entries
have opposite signs in u(C, D), all terms cancel in the dot product, so v, = 0. O

u(C, D).

—

1. The only way to obtain a
(C'UD)\A, (meaning A and
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Now, we will find (7)) — (,”,) linearly independent vectors u(C, D). This will show
that the eigenvectors corresponding to the eigenvalue

()

(1)

span a vector space of dimension at least (7;) — (:1) IfC={xy,...,2;} and D =
{y1,...,y;} with x; < y;, then we will write C' < D. Then there are exactly (:L) — (lfl)
sets D € K for which some C < D exists. For each D, find some C' = C'(D) with
this property. Then the vectors u(C(D), D) are linearly independent.

Since these lower bounds on the dimensions of the eigenspaces sum to (Z), equality
holds everywhere. Since (";ﬁ:’) < ”;ﬁ;l), we have that the eigenvectors of B
all satisfy properties (1), (2), and (3) from above, so that B + I — ¢J is positive

semidefinite, and the theorem holds.

2.5 Another proof by Katona

This proof is given by Katona in [21], and relies on the following theorem.

Theorem 2.5.1. Let 1 < s <k, and 1 <[l <k, and s+ 1 > k, and let H be a
hypergraph on n wvertices with m edges such that H is k-uniform and l-intersecting.
Then

(Zk:—l)

()

where 65(H) denotes the family of s-subsets of the edges of H.

< [05(H)]

m

Proof. If s = k, then the theorem is clear, so we only consider the case when s < k.
There will be 3 different cases.

1. 2k —1 > n.

Let ¢ € 6,H. Count the pairs (h;,c), where h; € H, and ¢ C h;. On the one
hand, there are |H| (’;) of them, since there are (’;) possible choices of ¢ for each
choice of h;, and there are |#H| choices for h;. On the other hand, there are
|05(H)|(,=%) of them, since for a fixed ¢ there are possibly (7~%) sets to join to
¢ to obtain an h;, and there are |05(#)| choices for c¢. So, we have

p(5) <m0l ).

Then, we need to prove that
k 2%k—1
() L
(n—s) - (2kfl)
k—s k
in order to prove the theorem. Simplifying this expression, we find that

2k —1—9)! _ (k=1)!
(n—s)! (n —k)!

>



2.5. Another proof by Katona 21

Whenever 2k — [ > n, we see that the left hand side is greater than 1, and the
right hand side is less than 1. Equality holds only in the case 2k — [ = n.

2. s=1

Here, there are 2 cases.

(a) L=k
If | =k, then |H| =1,s0n=k. Then 2k — [ =1 =mn, and

n= \H!@ < [0 (H)] = n.

()

(b) If I = k — 1 then we have 2 cases. Here, it is enough to show that |H| <
|01(#H)], since

1.

ii.

k+1

(7)

k+1

(%)
If every set of size £ — 1 is in at most 2 edges then consider h; N h; for
hi, hj € H. Clearly,

=1

|(hlﬂh])ﬂha| < kf—l,

however

|<hlﬂh3)mha| <k-—2
is not possible, since we have
|hi N hel < |(hi Nhj) N he| +1 <k —1.

So, for all h, € H, we find that [(h; N h;) N hy] = k — 2. Then
we have h;\h; C h, for all h, € H, since |h; N h;] = k — 1 and
|(h; N hj) N he| = k — 2. Similarly, we have h;\h; C h, for all h, € H.
Then since the sets h; N hj, h;\h;, and h;\h; are all disjoint, we have
that

ha = (hj\hi) U (hi\h;) U (hi "V hj)\Aa,
where A, € h; Nh;. Then, |H| < k+1, and each element is in at most
k sets h,. Thus

H < |6 (H)|.

If H is such that there exists a ¢, with |¢| = k — 1, and ¢ C h;, hj, hy,
then for any a, we have ¢ C h,. This is because |cNh,| < k —2 cannot
hold, since in this case

i OV hy| < k—1.

Also, it cannot be the case that |cNh,| = k— 2, since this would imply
he D hi\c, and h, D hj\c, and h, D hf\c because

|hi NV hj| = |hj N he| = |hfNh| =k —1,

s0 |ha| > k + 1, which is impossible. Then we have n = |H| + k — 1,
so that |H| < [01(H)].
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3. 2k—l<nands>1.

We will induct over n, and apply the first two cases. Here, we have that 1 < s <
k < mn,son > 3. First we consider the case n = 3. Here, we must have k = 3,
and |H| =1, and s = 2,1 =1 or 2. We do not worry about the case [ = 3, since
then 2k — [ = n, and this is handled already by case 1. Since |[0yH| = 3 and

(g) / (g) =1, and (;1) / (g) = %, in both cases strict equality holds.

Suppose n > 3 and for n — 1, the theorem is true. Then we will prove the
theorem for n. Let d, be the sum of the indexes of h,. We may assume that
our system is such that |0,(7{)| is minimal and amongst all such systems, > d,
is minimal. We now distinguish two subclasses.

(a) Suppose that whenever z,, € h, € H and z) € [n]\h,, then we have
ho\{z,} U{z\} € H (in other words, H is stable under shifting x,,).
We may assume that if H = {hq, ..., h,,}, then there is some mg such that
T, € hy for all a < myg, and that z, € h, otherwise. If m = 1, then we
have case 1, since we have n = k, and so 2k — [ > n holds. Let m > 1. If
mgo = 1, then the problem holds by the inductive hypothesis. Suppose that
mgo > 3. Let p < v < mgy. Then |hu Uh,| <2k —1 < n, and there exists
a A€ [n]\(h,Uh,). Then let f, = h,\{z,}. Then f, U{z,} € H, and
|[fu0fl = |(fuU{za )N fol = [(fuU{xx})Nhy| > E, and therefore k—1 > .
Let F ={f1,..., fmo—1}- If mg =2, then x,, & ho, and |hy N hy| < k —1,
sothat k —1>1[,and s —1 > 1, since we have s — 1 +1[ > k — 1 and we
have s —1 <k —1,and k —1 >1[ > 1. Then we have

ey

2(k—1)—1
()
which holds by case 2 in the case s = 2, and when s > 2, we can use the
inductive hypothesis. Let 7' = {hp,, ..., hn}. Then if & <n — 1, we have

< |5571<-F>’ =D,

(2k—l)
(m - m()) (2]:_1) < |5s("rl)| =T,
while if & = n, we have case 1, because 2k — [ > n. Then, we have (since
k>sand s+1—k>0),

- 2(k—1)—1
2%—1y = [2(k—1)—1\ "

(%)~ )
Combining the previous three displays, we find
(Qk—l)
(31:—1)

k
Denote by d,, for v < p the elements of d;_1(F), and by ¢, for v < r the
elements of ds(F’). Let e, = d, + {x,} for v < p. Then |e,| = g, and

m <p+r.
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e, 7# €,. Moreover, we have that for every v < p, there exists an index
p < mg such that d, C f,. Hence e, C h,. Then e, € §5(H), and we have
that e, # c,. Then cy,...,¢,,€,...,e, are distinct elements of d;H, so
p+r < [0(H)].

Suppose that there are h € H and A € [n]\h such that n € h and h\{z,} U
A € H. Then A < n. We may assume that the sets are labeled in such a
way that the following hold:

Ty, € hy, zx € h, b,=h\{z,}U{\} €H (v < my)
Tn € hy, zx € h, ¢, =h\{z,} U{\} e H (mo < v <my)
Tp € hy, zy € h, (Mg <v<my)
Ty & hy, (my <v<m)

Set b, = h,, for mg < v < m. Then we must prove that B = {bg,...,b,} is
[-intersecting, k-uniform, and on m vertices. We must prove that b, # b,
and |b, Nb,| > L.

For y < v < ng, or ng < p < v, this is clear. Let u < mg < v. Then
b, € H,and b, =a, € H, so b, # b,,.

If mg < v < my, then ¢, € H, and there are [ distinct common elements
of h, and ¢,. We have that x, and z,, are not among these, therefore they
are common elements also of b, and b,.

If m; <v < mg, then |h, Nh,| > 1, but z) & |h, N h,|. If instead of a, we
take b,, then we lose at most one element from the intersection, but zy,
which is a common element, is not among these, so b, Nb,| > .

Finally, if my < v < m, then h, and h, have & common elements. We have
that x,, does not belong to them, so the same k elements are also common
elements of b, and b,.

Now we must show that |0s(#H)| > |0s(B)|. Let ¢ be a set such that |c| = s,
and ¢ € 65(B), but ¢ & 05(H). Then ¢ C b, for some v < m. Clearly,
v < mg. Then we have that x, € ¢, because ¢ ¢ h, = b, + {z,} — {z\}.
On the other hand, we have that z, & ¢, because z,, € b,.

Let d = c\{z»} + {zn}. Then d C h,, and d € §5(H). However, d & §5(B),
since if d C b, holds for some v, then mg < v < ms. If v < nq, then
¢ C ¢, = h,\{z,} U{x,} holds, and since ¢, € H, it follows that ¢ € d5(H),
which contradicts our supposition. However, if m; < v < ng, then ¢ C h,
because we have z, € b, = a,, and z, € b, = a,, and this is also a
contradiction.

Now we have associated a set d to every set ¢, where ¢ € d4(B), but
¢ & 6s(H) in such a way that d is an element of §;(#H) but not an element
of 05(B). It follows that |0s(H)| > |05(B)]|. Since for fixed m we supposed
H to be the system for which |0,(#)| was minimal, equality must hold.
However, we have

f(bl,,bm)—f<h1,,hm):m()()\—n) <O,
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where f(ay,...,a,) sums the indices from each vertex of each edge. which
contradicts the minimal-sum property of H. Therefore, this case cannot
occur.

O

Now, we will show that this theorem implies the Erdds-Ko-Rado theorem. Let

= {h1...,hp}, and let G = {[n]\h1,...,[n]\hn} = {91,.--,9n}. Then |g;| =
n—k>k,and |g; N g;| =n —|h; Uhj| >n—2k+ 1. Now, apply the theorem on g
with s = k (which we can dosince 1 <s=k<n—k, 1 <n—2k+1<n-—Fk, and
K+n—-2k+1>n—k). Then

wle) <)

)

Let ¢ € 0(G). Then there exists a g; such that ¢ C g;. Then ¢Nh; = (. Consequently,

we find
6u(B)| + M| < (Z)

Applying the previous inequality, we find

(=1t
B (n —R)h—1)!
- (n—1)! (n—1)!
& Fn—1-%)! T n—R)iGh—1)!
n klln—1—k)!
k Wk+n—k)(n-—k—1)

—(Z:i)

2.6 A New Short Proof: Frankl and Furedi

A new short proof of the Erdgs-Ko-Rado Theorem was given in 2012 by Frankl and
Fiiredi in [15]. First, we must recall some notation.
As before, let 65(#H) denote the family of s-subsets of the edges of H:

5 (H)={S :|S|=s, SCfeH.

If H is k-uniform, and l-intersecting, then it was shown by Katona (in [21], see
Theorem 2.5.1 with s = k — [) that

|H| < |0k—iH]|. (2.1)
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Now we will begin the proof. Define the following sets:
Ho={feM |z &[},
Hi={f e[z e[}
G ={\{z1} |21 € feH},
gO = {{3327 cee axn}\f | f € %0}

To see examples of these sets, refer to Figures 2.1 and 2.2.
H Ho Hi
Go 0k-1G0

s

P )
Figure 2.1: The graphs H1, Ho, G1, Go, and 951G, for H is the Fano plane.

Then Gy is (n — 1 — k)-uniform. Since H is intersecting, we have that if hy € H;,
then

h\{z1} =g € Gi
is not contained in any member of Gy. Then we find that

G1 N 0x—1Go = 0.

We have that Gy is n — 2k intersecting, since if ¢, ¢’ € Gy, then

g0 gl = ({2, wn\) N {2,z N\ = (0= 1) =2k +[f O f'| 2 n — 2k

Then by Equation 2.1, we find that |G| < [0x_1Go|, since Gy i