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Abstract

This thesis explores the relationship between two theorems from extremal combina-
torics: the Erdős-Ko-Rado theorem and the Baranyai theorem. Seven proofs of the
Erdős-Ko-Rado theorem are given, and the proof of the Baranyai theorem is also
presented. We provide a discussion of the wreath conjecture, an extension of the
Baranyai theorem, and subsequently give a proof that the wreath conjecture implies
the Erdős-Ko-Rado theorem.





Introduction

Extremal combinatorics is a field of mathematics that addresses questions of the size
of finite objects given that the objects satisfy certain constraints. Hypergraphs, an
object of study in extremal combinatorics, are a generalization of graphs where an
edge can contain any number of vertices. In this thesis, we will explore the relationship
between two theorems about uniform hypergraphs (hypergraphs in which all edges
have the same size).

The first theorem is the Erdős-Ko-Rado theorem, which bounds the size of an
intersecting hypergraph. As an example, suppose that Europe has twenty-four lan-
guages, and you wish to assemble a group of diplomats such that each diplomat in
the group speaks exactly four languages, and any two diplomats speak a common
language. What is the maximum number of diplomats?

The second theorem is the Baranyai theorem, which guarantees the existence of
a certain decomposition of a complete uniform hypergraph. As an example, suppose
now that we have a group of nine diplomats such that any set of three diplomats can
communicate using one of eighty-four total languages, and only three diplomats speak
every language. The diplomats are attending a conference which lasts all twenty-eight
days of February. Each day at lunch, the diplomats want to sit at a tables with three
seats such that by the end of the conference, each diplomat spoke a different language
each day at lunch. Is this possible?

For some cases, the Baranyai theorem implies the Erdős-Ko-Rado theorem. This
leads us to ask whether there is a way to expand the Baranyai theorem so that it
implies the Erdős-Ko-Rado theorem in general.

Ideally, all material discussed in this thesis would be accessible to a careful reader
who has taken a semester or more of proof based mathematics. In some places, a
background in linear algebra is also necessary. We will begin by discussing some ap-
plications of hypergraphs to other sciences.

Many problems in extremal combinatorics originate from other areas of study
because scientists often model systems in the real world using graphs. A graph is a
collection of vertices (which can be thought of as points or nodes) and edges which
join any two of the vertices. In recent years, some scientists have started using
hypergraphs to describe these systems as well, because hypergraphs can convey more
information than a graph can. A hypergraph is like a graph, except that a single edge
can connect any number of vertices; we think of the vertices as being contained in
the edge. We will illustrate examples in which scientists have used hypergraphs to
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successfully study biological networks, social networks, and computer science.
In [25], Klamt, Haus, and Theis introduce hypergraphs as a way to study biological

networks that have previously been studied with graphs, but are limited by these
models. For example, biologists model ecosystems as a set of species with interactions,
and they model proteins as a networks of amino acids. Other examples include neural
networks and food webs. Usually, these networks are represented by graphs, where
the vertices represent units in the network, and edges represent interactions among
the units. However, using graphs to represent these complex interactions can have
limitations. Many relationships in biological networks are more complicated than
what can be represented by a graph. If some process has more than two participants,
then this relationship cannot be represented by a graph. Hypergraphs, however, can
resolve this issue. For example, in protein-protein interaction networks, we have a
set of proteins and a set of complexes (a group of associated proteins). Here, the
proteins would form the vertices of a hypergraph, and the complexes would form the
edges of the hypergraph. A problem related to experimental design is to determine
the minimal subset of proteins that would cover all complexes. Formally, if X is the
set of proteins and H is the collection of complexes, we are looking for a set M ⊂ X
such that for any h ∈ H, there is an m ∈M such that m ∈ h. This problem can not
be solved with a graph, but can be solved with a hypergraph.

In [11], Estrada and Rodríguez-Velázquez study complex networks with hyper-
graphs. Complex networks appear in almost all sciences, and usually they are repre-
sented by directed graphs, where the vertices are people, molecules, or computers, and
the edges indicate some relationship between them. This includes the Internet, social
networks, food webs, metabolic networks, and protein-protein interaction networks.
Frequently, graphs do not provide a complete description of the relationships. For ex-
ample, let a collaboration network consist of a collection of authors, the vertices, and
let two authors share an edge whenever they have co-authored a paper. For example,
in Figure 1, we have the collaboration network between Erdős, Bollobás, Daykin,
Frankl, Lovász, and Katona. However, from this graph we only know whether a pair
of mathematicians has collaborated. We cannot tell whether Bollobás and Daykin
have published a paper together without Erdős, since the edge between Bollobás and
Daykin may result from a paper published by Bollobás, Daykin and Erdős together.
We also do not know if Erdős, Frankl, and Lovász have published a paper together. A
natural way to fix this problem would be to represent such systems with hypergraphs,
as we have done in Figure 2. This tells us that Bollobás, Daykin and Erdős had a
paper together, but Bollobás and Daykin have not written a paper with just the two
of them. On the other hand, Erdős, Frankl, and Lovász do not have a paper together,
but each pair of them does have a paper together.

Estrada and Rodríguez-Velázquez studied one such collaboration network, and
created the corresponding hypernetwork. When determining the most “central” au-
thor for each network, they came up with completely different results for the two
models because an author who participates in many different collaboration groups
may not have many coauthors if the groups are small, while an author with many
coauthors may not have many collaboration groups if all coauthors are in one group.

The authors also studied food webs in ecosystems. A competition graph has as
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Figure 1: A collaboration network. Figure 2: A collaboration hypernetwork.

its vertices the species in an ecosystem, and two vertices share an edge when they
compete for the same prey. The problem with this model is that it does not give
any information about when a group of species competes for the same prey, while a
hypergraph can represent this type of information.

In [28], Liu and Wu apply hypergraphs to the declustering problem. The declus-
tering problem is to partition data across multiple disks which can be accessed in
parallel to reduce query response time. There are many different types of systems
that need to access large amounts of complex data. Liu and Wu propose a hypergraph
model to formulate the declustering problem in very general cases, where data items
may have different sizes or queries might have different access frequencies.

To do this, they define a weighted hypergraph, where the vertex set is the set of
data items, and the edges of the hypergraph each correspond to one of the queries,
and consist of the set of data items that must be accessed in parallel for that query.
Each edge is then weighted with the frequency of the query. Then the problem is to
find a partition of the vertices which respects the disk capacities and minimizes the
expected query response time. The authors show that hypergraph declustering is an
NP complete problem, therefore any fast algorithm will not give the optimal solution.
They use a greedy algorithm to find a heuristic solution.

The authors conduct experiments to compare the performance of their method
against various other declustering methods. They vary the number of disks, the num-
ber of data items, and the number of queries. In almost all cases, they find that the
hypergraph models outperform the other methods.

Outline

Chapter 1 contains the necessary definitions, and gives a brief discussion of the Erdős-
Ko-Rado theorem and the Baranyai theorem.

Chapter 2 gives all seven known proofs of the Erdős-Ko-Rado theorem, each using
different ideas, including permutations, linear algebra, linearly independent polyno-
mials, and the Kruskal-Katona theorem.



4 Introduction

Chapter 3 discusses several extensions and applications of the Erdős-Ko-Rado theo-
rem. This includes a study of extremal sets under the Erdős-Ko-Rado conditions, a
rephrasing of the Erdős-Ko-Rado theorem in terms of independent sets and an ex-
ploration of higher orders of independence, a discussion of Sperner sets, and a lower
bound on the chromatic number of the Kneser graph.

Chapter 4 gives the complete proof of the Baranyai theorem and its corollaries, in-
cluding Baranyai’s “integer making” lemmas and his induction step.

Chapter 5 presents the wreath conjecture and discusses recent developments in that
area, including a connected version of Baranyai’s theorem, and a decomposition of
complete uniform hypergraphs into Hamilton-Berge cycles. We briefly discuss the
possibility that wreath decomposition is NP-complete, and discuss a reformulation of
the problem in terms of graphs.

Chapter 6 explains why we do not think that the Erdős-Ko-Rado theorem can be
proved from the Baranyai theorem, and also shows that the wreath conjecture im-
plies the Erdős-Ko-Rado theorem.

Appendix A contains the Mathematica code used for the computations in this thesis.
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Notation

Symbol Meaning

|A| The cardinality of a set A.

P(A) The power set of A, or the collection of all subsets of the set A.

Kk
n The set of all k-subsets of the set {1, . . . , n}.

[n] The set {1, . . . , n}.
(a, b) The greatest common divisor of a and b.(
n
k

)
The binomial coefficient, “n choose k”.

vH(x) The degree of the vertex x in the hypergraph H.
Sij The vertex exchange operation (see Chapter 2 Section 1).

δl(H) The l-shadow of the hypergraph H (see Chapter 2 Section 3).

X Usually denotes the ground set or vertex set.

n Usually denotes the size of the vertex set.

k, l, r, s, d Usually denote integers.

i, j Usually denote indices.

H,F Usually denote hypergraphs.

e, f, g Usually denote edges of a hypergraph.

x, v, w Usually denote vertices of a hypergraph.





Chapter 1

Definitions and Setup

We begin with a formal discussion of the basic definitions, providing examples where
appropriate. Then, we will introduce the Erdős-Ko-Rado theorem and the Baranyai
theorem.

1.1 Hypergraphs
Let k be a positive integer. If X is a set, and |X| = n, then we will denote the set of
all k-subsets (subsets of size k) by Kk

n. Let P(X) denote the power set of X.

Definition 1.1.1. A hypergraph on X is a set H ⊂ P(X). A k-uniform hypergraph
is a hypergraph H such that H ⊂ Kk

n.

In this new framework, a usual combinatorial graph is a 2-uniform hypergraph.
We will call X the ground set or vertex set of H, and elements of X will be called
vertices. We will call H the edge set, and elements of H will be called hyperedges
or simply edges. We will usually use the letters e, f, g to denote edges, and x, v for
vertices.

Definition 1.1.2. Let H be a hypergraph on X and let x ∈ X. The degree or valency
of x is vH(x) = |{e ∈ H | x ∈ e}|, or simply v(x) when the context is clear. We will
call H a d-regular hypergraph if vH(x) = vH(x′) = d for all x, x′ ∈ X. We will call H
an almost regular hypergraph if the valencies of any two vertices differ by at most 1.

Example The Fano plane is the hypergraph displayed below, where each of the six
straight lines represent a single edge, and the circle represents an edge. The Fano
plane is a 3-uniform, 3-regular intersecting hypergraph on seven vertices with seven
edges.



8 Chapter 1. Definitions and Setup

1.2 Intersecting Hypergraphs
Recall the example from the introduction about diplomats: suppose that the world
has n languages, and you wish to assemble a group of diplomats such that each
diplomat in the group speaks exactly k languages, and any two diplomats speak a
common language. Furthermore, no two diplomats speak exactly the same set of
languages. What is the maximal size of the group of diplomats? This question
can be answered by the Erdős-Ko-Rado Theorem, which is a central theorem from
extremal combinatorics concerning the maximum number of edges in an intersecting
hypergraph.

Definition 1.2.1. A hypergraph H is called intersecting if for all e1, e2 ∈ H, we have
that |e1 ∩ e2| ≥ 1. We say that H is l-intersecting if for all e1, e2 ∈ H, we have that
|e1 ∩ e2| ≥ l.

Relating this back to the example about diplomats, we would consider a hyper-
graph H on X where X is the set of languages, and each edge in H is the set of
languages known by a diplomat. Then, the question of how many diplomats we may
have translates to a question about how large an intersecting hypergraph can be.
In the case when H is not necessarily uniform, or the diplomats can each know an
arbitrary number of languages, we claim that |H| ≤ 2n−1, where n = |X|. To see this,
place the elements of P(X) into pairs {e,X\e} for each e ∈ P(X). Any intersecting
hypergraph may have at most one element of each of these pairs present in its edge
set. Since |P(X)| = 2n, there are 2n−1 pairs and so |H| ≤ 2n−1. Note that we may
achieve this upper bound by taking some v ∈ X, and letting the edge set be all sub-
sets of X which contain v. It turns out that this is the maximal configuration, so in
the largest possible collection of diplomats, all diplomats speak a common language.

Now consider the case whenH is a k-uniform hypergraph, or each diplomat speaks
exactly k languages. If n < 2k, then any subset of X(k) will be intersecting, so we
can have H = Kk

n. If n = 2k, then we may again pair the edges in Kk
n into {e,X\e}

pairs. Then an intersecting hypergraph may have at most one edge from each pair,
for an upper bound of

1

2

(
n

k

)
=

(
n− 1

k − 1

)
edges.

What happens when n > 2k? Consider a hypergraph H where for some v ∈ X,
we have that

H = {e ∈ Kk
n | v ∈ e}.

Then H is a k-uniform intersecting hypergraph with
(
n−1
k−1

)
edges. Is this maximal,

and are there any other constructions which yield a hypergraph of this size?

Theorem 1.2.2 (Erdős, Ko, Rado [10]). Let k ≥ 2, n > 2k, and H be an intersecting
k-uniform hypergraph on X, with n = |X|. Then

|H| ≤
(
n− 1

k − 1

)
,
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with equality if and only if for some v ∈ X, we have H = {e ∈ Kk
n | v ∈ e}.

There are many proofs of this theorem, which we will discuss in Chapter 2. For
now, we will introduce the Baranyai theorem.

1.3 Factorizations of Hypergraphs
We now reconsider the diplomat seating problem given in the introduction: suppose
that we have a group of n diplomats such that any set of k diplomats shares a language,
and each language is spoken by exactly k diplomats. Then there are

(
n
k

)
languages

spoken in total. The diplomats are attending a conference which lasts
(
n−1
k−1

)
days.

During lunch, each diplomat is asked to sit at a table with k seats such that by the
end of the conference, each diplomat spoke a different language each day at lunch. Is
this possible? Clearly, we must require that k divides n, because the n diplomats must
split evenly into groups of size k each day for lunch. When this condition is satisfied,
there will be n/k tables at lunch each day, and since (n/k)

(
n−1
k−1

)
=
(
n
k

)
, each language

will be spoken at exactly one table on one day of the conference. From the outset, it
seems possible to find a seating arrangement for the diplomats. For example, if there
are 4 diplomats and each pair of diplomats speaks a different language, then we have
the scenario in Figure 1.1.

Figure 1.1: A solution for the diplomat seating problem when n = 4 and k = 2.

It was proved by Baranyai in 1975 that as long as k divides n, this problem has a
solution. It turns out that to solve the problem, we must find a factorization of Kk

n.

Definition 1.3.1. Let d be a positive integer. A d-factor of a hypergraph H is a set
of edges H′ ⊂ H such that vH′(x) = d for all x ∈ X. A d-factorization of H is a
partition of H into d-factors:

H = H1 ∪ · · · ∪ Hl,

where the Hi are d-factors and Hi ∩ Hj = ∅ for i 6= j. If H is 1-factorizable, we will
simply call H factorizable, and its 1-factorization will be called a factorization.

Returning to our example, Figure 1.1 gives a factorization of K2
4 , and the seating

arrangement on a given day is a factor. Furthermore, the graph K2
2n can be factorized
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by arranging 2n−1 of the vertices into a regular (2n−1)-gon, and leaving the excluded
vertex to the outside. Then, for each factor, we draw parallel lines connecting vertices
in the polygon. This will leave one leftover vertex from inside the polygon, which
will be connected to the excluded vertex. Doing this in all possible ways gives a
factorization. See Figure 1.2 for such a factorization of K2

6 .

Figure 1.2: A 1-factorization of K2
6 , where each color represents a factor.

The graph K2
2n+1 can be 2-factored by making the factors cycles in the graph. See

Figure 1.3 for a 2-factorization of K2
7 .

Figure 1.3: A 2-factorization of K2
7 , where each color represents a factor.

Note that if Kk
n is factorizable then k divides n, as we observed before. It turns

out that this necessary condition is also sufficient. This assertion had been around in
a vague form for more than 100 years before it was proved by Baranyai.

Theorem 1.3.2 (Baranyai [3]). The complete graph Kk
n is factorizable if and only if

k divides n.

The proof of the Baranyai theorem is quite difficult and will be the subject of
Chapter 4.
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Now we will show that the Baranyai theorem immediately implies the Erdős-Ko-
Rado theorem in the case where k divides n. Consider H, a k-uniform hypergraph on
n vertices. Let H1,H2, . . . ,Hl be a factorization of Kk

n. Then H contatins at most
one edge from each of the factors Hi, so |H| ≤ l, and

l =

(
n

k

)
k

n
=

(
n− 1

k − 1

)
,

so we have that |H| ≤
(
n−1
k−1

)
.

This leads us to ask the following question: is there a way to expand this proof
to show that the Baranyai theorem implies the Erdős-Ko-Rado theorem in general?
Is there a generalization of the Baranyai theorem that implies the Erdős-Ko-Rado
theorem in all cases? These are the questions we wish to answer in this thesis.





Chapter 2

Proofs of the Erdős-Ko-Rado
Theorem

Erdős had many publications with Rado, and began corresponding with him in early
1934 when Rado was a German refugee in Cambridge and Erdős was in Budapest [9].
Their first joint paper was done with Chao Ko, and contained the Erdős-Ko-Rado
Theorem. Erdős writes that the paper was essentially finished in 1938, and that one
of the reasons it was not published until 1961 was that at the time there was relatively
little interest in combinatorics. Another reason was that in 1938, the three separated:
Ko returned to China, Erdős went to Princeton, and Rado stayed in England. Erdős
says that the Erdős-Ko-Rado Theorem is “perhaps our most quoted result”[9]. The
Erdős-Ko-Rado Theorem, referenced by hundreds of other papers, opened the way
for the rapid development of extremal combinatorics.

Recall from the introduction that the Erdős-Ko-Rado Theorem states that if k ≥ 2,
n > 2k, and H is an intersecting k-uniform hypergraph on n vertices, then

|H| ≤
(
n− 1

k − 1

)
.

There are many known proofs of this theorem, some of which are outlined in [16].
Here we will present all currently known proofs.

2.1 Shifting: The Original Proof
The original proof of the theorem given by Erdős, Ko, and Rado in [10] uses an idea
called shifting, which replaces the edges of a hypergraph with new ones such that
some key properties are preserved.

Definition 2.1.1. Let H ⊂ P(X), where X = {x1, . . . , xn}. Let 1 ≤ i < j ≤ n. The
exchange operation Sij : P(X)→ P(X) is defined by

Sij(f) =

{
{xi} ∪ (f − {xj}) if xi 6∈ f , xj ∈ f , and {xi} ∪ (f − {xj}) 6∈ H
f otherwise.

Then we define Sij(H) = {Sij(f) | f ∈ H}.
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We note that |Sij(H)| = |H|, and that |Sij(f)| = |f | for all f ∈ H. See Appendix
A.3 for Mathematica code which performs the exchange operation.

Proposition 2.1.2. If H ⊂ P(X), and H is l-intersecting, then so is Sij(H).

Proof. Let f1, f2 ∈ Sij(H). Then there are several possibilities.

1. If f1, f2 ∈ H, then |f1 ∩ f2| ≥ l.

2. If f1 ∈ H, and f2 6∈ H, then f2 = {xi} ∪ (f ′2\{xj}) for some f ′2 ∈ H. Regarding
f1, one of the following is true. If xi ∈ f1, then |f2 ∩ f1| ≥ 1 + |f ′2 ∩ f1| − 1 = l.
If xj 6∈ f1, then |f1 ∩ f2| ≥ |f ′2 ∩ f1| = l. Lastly, if {xi} ∪ (f1\{xj}) ∈ H, then
since |f ′2 ∩ ({xi} ∪ (f1\{xj}))| ≥ l, we have that l+ 1 ≤ |f ′2 ∩ f1| = |f2 ∩ f1|+ 1.

3. Lastly, if f1, f2 6∈ H, then |f1 ∩ f2| = |f ′1 ∩ f ′2| ≥ l.

Therefore, Sij(H) is l-intersecting.

Proof of the theorem. Let k ≥ 2, n > 2k, and H be an intersecting k-uniform hyper-
graph on X, with n = |X|. The original proof applied induction on n, and proved
the theorem for all k ≤ n/2. The base case, n = 2k, was discussed in Chapter 1.
Now, suppose that n > 2k, and that the theorem is true for all smaller n. Define
inductively H0 = H, and Hi = Sin(Hi−1), for any i ∈ {0, . . . , n − 1}. Then by the
proposition, |H| = |Hn−1|, and Hn−1 ⊂ Kk

n is intersecting.
Define G = {f ∈ Hn−1 | xn 6∈ f}, and F = {f\{xn} | xn ∈ f ∈ Hn−1}. Clearly,

|H| = |G|+ |F |. Then since G is intersecting, and has n− 1 vertices, we have by the
inductive hypothesis that

|G| ≤
(
n− 2

k − 1

)
.

Then it suffices to show that |F | ≤
(
n−1
k−2

)
, since this would imply |H| ≤

(
n−2
k−1

)
+
(
n−2
k−2

)
=(

n−1
k−1

)
.

Since F is a (k−1)-uniform hypergraph on n−1 vertices, if F is intersecting then
the theorem is proved by the inductive hypothesis. Suppose that there are f, f ′ ∈ F
such that f ∩ f ′ = ∅. Since |f ∪ f ′| = 2(k − 1) < n− 1, there is an xi, where i < n,
such that xi 6∈ f ∪ f ′. Let h = f ∪ {xn}. Then h ∈ Hn−1. Since xn ∈ h, we have that
h ∈ H (because xn was never shifted out). Therefore, h ∈ Hi for all 1 ≤ i ≤ n − 1.
Then Sin(h) = h, so h was never replaced. This can happen only if (f ∪{xi}) ∈ Hi−1
(since xi 6∈ h, xn ∈ h). However, (f ∪{xi})∩ (f ′∪{xn}) = ∅, which is a contradiction
because they are both members of the intersecting hypergraph Hn−1.

2.2 Cyclic Permutations: Katona’s Proof

This clever proof was given by Katona in [23]. It works by counting in two ways the
number of cyclic extensions of an edge.



2.3. Shadows: Daykin’s Proof 15

Proof. LetH be intersecting, k-uniform, on n vertices, and let n ≥ 2k+1. We will say
that a cyclic permutation of the vertices of H extends an edge e ∈ H if the vertices of
e appear in consecutive positions of the permutation when the permutation is written
in cycle notation. For example, the edge {x1, x2, x3} is extended by the permutation
(x4 x5 x1 x3 x2), but is not extended by the permutation (x4 x1 x5 x3 x2).

There are k!(n− k)! cyclic permutations extending an edge e. On the other hand,
a cyclic permutation can be the extension of at most k edges. To see this, suppose
(x1, . . . , xk) is one of the edges in the cycle. Then for all i, 1 ≤ i ≤ k − 1, there is at
most 1 edge which contains precisely one of {xi, xi+1} by the intersecting property.

The number of cyclic permutations of {1, . . . , n} is (n− 1)!, so

|H|k!(n− k)!︸ ︷︷ ︸
# cyclic extensions

≤ k(n− 1)!︸ ︷︷ ︸
# potential cyclic extensions

Then,

|H| ≤ k(n− 1)!

k!(n− k)!

=
(n− 1)!

(k − 1)!(n− k)!

=

(
n− 1

k − 1

)
.

2.3 Shadows: Daykin’s Proof
Daykin uses a version of the Kruskal-Katona theorem to prove the Erdős-Ko-Rado
theorem. First, we will define a shadow.

Definition 2.3.1. Given a k-uniform hypergraphH and an integer l, where 1 ≤ l ≤ k,
the l-shadow δl of H will be:

δl(H) = {g ∈ K l
n | for some f ∈ H, we have g ⊂ f}.

Given |H| = m, what can we say about the size of δl(H)? It is clear that |δl(H)| ≤(
k
l

)
|H|, where equality holds if and only if |f ∩ f ′| < l holds for all distinct f, f ′ ∈ H.

Can we get a lower bound for δl(H)? The following consequence of the Kruskal-
Katona theorem by Lovász answers this question.

Theorem 2.3.2 (Kruskal- Katona [26, 22]). Let H be a k-uniform hypergraph, and
suppose |H| ≥

(
x
k

)
for some x ≥ k. Then

|δl(H)| ≥
(
x

l

)
for all 0 ≤ l ≤ k.
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We will present a proof of Theorem 2.3.2 which was given by Daykin in [6].

Proposition 2.3.3. Let H ⊂ Kk
n, and let 1 ≤ i < j ≤ n. Then

δk−1(Sij(H)) ⊂ Sij(δk−1(H))

Proof. There are several cases which we must examine. Let f ∈ δk−1(Sij(H)).

1. If xi, xj 6∈ f , then then f ∈ δk−1(H) (Since either f ∪ {xi} or f ∪ {xj} is in H).
Then since xj 6∈ f , we have that Sij(f) = f , so f ∈ Sij(δk−1(H)).

2. If xj ∈ f , and xi ∈ f , then there exists a v ∈ X such that f ∪ {v} ∈ Sij(H).
Since xi, xj ∈ f , we have that f ∪ {v} ∈ H. Then f ∈ δk−1(H), and since
xi, xj ∈ f , we have that f ∈ Sij(δk−1(H)).

3. If xj ∈ f , and xi 6∈ f , then there exists a v ∈ X such that f ∪ {v} ∈ Sij(H).
Since xj ∈ f , we have that Sij(f ∪ {v}) = f ∪ {v}, so f ∪ {v} ∈ H. Therefore,
f ∈ δk−1(H). Now, it matters what v from before was. If v = xi, then (f\{xj})∪
{xi} ∈ δk−1(H), so Sij(f) = f . If v 6= xi, then there exists f ′ ∈ H such that
f ′ = ((f ∪{v})\{xj})∪{xi}, so f ′\{v} = (f\{xj})∪{i} ∈ δk−1(H). Therefore,
Sij(f) = f , so f ∈ Sij(δk−1(H)).

4. If xi ∈ f , and xj 6∈ f , then there exists a v ∈ X such that f ∪ {v} ∈ Sij(H).
Either f ∪{v} ∈ H or (f\{xi})∪{v}∪{xj} ∈ H. In the first case, f ∈ δk−1(H),
and so since xj 6∈ f , we have that Sij(f) = f . In the other case, we have that
(f\{xi}) ∪ {xj} ∈ δk−1(H). Therefore, in either case, f ∈ Sij(δk−1(H)).

Continuing with the proof of the Kruskal-Katona theorem, we define inductively
H1 = H, and Hi = S1i(Hi−1), for 2 ≤ i ≤ n. Then, we then have that

|δk−1(Hn)| ≤ |δk−1(H)|.

Therefore, we may consider Hn instead.

Claim 2.3.4.

1. |δk−1(Hn)| ≥ |Hn(1)|+ |δk−1(Hn(1))|, where Hn(1) = {e\{x1} ∈ Hn | x1 ∈ e}.

2. δk−1(Hn(1̄)) ⊂ Hn(1), where Hn(1̄) = {e ∈ Hn | x1 6∈ H}.

Proof.

1. By definition, Hn(1) ⊂ δk−1(Hn), and {{x1}∪g | g ∈ δk−1(Hn(1))} ⊂ δk−1(Hn).
These families are disjoint, so the claim holds.

2. Choose (g, h) with h ∈ Hn(1̄) and g ⊂ h such that |g| = k− 1. Let {xi} = h\g.
The only way h survived S1i is if h′ = g ∪ {x1} ∈ Hi−1, so that h′ ∈ Hn.
Therefore, g ∈ Hn(1).
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Proof of Kruskal-Katona. Apply induction on k and for a given k, apply induction
on |H| as well. The case where |H| = 1 is trivial. First, suppose that |Hn(1)| <

(
x−1
k−1

)
.

By 2 from Claim 1 above, |Hn(1)| ≥ k, so we ensure that x−1 > k. Now, notice that

|Hn(1̄)| = |H| − |Hn(1)| ≥
(
x

k

)
−
(
x− 1

k − 1

)
=

(
x− 1

k

)
.

Applying the induction hypothesis and using 2 again, we find that

|Hn(1)| ≥ |δk−1(Hn(1̄))| ≥
(
x− 1

k − 1

)
,

which is a contradiction.
Therefore, |Hn(1)| ≥

(
x−1
k−1

)
. By inductive the hypothesis, we know that |δk−2(Hn(1))| ≥(

x−1
k−2

)
, and so by (1) in the claim above, we have

|δk−1(Hn)| ≥ |Hn(1)|+ |δk−2(Hn(1))|

=

(
x− 1

k − 1

)
+

(
x− 1

k − 2

)
=

(
x

k − 1

)
.

Now, we will prove the Erdős-Ko-Rado theorem from the Kruskal-Katona theorem.
This proof was given in [5].

Proof of Erdős-Ko-Rado. Suppose that H ⊂ Kk
n, with n ≥ 2k, and H >

(
n−1
k−1

)
=(

n−1
n−k

)
. Define G = {X\f | f ∈ H} ⊂ Kn−k

n . By the Kruskal-Katona theorem, we
have that |δk(G)| ≥

(
n−1
k

)
, so |H| + |δk(G)| >

(
n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
. Therefore, there

is an f ∈ H ∩ δk(G). Since f ∈ δk(G), we have that f ⊂ X\f ′ for some f ′ ∈ H, so
f ∩ f ′ = ∅. But this is a contradiction, since H is intersecting.

2.4 Linear Algebra: Lovász’ Proof
This proof by Lovász appears in [30], and utilizes linear algebra to prove the Erdős-
Ko-Rado theorem.

Let N =
(
n
k

)
, and A1, . . . , AN be an arbitrary ordering of the k-subsets of X. For

an intersecting hypergraph H ⊂ Kk
n, let

χ(H) = (χ1, . . . , χN)

be its characteristic vector: χi = 1 if Ai ∈ H, and χi = 0 if Ai 6∈ H. Let B be any
N ×N real symmetric matrix whose entries bij are 0 whenever Ai ∩Aj 6= ∅. Let I be
the N ×N identity matrix, and let J be the N ×N matrix whose entries are all 1s.
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Claim 2.4.1. If B + I − cJ is positive semidefinite for some c > 0, then |H| ≤ 1/c.

Proof. Let w = χ(H), and consider y = w(B+I−cJ)wT . By assumption, wBwT = 0.
Also, wIwT = |H|, and wJwT = |H|2. Therefore, y = |H| − c|H|2. By semi-
definiteness, we have that y ≥ 0, so that c|H|2 ≤ |H|, or |H| ≤ 1/c.

Now, to prove the theorem, we only need to show that for some choice of the
matrix B, and for c =

(
n−1
k−1

)−1, we have that B+I−cJ is positive semidefinite. Then
define the matrix B = (bij) by

bij =

{ (
n−k−1
k−1

)−1
Ai ∩ Aj = ∅

0 otherwise.

We will compute the eigenvalues of B.
First, the vector u = (1, . . . , 1) is a common eigenvector of B, I, and J . The

eigenvalue of B is n−k
k
, since Ai is disjoint from

(
n−k
k

)
edges, we get

(
n−k
k

)(
n−k−1
k−1

)−1
=

n−k
k
. The eigenvalue for I is clearly 1, and for J it is

(
n
k

)
. The all 1’s vector u is

annihilated by B + I − cJ :

Bu+ Iu− cJu =
n− k
k

u+ u−
(
n− 1

k − 1

)−1(
n

k

)
u =

n

k
u− n

k
u = 0.

Therefore, the eigenvalue of u for B + I − cJ is 0.
Now, we will find the remaining eigenvectors v of B, and show that the following

hold:

1. The eigenvalue for I of v is 1 (this is true for any v).

2. An eigenvector for J is v, with eigenvalue 0.

3. An eigenvector for B is v, with eigenvalue greater than or equal to −1.

Together, these statements ensure that all eigenvalues of B + I − cJ are greater than
or equal to 0, which gives positive semi definiteness for B + I − cJ .

The following collection of vectors have eigenvalue −1 with B. For each (x, y),
where x, y ∈ X, define v(x, y) = (v1, . . . , vN) with

vi =


1 if Ai ∩ {x, y} = {x}
−1 if Ai ∩ {x, y} = {y}
0 otherwise.

First, note that these are eigenvectors of J with eigenvalue 0.

Claim 2.4.2. B v(x,y) = -v(x,y)
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Proof. If Bi is the ith row of B, then the ith entry of Bv(x, y) is Bi · v(x, y).
If Ai ∩ {x, y} = {x, y}, then Ai is only disjoint from edges not containing {x, y},

so only those entries will be nonzero in Bi, but in v(x, y), those entries will be 0.
Therefore, Bi · v(x, y) = 0 = vi.

If Ai ∩ {x, y} = ∅, then Ai is disjoint from an equal number of edges containing x
and edges containing y, so in B ·v(x, y) these terms cancel, so that B ·v(x, y) = 0 = vi.

If Ai∩{x, y} = {x}, then any edge disjoint from Ai does not contain x, so there is
a nonzero term in B · v(x, y) if and only if y ∈ Aj. There are

(
n−k−1
k−1

)
of these vectors,

so that

B · v(x, y) = −1 ·
(
n− k − 1

k − 1

)(
n− k − 1

k − 1

)−1
= −1 = −vi,

and similarly for the case where Ai ∩ {x, y} = {y}.
Therefore, v(x, y) is an eigenvector of B with eigenvalue −1.

The v(x, y) span a n− 1 dimensional vector space. To see this, let z ∈ X. Form
a basis for the subspace spanned by v(x, y) by taking the set β = {v(z, x) | x ∈ X}.
Then, for any y1, y2 ∈ X, it is easy to verify that v(y1, y2) = v(z, y2)− v(z, y1). Then
β is clearly linearly independent, and a spanning set for the v(x, y), and |β| = n− 1.

Then what are the remaining
(
n
k

)
− (n− 1)− 1 eigenvectors for B? For 2 ≤ i ≤ k,

and any two disjoint i-element sets of X,

C = {x1, . . . , xi} D = {y1, . . . , yi},

Define u(C,D) = {u1, . . . , uN} by

uj =

{
(−1)|D∩Aj | if |Aj ∩ {xl, yl}| = 1 holds for 1 ≤ l ≤ i
0 else.

Claim 2.4.3. Bu(C,D) = (−1)
(n−k−i

k−i )
(n−k−1

k−1 )
u(C,D).

Proof. Set δ =
(
n−k−1
k−1

)−1
. Compute the rth entry vr of Bu(C,D). This is the dot

product of u and the rth row of B.
Suppose first that |Ar ∩ {xl, yl}| = 1 for 1 ≤ l ≤ i. The only way to obtain a

nonzero entry is for A ∈ Kk
n to satisfy A ∩ (C ∪D) = (C ∪D)\Ar (meaning A and

Ar are complementary inside of C ∪D). Therefore,

vr = (−1)δ

(
n− k − i
k − i

)
ur.

If |Ar ∩ {xl, yl}| = 2 for some l, then there is no way to get a nonzero term, so
vr = 0.

Consider the case where |Ar ∩ {xl, yl}| = 0. There are an equal number of A,A′
such that A ∩ {xl, yl} = {xl} and A′ ∩ {xl, yl} = {yl}. Therefore, since these entries
have opposite signs in u(C,D), all terms cancel in the dot product, so vr = 0.
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Now, we will find
(
n
i

)
−
(
n
i−1

)
linearly independent vectors u(C,D). This will show

that the eigenvectors corresponding to the eigenvalue

(−1)i
(
n−k−i
k−i

)
δ

span a vector space of dimension at least
(
n
i

)
−
(
n
i−1

)
. If C = {x1, . . . , xi} and D =

{y1, . . . , yi} with xi < yi, then we will write C < D. Then there are exactly
(
n
i

)
−
(
n
i−1

)
sets D ∈ Ki

n for which some C < D exists. For each D, find some C = C(D) with
this property. Then the vectors u(C(D), D) are linearly independent.

Since these lower bounds on the dimensions of the eigenspaces sum to
(
n
k

)
, equality

holds everywhere. Since
(
n−k−i
k−i

)
≤
(
n−k−1
k−1

)
, we have that the eigenvectors of B

all satisfy properties (1), (2), and (3) from above, so that B + I − cJ is positive
semidefinite, and the theorem holds.

2.5 Another proof by Katona
This proof is given by Katona in [21], and relies on the following theorem.

Theorem 2.5.1. Let 1 ≤ s ≤ k, and 1 ≤ l ≤ k, and s + l ≥ k, and let H be a
hypergraph on n vertices with m edges such that H is k-uniform and l-intersecting.
Then

m

(
2k−l
s

)(
2k−l
k

) ≤ |δs(H)|

where δs(H) denotes the family of s-subsets of the edges of H.

Proof. If s = k, then the theorem is clear, so we only consider the case when s < k.
There will be 3 different cases.

1. 2k − l ≥ n.

Let c ∈ δsH. Count the pairs (hi, c), where hi ∈ H, and c ⊂ hi. On the one
hand, there are |H|

(
k
s

)
of them, since there are

(
k
s

)
possible choices of c for each

choice of hi, and there are |H| choices for hi. On the other hand, there are
|δs(H)|

(
n−s
k−s

)
of them, since for a fixed c there are possibly

(
n−s
k−s

)
sets to join to

c to obtain an hi, and there are |δs(H)| choices for c. So, we have

|H|
(
k

s

)
≤ |δs(H)|

(
n− s
k − s

)
.

Then, we need to prove that (
k
s

)(
n−s
k−s

) ≥ (2k−ls

)(
2k−l
k

)
in order to prove the theorem. Simplifying this expression, we find that

(2k − l − s)!
(n− s)!

≥ (k − l)!
(n− k)!
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Whenever 2k − l > n, we see that the left hand side is greater than 1, and the
right hand side is less than 1. Equality holds only in the case 2k − l = n.

2. s = 1

Here, there are 2 cases.

(a) l = k

If l = k, then |H| = 1, so n = k. Then 2k − l = l = n, and

n = |H|
(
n
1

)(
n
n

) ≤ |δ1(H)| = n.

(b) If l = k − 1 then we have 2 cases. Here, it is enough to show that |H| ≤
|δ1(H)|, since (

k+1
1

)(
k+1
k

) = 1

i. If every set of size k− 1 is in at most 2 edges then consider hi ∩ hj for
hi, hj ∈ H. Clearly,

|(hi ∩ hj) ∩ ha| < k − 1,

however
|(hi ∩ hj) ∩ ha| < k − 2

is not possible, since we have

|hi ∩ ha| ≤ |(hi ∩ hj) ∩ ha|+ 1 < k − 1.

So, for all ha ∈ H, we find that |(hi ∩ hj) ∩ ha| = k − 2. Then
we have hi\hj ⊂ ha for all ha ∈ H, since |hi ∩ hj| = k − 1 and
|(hi ∩ hj) ∩ ha| = k − 2. Similarly, we have hj\hi ⊂ ha for all ha ∈ H.
Then since the sets hi ∩ hj, hi\hj, and hj\hi are all disjoint, we have
that

ha = (hj\hi) ∪ (hi\hj) ∪ (hi ∩ hj)\λa,
where λa ∈ hi ∩hj. Then, |H| ≤ k+ 1, and each element is in at most
k sets ha. Thus

H ≤ |δ1(H)|.
ii. If H is such that there exists a c, with |c| = k − 1, and c ⊂ hi, hj, hf ,

then for any a, we have c ⊂ ha. This is because |c∩ha| < k−2 cannot
hold, since in this case

|hi ∩ ha| < k − 1.

Also, it cannot be the case that |c∩ha| = k−2, since this would imply
ha ⊃ hi\c, and ha ⊃ hj\c, and ha ⊃ hf\c because

|hi ∩ hj| = |hj ∩ hf | = |hf ∩ hi| = k − 1,

so |ha| ≥ k + 1, which is impossible. Then we have n = |H| + k − 1,
so that |H| ≤ |δ1(H)|.
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3. 2k − l < n and s > 1.

We will induct over n, and apply the first two cases. Here, we have that 1 < s <
k < n, so n ≥ 3. First we consider the case n = 3. Here, we must have k = 3,
and |H| = 1, and s = 2, l = 1 or 2. We do not worry about the case l = 3, since
then 2k − l = n, and this is handled already by case 1. Since |δ2H| = 3 and(
5
2

)
/
(
5
3

)
= 1, and

(
4
2

)
/
(
4
3

)
= 3

2
, in both cases strict equality holds.

Suppose n > 3 and for n − 1, the theorem is true. Then we will prove the
theorem for n. Let da be the sum of the indexes of ha. We may assume that
our system is such that |δs(H)| is minimal and amongst all such systems,

∑
a da

is minimal. We now distinguish two subclasses.

(a) Suppose that whenever xn ∈ ha ∈ H and xλ ∈ [n]\ha, then we have
ha\{xn} ∪ {xλ} ∈ H (in other words, H is stable under shifting xn).
We may assume that if H = {h1, . . . , hm}, then there is some m0 such that
xn ∈ ha for all a < m0, and that xn 6∈ ha otherwise. If m = 1, then we
have case 1, since we have n = k, and so 2k − l ≥ n holds. Let m > 1. If
m0 = 1, then the problem holds by the inductive hypothesis. Suppose that
m0 ≥ 3. Let µ < ν < m0. Then |hµ ∪ hν | ≤ 2k − l < n, and there exists
a λ ∈ [n]\(hµ ∪ hµ). Then let fµ = hµ\{xn}. Then fµ ∪ {xλ} ∈ H, and
|fµ∩fν | = |(fµ∪{xλ})∩fν | = |(fµ∪{xλ})∩hν | ≥ k, and therefore k−1 ≥ l.
Let F = {f1, . . . , fm0−1}. If m0 = 2, then xn 6∈ h2, and |h1 ∩ h2| ≤ k − 1,
so that k − 1 ≥ l, and s − 1 ≥ 1, since we have s − 1 + l ≥ k − 1 and we
have s− 1 < k − 1, and k − 1 ≥ l ≥ 1. Then we have

m0

(
2(k−1)−l
s−1

)(
2(k−1)−l
k−1

) ≤ |δs−1(F)| = p,

which holds by case 2 in the case s = 2, and when s > 2, we can use the
inductive hypothesis. Let F ′ = {hm0 , . . . , hn}. Then if k ≤ n− 1, we have

(m−m0)

(
2k−l
s

)(
2k−l
s

) ≤ |δs(F ′)| = r,

while if k = n, we have case 1, because 2k − l ≥ n. Then, we have (since
k > s and s+ l − k ≥ 0), (

2k−l
s

)(
2k−l
k

) ≤ (2(k−1)−ls−1

)(
2(k−1)−l
k−1

) .
Combining the previous three displays, we find

m

(
2k−l
s

)(
3k−l
k

) ≤ p+ r.

Denote by dν for ν < p the elements of δs−1(F), and by cν for ν < r the
elements of δs(F ′). Let eν = dν + {xn} for ν < p. Then |eν | = g, and
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eµ 6= eν . Moreover, we have that for every ν < p, there exists an index
µ < m0 such that dν ⊂ fµ. Hence eν ⊂ hµ. Then eν ∈ δs(H), and we have
that eµ 6= cν . Then c1, . . . , cr, e0, . . . , ep are distinct elements of δsH, so
p+ r ≤ |δs(H)|.

(b) Suppose that there are h ∈ H and λ ∈ [n]\h such that n ∈ h and h\{xn}∪
λ 6∈ H. Then λ < n. We may assume that the sets are labeled in such a
way that the following hold:

xn ∈ hν , xλ 6∈ hν bν = hν\{xn} ∪ {λ} 6∈ H (ν < m0)

xn ∈ hν , xλ 6∈ hν cν = hν\{xn} ∪ {λ} ∈ H (m0 ≤ ν < m1)

xn ∈ hν , xλ ∈ hν (m1 ≤ ν < m2)

xn 6∈ hν , (m2 ≤ ν ≤ m)

Set bν = hν for m0 ≤ ν ≤ m. Then we must prove that B = {b0, . . . , bn} is
l-intersecting, k-uniform, and on m vertices. We must prove that bµ 6= bµ
and |bµ ∩ bν | ≥ l.
For µ < ν < n0, or n0 ≤ µ ≤ ν, this is clear. Let µ < m0 ≤ ν. Then
bµ ∈ H, and bν = aν ∈ H, so bµ 6= bµ.
If m0 ≤ ν < m1, then cν ∈ H, and there are l distinct common elements
of hµ and cν . We have that xλ and xm are not among these, therefore they
are common elements also of bµ and bν .
If m1 ≤ ν < m2, then |hµ ∩ hν | ≥ l, but xλ 6∈ |hµ ∩ hν |. If instead of aµ we
take bµ, then we lose at most one element from the intersection, but xλ,
which is a common element, is not among these, so |bµ ∩ bν | ≥ l.
Finally, if m2 ≤ ν ≤ m, then hµ and hν have k common elements. We have
that xn does not belong to them, so the same k elements are also common
elements of bµ and bν .
Now we must show that |δs(H)| ≥ |δs(B)|. Let c be a set such that |c| = s,
and c ∈ δs(B), but c 6∈ δs(H). Then c ⊂ bν for some ν ≤ m. Clearly,
ν < m0. Then we have that xλ ∈ c, because c 6⊂ hν = bν + {xn} − {xλ}.
On the other hand, we have that xn 6∈ c, because xn 6∈ bν .
Let d = c\{xλ}+ {xn}. Then d ⊂ hν , and d ∈ δs(H). However, d 6∈ δs(B),
since if d ⊂ bν holds for some ν, then m0 ≤ ν < m2. If ν < n1, then
c ⊂ cν = hν\{xn}∪{xλ} holds, and since cν ∈ H, it follows that c ∈ δs(H),
which contradicts our supposition. However, if m1 ≤ ν < n2, then c ⊂ hν
because we have xλ ∈ bν = aν , and xn ∈ bν = aν , and this is also a
contradiction.
Now we have associated a set d to every set c, where c ∈ δs(B), but
c 6∈ δs(H) in such a way that d is an element of δs(H) but not an element
of δs(B). It follows that |δs(H)| ≥ |δs(B)|. Since for fixed m we supposed
H to be the system for which |δs(H)| was minimal, equality must hold.
However, we have

f(b1, . . . , bm)− f(h1, . . . , hm) = m0(λ− n) < 0,
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where f(a1, . . . , am) sums the indices from each vertex of each edge. which
contradicts the minimal-sum property of H. Therefore, this case cannot
occur.

Now, we will show that this theorem implies the Erdős-Ko-Rado theorem. Let
H = {h1 . . . , hm}, and let G = {[n]\h1, . . . , [n]\hn} = {g1, . . . , gn}. Then |gi| =
n − k ≥ k, and |gi ∩ gj| = n − |hi ∪ hj| ≥ n − 2k + 1. Now, apply the theorem on g
with s = k (which we can do since 1 ≤ s = k ≤ n− k, 1 ≤ n− 2k + 1 ≤ n− k, and
K + n− 2k + 1 ≥ n− k). Then

|H|
(
n−1
k

)(
n−1
n−k

) ≤ |δk(G)|.

Let c ∈ δk(G). Then there exists a gj such that c ⊂ gj. Then c∩hj = ∅. Consequently,
we find

|δk(B)|+ |H| ≤
(
n

k

)
.

Applying the previous inequality, we find

|H| ≤
(
n
k

)
(n−1

k )
(n−1
n−k)

+ 1

=

(
n

k

) (n−1)!
(n−k)!(k−1)!

(n−1)!
k!(n−1−k)! + (n−1)!

(n−k)!(k−1)!

=

(
n

k

)
k!(n− 1− k)!

(k − 1)!(k + n− k)(n− k − 1)!

=

(
n− 1

k − 1

)
.

2.6 A New Short Proof: Frankl and Füredi

A new short proof of the Erdős-Ko-Rado Theorem was given in 2012 by Frankl and
Füredi in [15]. First, we must recall some notation.

As before, let δs(H) denote the family of s-subsets of the edges of H:

δs(H) = {S : |S| = s, S ⊂ f ∈ H}.

If H is k-uniform, and l-intersecting, then it was shown by Katona (in [21], see
Theorem 2.5.1 with s = k − l) that

|H| ≤ |δk−lH|. (2.1)
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Now we will begin the proof. Define the following sets:

H0 = {f ∈ H | x1 6∈ f},
H1 = {f ∈ H | x1 ∈ f},
G1 = {f\{x1} | x1 ∈ f ∈ H},
G0 = {{x2, . . . , xn}\f | f ∈ H0}.

To see examples of these sets, refer to Figures 2.1 and 2.2.

Figure 2.1: The graphs H1,H0,G1,G0, and δk−1G0 for H is the Fano plane.

Then G0 is (n− 1− k)-uniform. Since H is intersecting, we have that if h1 ∈ H1,
then

h1\{x1} = g1 ∈ G1
is not contained in any member of G0. Then we find that

G1 ∩ δk−1G0 = ∅.

We have that G0 is n− 2k intersecting, since if g, g′ ∈ G0, then

|g ∩ g′| = |({x2, . . . , xn}\f) ∩ ({x2, . . . , xn}\f ′)| = (n− 1)− 2k + |f ∩ f ′| ≥ n− 2k.

Then by Equation 2.1, we find that |G0| ≤ |δk−1G0|, since G0 is (n−k−1)-uniform,
and (n− 2k)-intersecting. Then,

|H| = |H1|+ |H0| = |G1|+ |G0| ≤ |G1|+ |δk−1(G0)| ≤
(
n− 1

k − 1

)
,

since G1 and δk−1G0 are disjoint k − 1 uniform hypergraphs on n− 1 vertices.
Equality holds in Equation 2.1 when n = k, H = ∅, or H =

(
2n−k
n

)
. So, for n > 2k,

equality implies that either G0 = ∅ so that x1 ∈ ∩H, or G0 = Kn−k−1
n−2 and so there is

an x ∈ X such that x ∈ ∩H.
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Figure 2.2: The graphs H1,H0,G1,G0, and δk−1G0 for the hypergraph H = {e ∈
Kk
n | x2 ∈ e}.

2.7 Linearly Independent Polynomials
In [17], the authors give a proof of the Erdős-Ko-Rado Theorem which uses the
method of linearly independent polynomials.

Consider a hypergraph H = {e1, . . . , em}, where ei ⊂ {x1, . . . , xn} = X. For a
set e ⊂ X, and some set P ⊂ X, we will say that the set e satisfies the intersection
property (P, α) if we have that |e∩P | = α. Suppose that for each ei ∈ H, a collection
of at most s intersection properties are given:

Ri = {(Pi1, αi1), . . . , (Pis, αis)}.

Lemma 2.7.1. Suppose that for each ei ∈ H, one can find Xi ⊂ {x1, . . . , xn} such
that

1. Xi does not satisfy any condition in Ri, and

2. Xi satisfies at least one condition for each Rj where j > i.

Then if m = |H|, we have

m ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
.

Proof. Define the n-variable real polynomial fi as follows:

fi(x1, . . . , xn) =
∏

1≤u≤s

((∑
v∈Piu

xv

)
− αiu

)
.

Let x̂ denote the characteristic vector of x ⊂ {x1, . . . , xn}. Then the dot product
x̂ · ŷ = |x ∩ y| for all x, y ⊂ [n]. Then we find that

fi(x̂) =
∏
u

(x̂P̂iu − αiu) =
∏
u

(|x ∩ Piu| − αiu).
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Then the conditions of the lemma imply that fj(x̂i) 6= 0 when i = j, and fj(x̂i) =
0 when i < j. Now, we will define the integer coefficient n-variable multilinear
polynomial gi by multiplying out all factors of fi, and replacing higher order factors xlv
with simply xv. Then for a vector x containing only 0s and 1s, we have fi(x) = gi(x),
so that gi(x̂i) 6= 0 and gj(x̂i) = 0 for i < j.

The multilinear n-variable real polynomials of degree less than or equal to s form
a vector space of dimension

(
n
s

)
+
(
n
s−1

)
+ · · ·+

(
n
0

)
over the reals. We claim that the

gi are linearly dependent. Suppose otherwise; then there is a linear dependency such
that

c1g1(x) + · · ·+ csgs(x) = 0

holds for all x ∈ Rn. Suppose i is the smallest integer with ci 6= 0. Then substitute
x̂i in to the equation above. Then by the observations from before, we find that
cigi(x̂i) = 0, a contradiction. Therefore the gi are linearly independent, and so we
have that

s ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
,

as desired.

Proof of Erdős-Ko-Rado. Let H be a k-uniform, intersecting hypergraph on the ver-
tex set X = {x1, . . . , xn}, where n ≥ 2k. Let |H| = m, and define s = k − 1. To use
the lemma, we will add to H another(

n

k − 1

)
+

(
n

k − 2

)
+ · · ·+

(
n

0

)
−
(
n− 1

k − 1

)
= 2×

( ∑
k−2≥u≥0

(
n− 1

u

))
(2.2)

sets and conditions. Let p ∈ [n]. Define

H0 = {h ∈ H | xp 6∈ h},
G0 = {h ⊂ X | xp 6∈ h, 0 ≤ |h| ≤ k − 2},
H1 = {h ∈ H | xp ∈ h},
G1 = {h ⊂ X | xp ∈ h, 1 ≤ |h| ≤ k − 1}.

Let A = H0∪G0∪H1∪G. Order the elements of A as follows: first, put the members
of H0 in an arbitrary order. Then, put the elements of G0 in order of increasing size,
then put the elements of H1 in an arbitrary order, and then finally put the elements
of G1 in order of increasing size. Then for ai ∈ A, associate xi ⊂ X and at most k−1
intersection conditions:

1. For h ∈ H0, let x = X\{xp}\h, with intersection conditions (h, α) for 1 ≤ α ≤
k − 1.

2. For h ∈ G0, let x = h, with intersection conditions ({xi}, 0) for each xi ∈ h.

3. For h ∈ H1, let x = h\{xp}, with intersection conditions (h\{xp}, α) for 1 ≤
α ≤ k − 2.
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4. For h ∈ G1, let x = h, with intersection conditions ({xi}, 0) for each xi ∈ h.

It is straightforward (but somewhat tedious) to check that the {ei, xi, (Piu, αiu)} de-
fined satisfy the conditions of Lemma 2.7.1. Then

|H|+ |G0|+ |G1| ≤
(

n

k − 1

)
+

(
n

k − 2

)
+ . . .+

(
n

0

)
.

Since |G0| = |G1| =
∑

k−2≥u≥0
(
n−1
u

)
, we have the theorem by Equation 2.2.



Chapter 3

Extensions of the Erdős-Ko-Rado
Theorem

There have been many extensions and generalizations of the Erdős-Ko-Rado Theorem.
Deza and Frankl discuss many of them in [7]. Here, we provide a study of extremal
sets under the Erdős-Ko-Rado conditions, a rephrasing of the Erdős-Ko-Rado theorem
in terms of independent sets and an exploration of higher orders of independence, a
discussion of Sperner sets, and a lower bound on the chromatic number of the Kneser
graph. First, we recall the following definition.

Definition 3.0.2. A hypergraph H ⊂ P(X) is l-intersecting if for any f, f ′ ∈ H, we
have that |f ∩ f ′| ≥ l.

The original Erdős-Ko-Rado Theorem from [10] concerns l-intersecting, uniform
hypergraphs. For this thesis, we have focused on the l = 1 case, but the more general
result is as follows.

Theorem 3.0.3. Let n > k > l > 0, and suppose H is a k-uniform, l-intersecting
hypergraph on n vertices. Then for n > n0(k, l), we have that

|H| ≤
(
n− l
k − l

)
,

and equality holds if and only if there is some l-subset of X which is contained in
every edge.

The original proof by Erdős, Ko, and Rado involves the exchange operation. At-
tempts have been made to find a Katona-type proof (see Section 2.2) for this gener-
alization, but they are without success. [20]

3.1 Extremal Sets
An extremal set is a hypergraph which exhibits the upper or lower bound for some
statistic. In Theorem 3.0.3, the extremal sets are the hypergraphs H where∣∣∣∣∣⋂

e∈H

e

∣∣∣∣∣ = l,
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meaning that there is a set A of size l such that A ⊂ e for all e ∈ H.
We may wonder what happens if we disallow these cases. What are the new

extremal sets, and what is their maximal size? Hilton and Milner proved the following
in [19].

Theorem 3.1.1. If, in addition to the usual assumptions of the 1-intersecting Erdős-
Ko-Rado theorem, we have ⋂

e∈H

e = ∅,

then we find

|H| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

In this case, equality holds if and only if for some x ∈ X, and some D ⊂ X, |D| = k,
where x 6∈ D, we have

H = {f ⊂ X | |f | = k, x ∈ f, f ∩D 6= ∅} ∪ {D}.

Erdős, Rothschild, and Szemerédi asked a similar question (unpublished). Let
c ∈ R, with 0 < c < 1. How large can an intersecting k-uniform hypergraph be if no
vertex has degree greater than c|H|? In the case where c = 2/3, they proved

|H| ≤ |H2,3 = {F ⊂ X | |F | = k, |F ∩ {x1, x2, x3}| ≥ 2}|.

In [14], Frankl extends these results for l-intersecting hypergraphs.

Theorem 3.1.2 (Frankl, [14]). Let H be a l-intersecting, k-uniform hypergraph. Sup-
pose that | ∩ H| < l, and that |H| is maximal subject to these constraints. Then for
n > n0(k), we have

(a) When k > 2l + 1 or k = 3, l = 1:

There exist D1, D2 ⊂ X where D1 ∩D2 = ∅, and |D1| = l, |D2| = k − l + 1 such
that

H ={f ⊂ X | |f | = k, f ∩D2 6= ∅, D1 ⊂ f}
∪ {f ⊂ X | |f | = k,D2 ⊂ f, |f ∩D1| = l − 1}.

(b) When k ≤ 2l + 1:

There exists D ⊂ X, where |D| = l + 2 such that

H = {f ⊂ X | |f | = k, |f ∩D| ≥ l + 1}.

3.2 Independence
Another extension of the Erdős-Ko-Rado theorem which was first explored by Erdős in
[8] concerns independent sets. He asks, given an r-uniform hypergraph on n vertices,
how many edges must the hypergraph have in order to guarantee that there is an
independent set of size k?
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Definition 3.2.1. Let H be a hypergraph. We will say that a set of edges E is
independent if for any e, e′ ∈ E, we have that e ∩ e′ = ∅.

Let f(n; r, k) denote the smallest integer such that every r-uniform hypergraph
on n vertices with f(n; r, k) edges has k independent edges. In this context, the
Erdős-Ko-Rado theorem says that

f(n; r, 2) =

(
n− 1

r − 1

)
+ 1.

Let g(n; r, k−1) denote the number of r-edges from x1, . . . , xn, each of which contain
at least one element from x1, . . . , xk−1. Then we obtain a lower bound for f :

f(n; r, k) > g(n; r, k − 1),

since the hypergraph described by g does not contain k independent sets (it contains
k − 1). Counting the edges in the graph, we find

g(n; r, k − 1) =

min(r,k−1)∑
i=1

(
k − 1

i

)(
n− k + 1

r − i

)
≥ (k − 1)

(
n− k + 1

r − 1

)
. (3.1)

The following result was proved about the relationship between f(n; r, k) and g(n; r, k).

Theorem 3.2.2 (Erdős [8]). For n > crk (cr is a constant depending only on r),

f(n; r, k) = g(n; r, k − 1) + 1.

Proof. The proof is by induction on k. For k = 2, the result is the Erdős-Ko-Rado
theorem:

g(n; r, 2) =
1∑
i=1

(
2− 1

i

)(
n− 2 + i

r − i

)
=

(
n− 1

r − 1

)
.

Now assume the theorem holds for k−1, and prove it for k. Let n > crk and consider
an r-uniform hypergraph H on n vertices with 1 + g(n; r, k − 1) edges. Without loss
of generality, assume that max(v(xi)) = v(x1). We distinguish two cases.

1. Assume v(x1) <
1+g(n;r,k−1)

(k−1)r . Let {R1, . . . , Rl} be a maximal system of indepen-
dent edges. We will show that l ≥ k.

If l < k, then R1, . . . , Rl contain at most lr ≤ (k − 1)r vertices. Since
{R1, . . . , Rl} is a maximal system of independent edges, we have that the num-
ber of edges containing any of these vertices is less than 1 + g(n; r, k). Since H
has 1 + g(n; r, k) edges, this means that there is at least one edge Rl+1 which
is independent from the R1, . . . , Rl. This contradicts maximality. Therefore,
l ≥ k, completing the first case.
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2. Assume v(x1) ≥ 1+g(n;r,k−1)
(k−1)r . Now consider the r-graphH1 with vertices x1, . . . , xn

and all edges from H which did not contain x1. By noting that

g(n; r, k − 1) =

(
n

r

)
−
(
n− k + 1

r

)
,

we see that the number of edges in H1 is at least

1 + g(n; r, k − 1)−
(
n− 1

r − 1

)
= 1 +

(
n

r

)
−
(
n− k + 1

r

)
−
(
n− 1

r − 1

)
= 1 +

(
n− 1

r

)
−
(
n− k + 1

r

)
= 1 + g(n; r, k − 2),

since at most
(
n−1
r−1

)
edges contain x1. Then by the induction hypothesis, H1

contains at least k − 1 independent edges. Now, we must show that there is
an edge in H containing x1 which has none of the other (k − 1)r vertices of
R1, . . . , Rk−1.

Observe that the number of edges containing x1 and xi is at most
(
n−2
r−2

)
, so the

number of edges containing x1 and one vertex from the R1, . . . , Rk−1 is at most

(k − 1)r

(
n− 2

r − 2

)
.

By the assumption and Equation 3.1, we have that for for n > crk,

(k − 1)r

(
n− 2

r − 2

)
< v(x1).

Hence, there is an edge which is independent from the R1, . . . , Rk−1.

We obtain the following corollary from Theorem 3.2.2.

Corollary 3.2.3. Let s ≥ 2, and let H be a k-uniform hypergraph such that H
does not contain e1, . . . , es such that ei ∩ ej = ∅ for all i, j ∈ {1, . . . , s}. Then for
n > n0(k, s), we have

|H| ≤
(
n

k

)
−
(
n− s+ 1

k

)
.

3.3 Sperner Sets
Before we discuss Sperner sets, we will give a slight improvement of the Erdős-Ko-
Rado theorem. Recall that in the Erdős-Ko-Rado theorem, we required 2k ≤ n. The
following result gives conditions under which we can use smaller n.
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Lemma 3.3.1 (Frankl, [13]). Let X be finite, and |X| = n. Let H be a k-uniform
hypergraph. Let t > 1 such that tk

t−1 ≤ n. If, for any edges h1, . . . , ht ∈ H, we have
that

t⋂
i=1

hi 6= ∅,

then
|H| ≤

(
n− 1

k − 1

)
.

The Erdős-Ko-Rado theorem implies this result for 2k ≤ n, so all we have done is
lowered the bound on n for t > 2. When t = 2, this is the Erdős-Ko-Rado theorem.

Proof. This proof will be similar to the proof of the Erdős-Ko-Rado theorem by
Katona using cyclic permutations. Let Hc = {f | X\f ∈ H}. Then every member of
Hc has cardinality n− k, and n− k ≥ n/t, since

n ≥ tk

t− 1
=⇒ tn− n

t
≥ k =⇒ n− n

t
≥ k =⇒ n− k ≥ n

t
.

By the intersecting property, we find that for any h1, . . . , ht ∈ Hc, we have that

t⋃
j=1

hj 6= X.

Let (x1 · · ·xn) = π be a cyclic permutation of the elements of X. For an edge h ∈ H,
we will write h ⊂ π if the vertices of h are consecutive elements of π (like before, in
Katona’s proof, we say that π extends h). If there exists an h′ ∈ H such that h′ ⊂ π,
without loss of generality we may assume that the last element of h′ is xn.

For every h ⊂ π, make the pair (h, j) where xj is the last element of h under the
ordering π. To h′, we make the pairs (h′, j) for all n ≤ j ≤ t(n− k). Suppose r edges
are subsets of π. Then we have formed r + t(n− k)− n pairs, whose second entry is
a unique element from the interval [1, t(n− k)]. Consider these indices mod n− k by
letting

Hr = {(n, j) | h ⊂ π, j ≡ r mod n− k}.

Since edges are not duplicated, we know |Hr| ≤ t. However, if |Hr| = t, then
∪Hr = X, a contradiction. Therefore, there exists an xj such that j ≡ r mod n− k
for each possible r (of which there are n− k). Hence,

(r + t(n− k)− n) + (n− k) ≤ t(n− k),

so r ≤ k. Then, as in the proof of the Erdős-Ko-Rado by Katona, we have

|H|k!(n− k)!︸ ︷︷ ︸
# cyclic extensions

≤ k(n− 1)!︸ ︷︷ ︸
# possible cyclic extensions

and so the theorem is proved.
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Now, we can expand this result by removing the constraint that H is k-uniform.
Instead, we will assume that H is Sperner.

Definition 3.3.2. A hypergraph H is Sperner if for any distinct h, h′ ∈ H, we have
h 6⊂ h′.

Frankl gives the following in [13], in which he expands Lemma 3.3.1 for Sperner
hypergraphs.

Theorem 3.3.3 (Frankl, [13]). Let |X| = n, and let H be Sperner with edges no
larger than k. Let the sets in H be t-wise nondisjoint, and suppose that tk ≤ (t−1)n.
Then

k∑
j=1

|Hj|(
n−1
j−1

) ≤ 1,

where Hj = {f ∈ H | |f | = j}.

Note that for n, t, k as in the theorem, we have n
2

(
n−1
k−1

)
increases monotonically,

so that

1 ≥
k∑
j=1

|Hj|(
n−1
j−1

) ≥ ∑k
j=1 |Hj|(
n−1
k−1

) =
|H|(
n−1
k−1

) ,
so this theorem improves the Erdős-Ko-Rado theorem.

Proof. The proof requires the following inequality, which comes from the Kruskal-
Katona theorem. Let H be a k-uniform hypergraph on X. If

|H| ≤
(
s

k

)
,

then

|H′| ≥ |H|
(

s
k−1

)(
s
k

) ,

where H′ is all k− 1 sets which are subsets of edges of H. Now, we proceed with the
proof.

We apply induction to the number of nonzero |Hj|’s. The base case is handled by
Lemma 3.3.1, so we proceed to the induction step.

Let p be the smallest, and r the second smallest, index such that |Hj| 6= 0. Let

Br = {b ⊂ X | ∃h ∈ Hp, h ⊂ b, |b| = r}.

Using the Kruskal-Katona theorem (r-p) times, we find

|Br| ≥ |Hp|
(
n−1
r−1

)(
n−1
p−1

) .



3.4. Chromatic Number of the Kneser Graph 35

The family H̄ = H\Hp ∪ Br also satisfies the assumptions of the theorem, and the
number of nonzero |Hj|’s has decreased by 1, so by the inductive hypothesis and the
previous inequality, we find

k∑
j=1

|Hj|(
n−1
j−1

) ≤ k∑
j=1

|H̄j|(
n−1
j−1

) ≤ 1.

3.4 Chromatic Number of the Kneser Graph
Here we present an application of the Erdős-Ko-Rado theorem, in which we obtain a
lower bound for the chromatic number of the Kneser graph.

Definition 3.4.1. The chromatic number of a graph G is the smallest number of
colors needed to color the vertices of G such that there is no monochromatic edge.

Definition 3.4.2. The Kneser Graph K(n, k) is the graph whose vertices are the
k-element subsets of the numbers {1, . . . , n}, and two vertices share an edge when
the corresponding sets are disjoint.

Definition 3.4.3. An independent set W of a graph G is a subset of the vertices
that pairwise share no edges.

Proposition 3.4.4. The chromatic number of K(n, k) is at least n/k.

Proof. It is clear that if we have a coloring of a graph G, then each of the color
classes is an independent set. By the Erdős-Ko-Rado theorem, the maximal size of
an independent set in K(n, k) is

(
n−1
k−1

)
, and so in a proper coloring of K(n, k), there

must be at least (
n
k

)(
n−1
k−1

) =
n

k

colors. Hence, the chromatic number of K(n, k) is at least n/k.

It turns out that the chromatic number of the Kneser graph is actually n−2k+2.
Kneser conjectured this in 1955, and it was proved by Lovász in 1978 using topological
methods [29]. Other proofs have also been given each by Bárány (1978), Greene
(2002), and Matoušek (2004).

Using the Baranyai theorem, we can actually determine something called the clique
covering number of the Kneser graph. A clique of a graph is a complete subgraph.
The clique covering number of a graph is the minimum number of cliques required to
cover the vertex set of the graph. Then the Baranyai theorem implies that the clique
covering number of K(n, k) when k divides n is(

n− 1

k − 1

)
,

since each factor in a factorization of Kk
n will represent a clique in K(n, k).





Chapter 4

Proof of the Baranyai Theorem

This chapter contains the original proof of the Baranyai Theorem given by Baranyai
in [3]. The proof involves several “integer making lemmas,” and a complicated in-
duction step which together yield a slightly more powerful but abstruse result. From
there, the Baranyai theorem and typical generalizations quickly follow. We will start
by stating the main theorem, and presenting the Baranyai theorem and other corol-
laries. Afterwards, we will proceed with proving the integer making lemmas and the
induction step. Recall that an almost regular hypergraph is one where the degrees of
any two vertices differ by at most one.

Theorem 4.0.5. Let X be a set of n elements. Let A be an integer matrix with
entries (aij), for i ∈ [p] and j ∈ [s], and let h1, . . . , hp be integers. If (aij) and
h1, . . . , hp satisfy

(1) 0 ≤ hi ≤ n

(2) aij ≥ 0,

(3)
∑

j aij =
(
n
hi

)
then there exist Eν

ij ⊂ X for ν ∈ [aij], i ∈ [p], and j ∈ [s], such that

(a) |Eν
ij| = hi

(b) If j1 6= j2 or ν1 6= ν2, then Eν1
ij1
6= Eν2

ij2

(c) At any fixed j, the collection of Eν
ij form an almost regular hypergraph on X.

Let us explain this result. Intuitively, the sets Eν
ij are the edges of the hypergraph,

and for a fixed i, j, the set {Eν
ij | ν ∈ [aij]} is a factor of the factorization, and the

entire factorization is given by the ith row. So, each aij is the size of the factor, and
we think of the Eν

ij as “belonging” to aij. Then we may interpret the above as:

(a) tells us that the factors belonging to the ith row each have hi elements

(b) tells us that the factors are disjoint, so that as a consequence of (3), all hi-element
subsets belong to some cell of the ith row
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(c) tells us that the edges belonging to the same column form an almost regular
hypergraph.

The Baranyai theorem and the other corollaries which we deduce from this theorem
will only concern the case when p = 1.

4.1 Results
First, we will give some of the outcomes of Theorem 4.0.5. We prove a secondary
result, from which the Baranyai theorem and its extensions readily follow. Let N =(
n
h

)
.

Theorem 4.1.1. Let a1, . . . , as be numbers such that
∑s

j=1 aj = N . Then the edges
of Kh

n can be partitioned in almost regular hyper graphs Hj so that |Hj| = aj for all
j ∈ [s].

Proof. Apply Theorem 4.0.5 with p = 1 and h1 = h.

Note that either vHj
= bajh

n
c or vHj

= dajh
n
e.

Corollary 4.1.2 (Baranyai theorems).

1. If h | n then Kh
n is 1-factorizable.

Proof. Use Theorem 4.1.1 with s =
(
n−1
h−1

)
, and aj = n/h. Then vHj

=
ajh

n
= 1,

so the theorem is proved.

2. Kh
n is d-factorizable if and only if h | dn and dn

h
| N .

Proof. Clearly, if Kh
n is d-factorizable then h | dn and dn

h
| N . Conversely, apply

Theorem 4.1.1 with s = Nh
dn

and aj = dn
h
.

3. Kh
n is h

(n,h)
-factorizable.

Proof. By the previous, is is enough to show that n
(n,h)
|
(
n
h

)
. Observe that

h

(h, n)

(
n

h

)
=

n

(n, h)

(
n− 1

h− 1

)
.

Since ( n
(n,h)

, h
(n,h)

) = 1, we have that n
(n,h)
|
(
n
h

)
.

4.2 Proof of the Baranyai Theorem
Now, we prove the Baranyai theorem. First, there are several lemmas which must be
proved, and then a somewhat complicated induction step.
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4.2.1 Integer Making Lemmas

Lemma 4.2.1. Let A, n ∈ Z, and n 6= 1. Then⌊
A

n

⌋
=

⌊
A− dA/ne
n− 1

⌋
, and

⌈
A

n

⌉
=

⌈
A− bA/nc
n− 1

⌉
.

Proof. Let a, q be such that A = an + q, with 0 ≤ q < n. Then a = bA/nc. Then if
q 6= 0, we have⌊

A− dA/ne
n− 1

⌋
=

⌊
an+ q − a− 1

n− 1

⌋
=

⌊
a+

q − 1

n− 1

⌋
=

⌊
A

n

⌋
.

If q = 0, then ⌊
A− dA/ne
n− 1

⌋
=

⌊
an− a
n− 1

⌋
= a =

⌊
A

n

⌋
.

The other equality follows similarly.

For the remainder of the chapter, Let H be a hypergraph on X, where H =
{E1, . . . , EN} (for this chapter only we will use capital letters to denote edges). Let
n = |X|, and let x ∈ X. Denote by H\x the hypergraph with vertex set X\x and
edge set {E1\x, . . . , EN\x}. We note that if H is almost regular, then so is H\x.

If l is an integer and d is a real number, let l ≈ d mean that either bdc = l or
dde = l holds. If H is almost regular, then

vH(x) ≈
∑N

i=1 |Ei|
n

,

because the right hand side is the average degree of a vertex in H.

Lemma 4.2.2. If H\x is almost regular and

vH(x) ≈
∑N

i=1 |Ei|
n

,

then H is almost regular.

Proof. We only need to show that for any y ∈ X, we have that |vH(x)− vH(y)| ≤ 1.
Let A =

∑N
i=1 |Ei|. Then vH(x) ≈ A/n. Clearly,

vH(y) = vH\x(y) ≈ A− vH(x)

n− 1
.

Then by Lemma 4.2.1, we have that vH(y) ≈ A/n, so we are done.

Now, we will have a seemingly unrelated lemma about matrices, which will prove
to be very useful later in the induction step proving Theorem 4.0.5.

Lemma 4.2.3. Let (εij) where i ∈ [p] and j ∈ [s] be a matrix of real numbers. Then
there exists an integer matrix matrix (eij) such that
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(a) eij ≈ εij

(b)
∑

i eij ≈
∑

i εij

(c)
∑

j eij ≈
∑

j εij

(d)
∑

i

∑
j eij ≈

∑
i

∑
j εij.

Proof. First, we will show that we may assume that every row and column sum is 0.
Set

βi =
s∑
j=1

εij γj =

p∑
i=1

εij.

Then add another row and column to the matrix so that εp+1,j = −γj, εi,s+1 = −βi,
and εp+1,s+1 =

∑p
i=1 βi. Then in the new matrix, all rows and columns sum to 0.

Also, if (aij) is a p+ 1 by s+ 1 matrix satisfying the conclusions of the theorem then
the submatrix {aij | 1 ≤ i ≤ p, 1 ≤ j ≤ s} will work for the original (εij), since for
i ∈ [p],

s∑
j=1

aij = −ai,s+1 ≈ −(−βi) = βi =
s∑
j=1

εij.

Similarly, this works for the column sums and for the total sum.

Now, suppose that in the matrix (εij), every row and column sum is 0. Choose a
matrix A = (eij) with all row and column sums 0 such that bεijc ≤ eij ≤ dεije for all
entries, and maximize the number of integer entries. Suppose for contradiction that
not every entry in the matrix is an integer.

Call a sequence of entries a0, a1, . . . , a2t = a0 a circuit if no ai is an integer, and
we have that a0 and a1 are in the same row, a1 and a2 are in the same column, and
so on. Note that no row or column contains exactly one non-integer value, since
the rows and columns sum to 0. Therefore, A contains a circuit. Given a circuit
a0, a1, . . . , a2t = a0, let ε = min{dake− ak, ak −bakc}. Suppose that ε = dake− ak for
some k ∈ [2t]. Then replace ak with ak + ε, ak+1 with ak+1 − ε, and so on around the
circuit. The new matrix satisfies bεijc ≤ eij ≤ dεije, and all row and column sums are
0, and it has more integer entries than A. This contradicts our choice of A.

4.2.2 The Induction Step

We will induct over n, the size of the vertex set. If n = 1, then the theorem holds.

Assume that the theorem is true when |X| = n − 1. Now we prove the theorem
for |X| = n. Let (aij) be an integer matrix and h1, . . . , hp be integers satisfying the
hypotheses of the theorem.

Let εij = hi
n
aij, and apply Lemma 4.2.3 to obtain a new matrix (eij). Then this

new matrix satisfies the following properties:
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(1) If hi = 0 then eij = 0 since εij ≈ eij.

(2) If hi = n then aij − eij = 0 since εij ≈ eij.

(3) eij ≥ 0 since 0 ≤ hi, and aij ≥ 0, and εij ≈ eij.

(4) aij − eij ≥ 0 since 0 ≤ hi ≤ n, and aij ≥ 0, and εij ≈ eij.

(5)
∑

j eij =
(
n−1
hi−1

)
since

∑
j aij =

(
n
hi

)
and

∑
j εij ≈

∑
j eij, and∑

j εij =
∑

j
hi
n
aij = hi

n

(
n
hi

)
.

(6)
∑

j(aij − eij) =
(
n−1
hi

)
since

∑
j(aij − eij) =

(
n
hi

)
−
(
n−1
hi−1

)
=
(
n−1
hi

)
.

(7)
∑

i eij ≈
∑

i hiaij
n

since
∑

i eij ≈
∑

i εij.

Now, we will make a new collection of data. Let x ∈ X, and let

X∗ = X\x
p∗ = 2p s∗ = s

h∗i = hi h∗i+p = hi − 1

a∗ij = aij − eij a∗(i+p)j = eij

Observe that the new data satisfy the the hypotheses of Thereom 4.0.5:

(1∗) 0 ≤ h∗i ≤ n − 1 for i ∈ [p∗]. If this is not true, then from (1) and (2), we have
that a∗ij = 0 for each j. Then no subset belongs to that row, so it can be ignored.

(2∗) a∗ij ≥ 0 follows from (3) and (4).

(3∗)
∑

j a
∗
ij =

(
n−1
h∗i

)
follows from (5) and (6).

Then by the induction hypothesis, there exist sets F ν
ij and Gµ

ij subsets of X∗,
where i ∈ [p], j ∈ [s], ν ∈ [aij − eij] and µ ∈ [eij] so that

(a∗) |F ν
ij| = hi and |Gµ

ij| = hi − 1.
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(b∗) If j1 6= j2 or ν1 6= ν2, then F ν1
ij1
6= F ν2

ij2
, and if j1 6= j2 or µ1 6= µ2, then Gµ1

ij1
6= Gµ2

ij2
.

(c∗) The sets F ν
ij, G

µ
ij where j is fixed form an almost regular hyper graph with the

set X∗.

Let us define Eν
ij by

Eν
ij = F ν

ij if ν ∈ [aij − eij]

Eν
ij = G

ν−(aij−eij)
ij ∪ {x} if ν ∈ {aij − eij + 1, . . . , aij}.

Then Eij ⊂ X satisfy:

(a) |Eν
ij| = hi (follows from (a∗))

(b) If j1 6= j2 or ν1 6= ν2, then Eν1
ij1
6= Eν2

ij2
(follows from (b∗))

(c) At any fixed j, the Eν
ij for an almost regular hypergraph on X: For any fixed j,

let Hj denote the hypergraph formed by the Eν
ij. From the definition of the Eν

ij,
it is clear that

vHj
(x) =

∑
i

eij.

Then from (a), ∑
i,ν |Eν

ij|
n

=

∑
i hiaij
n

.

Combining this with (7), we find that

vHj
≈
∑

i,ν |Eν
ij|

n
.

so, (c∗) implies that Hj satisfies Lemma 4.2.2, so Hj is almost regular.

This completes the proof of Theorem 4.0.5.



Chapter 5

The Wreath Conjecture and Recent
Progress

There is a conjecture of Baranyai and Katona given in [24] which gives an extension of
the Baranyai theorem. Later, we will show that this conjecture implies the Erdős-Ko-
Rado Theorem. For now, I will discuss the conjecture, and recent progress towards
its proof.

Definition 5.0.4. Let X be a set of n elements, and give the elements an ordering:
X = {x1, . . . , xn} . Let w = n/ gcd(n, k), and given i ∈ [w], define

fi = {x(i−1)k+1, . . . , x(i−1)k+k},

where the indices are considered mod n. The family {f1, . . . , fw} is called a wreath.
We remark that the wreath is dependent on the ordering of the elements in X.

Conjecture 5.0.5 (Baranyai & Katona, [24]). There is a k
(n,k)

-factorization of Kk
n

such that each factor is a wreath.

We will refer to this conjecture as the wreath conjecture, and such a factorization
is called a wreath decomposition.

Example Any factorization ofKk
n is a wreath decomposition, because when k divides

n, the wreaths will be 1-factors of Kk
n. Therefore, when k divides n, the Baranyai

theorem is exactly the wreath conjecture. If n = 7 and k = 2, we have a wreath
decomposition of K2

7 in Figure 5.1.
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Figure 5.1: A wreath decomposition of K2
7

5.1 Connected Baranyai Theorem

In [1] , Bahmanian gives a connected version of the Baranyai theorem by showing that
a factorization for Kk

n exists. First, we set up the terminology to state Bahmanian’s
result.

Definition 5.1.1. An (r1, . . . , rs)-factorization of of a hypergraph is a partition of
the edge set into {F1 . . . , Fs} such that each Fi is an ri- factor.

Here, we must slightly modify the definition of a hypergraph to allow multiple
copies of the same edge. Denote by λH the hypergraph in which every edge e ∈ H is
replaced with λ copies of e.

Theorem 5.1.2 (Bahmanian [1]). The graph λKk
n is (r1, . . . , rs)-factorizable if and

only if s divides rin for 1 ≤ i ≤ s, and

s∑
i=1

ri = λ

(
n− 1

k − 1

)
.

Moreover, we can guarantee that if ri ≥ 2, then the ri-factor is connected.

The following result strengthens this, and gives a conjecture which expands the
wreath conjecture.
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5.2 Hamilton-Berge Cycles
In [27] , Kühn and Osthus give the following related results and provide a conjecture
which would extend the wreath conjecture.

Definition 5.2.1. A Berge Cycle is a sequence v1, e1, v2, . . . , vn, en of vertices vi and
edges ei so that vi, vi+1 ∈ ei. Such a cycle is also called a Hamilton cycle of H if
v1, . . . , vn is the vertex set of H.

Theorem 5.2.2 (Kühn & Osthus, [27]). Suppose that 4 ≤ k < n, and n ≥ 30, and
that n divides

(
n
k

)
. Then Kk

n decomposes into Hamilton-Berge cycles.

Theorem 5.2.3 quickly implies Theorem 5.2.2.

Theorem 5.2.3 (Kühn & Osthus, [27]). Let k, n ∈ N, and let 3 ≤ k < n.

1. Suppose k ≥ 5 and n ≥ 20 or k = 4 and n ≥ 30. Let M be any set of less than
n edges of Kk

n such that n divides |Kk
n\M |. Then the graph |Kk

n\M | decomposes
into Hamilton-Berge cycles.

2. Suppose k = 3, and n ≥ 100. If
(
n
3

)
is not divisible by n, let M be any per-

fect matching in Kk
n. Otherwise, let M = ∅. Then |Kk

n\M | decomposes into
Hamilton-Berge cycles.

Here, we give a partial proof of Theorem 5.2.3. The main structure of the proof will
be clear, but we make an assumption at one point that is proved using several cases in
the paper. First, we need a result from Tillson in [33] on Hamilton decompositions of
complete digraphs. The complete digraph DKn on n vertices is a 2-uniform complete
hypergraph where the edges are directed. So, the edges are ordered pairs (x, y) for
every x, y ∈ X. A Hamilton decomposition in this context is the same as a Hamilton-
Berge cycle for hypergraphs, except the cycle must also be directed.

Theorem 5.2.4 (Tillson, [33]). The complete digraph DKn has a Hamilton decom-
position if and only if n 6= 4, 6.

We also need some knowledge of bipartite graphs. A bipartite graph is a 2-uniform
hypergraph such that the vertices can be partitioned into two partite classes, where
no edge is a subset of one of the partite classes. A perfect matching is a collection of
edges in the bipartite graph such that each vertex is contained in exactly one edge.
A perfect matching gives a one-to-one correspondence between vertices in one partite
class to vertices in the other class. If A ⊂ X, let N(A) be the set of neighbors of A.
Then Hall’s condition states that a bipartite graph G with partite classes U and V
has a perfect matching if and only if |N(A)| ≥ |A| for all subsets A of U .

Now we are ready to outline the proof of Theorem 5.2.3.

Proof of Theorem 5.2.3. For our purposes, the proof follows in the same way for parts
1 and 2 of the theorem. We will construct a bipartite graph, where one partite class
consists of vertices corresponding to edges of Kk

n and the other partite class consists
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of vertices corresponding to edges from many copies of DKn. Then, we will assume
(this is what we are leaving out of the full proof) that there is a perfect matching in
this bipartite graph. Then, we will apply Tillson’s result to show that the existence
of Hamilton cycles in one partite class gives us the Hamilton-Berge cycles in the other
partite class, via the perfect matching.

To that end, let M be any set consisting of less than n edges of Kk
n, such that n

divides |Kk
n\M |. Let

l =

⌊(
n
k

)
− |M |

n(n− 1)

⌋
and m =

(
n
k

)
− |M | − ln(n− 1)

n
.

Then l will be the number of copies of DKn will cover almost all of Kk
n\M (since we

wish our edges in the copies of DKn to have a one-to-one correspondence with edges
in Kk

n). We have that m ·n will be the number of “leftover” edges in Kk
n, and so m will

be the number of extra cycles in DKn we need to add to one partite class to complete
the perfect matching. Then we have that m < n− 1 and m ∈ N, which is necessary
since m corresponds to the number of extra cycles we need from DKn, and there are
only n− 1 of these cycles to start with. Define the following bipartite graph D with
vertex classes A∗ and B, where each class has size

(
n
k

)
− |M | as follows. Let A = Kk

n

and let A∗ = A\M . This is one vertex class. For the other, let D1, . . . , Dl be copies
of the complete digraph DKn on n vertices. Apply Theorem 5.2.4 to find an extra m
edge-disjoint Hamilton cycles H1, . . . , Hm in DKn. We view D1, . . . , Dl, H1, . . . , Hm

as being pairwise disjoint, and let B denote the union of these sets. Then

|B| = l(n(n− 1)) +m · n =

(
n

k

)
− |M | = |A∗|.

Then let our bipartite graph G have an edge between z ∈ A∗ and (x, y) ∈ B if and
only if {x, y} ⊂ z. So, we think of elements of B as being 2-shadows of edges in Kk

n

(the part of the proof which we are leaving out relies on the Kruskal-Katona theorem).

Now, assume that G has a perfect matching F . This is proved in [27] using Hall’s
condition and applying the Kruskal-Katona theorem. Now, for each i ∈ {1, . . . , l}
apply Theorem 5.2.4 to obtain a Hamilton Decomposition

H1
i , . . . , H

n−1
i

of Di. For each i ∈ {1, . . . l} and each j ∈ {1, . . . , n − 1}, let Aji ⊂ A be the
neighborhood of Hj

i in F , our perfect matching. Then each Aji is the edge set of a
Hamilton-Berge cycle in Kk

n\M , because the cycle Hj
i in DKn will induce a cycle in

Kk
n, since each directed edge {x, y} is contained in precisely one edge in Kk

n via the
perfect matching. Similarly, for each i ∈ {1, . . . ,m}, the neighborhood A′i of Hi in
F is also the edge set of a Hamilton-Berge cycle. The Aji and A′i are all pairwise
disjoint because of the perfect matching, so this gives a decomposition of Kk

n\M into
Hamilton-Berge cycles.
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Now we will discus a conjecture of Kühn & Osthus which extends the wreath
conjecture.

Definition 5.2.5. A k-uniform hypergraph C is an l-cycle if there exists an ordering
of the vertices such that every edge consists of k consecutive vertices and any pair of
consecutive edges intersects at l vertices.

Conjecture 5.2.6 (Kühn & Osthus, [27]). For all k, l ∈ N with l < k, there exists n0

such that for all n ≥ n0, if k − l divides n and n
k−l divides

(
n
k

)
, then Kk

n decomposes
into Hamilton l-cycles.

In the case where l = k − (n, k), this conjecture is the wreath conjecture.

5.3 Decompositions of Complete Uniform Graphs into
(k − 1)-Cycles

In [2], Bailey and Stevens define a Hamiltonian decomposition and demonstrate some
methods for computing them.

A clear necessary condition for the decomposition of Kk
n into (k−1)-cycles is that

n divides
(
n
k

)
. Bailey and Stevens make the following conjecture, which is handled by

the conjecture of Kühn & Osthus.

Conjecture 5.3.1 (Bailey & Stevens). There is a decomposition of Kk
n into (k− 1)-

cycles if and only if n divides
(
n
k

)
.

In the case when n and k are relatively prime, this coincides with the wreath
conjecture.

Their original method for finding decompositions of Kk
n into (k − 1)-cycles is as

follows. They made a graph Γn,k, where the vertex set was the set of all possible
(k − 1)-cycles, and two vertices shared an edge if the corresponding decompositions
were disjoint (meaning, the decompositions did not share any edges). Then a clique
in Γn,k is a set of mutually disjoint cycles, so the problem is solved if we can find a
clique of size 1

n

(
n
k

)
. Using this, they were able to make decompositions for (n, k) =

(7, 3), (8, 3), (9, 4) on a regular computer. At the time they wrote the paper, a high-
performance computing facility was working towards a decomposition of (10, 4).

Bailey and Stevens give another method which yields solutions very quickly for
some n and k = 3.

5.4 NP-Completeness
The following result from [12] suggests that the problem of decomposing Kk

n into
wreaths may be NP-complete.

Theorem 5.4.1. The problem of whether a hypergraph H can be decomposed into l
connected spanning subhypergraphs is NP-complete for every integer l ≥ 2.
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Proof. First, assume that l = 2. The authors note that the problem of two-coloring
the vertices of a hypergraph such that there are no monochromatic edges is NP-
complete. By taking the dual of the hypergraph, this implies that two-coloring the
edges of a hypergraph so that every vertex is contained in edges of two colors is
also NP-complete (the red and the blue edges both cover X). We claim that this
problem would be polynomially solvable if there were a polynomial algorithm to
decide whether a hypergraph can be decomposed into two connected spanning sub-
hypergraphs. Let H be a hypergraph on X. Let x 6∈ X, and let X ′ = X ∪ {x}. Let
H′ = {e ∪ {x} | e ∈ H}. If F ′ is a subhypergraph of H′, then F ′ is connected and
spans X ′ if and only if corresponding subhypergraph F of H covers the elements of
X. Therefore, H′ can be decomposed into two connected spanning subhypergraphs
if and only if H can be decomposed into two spanning subhypergraphs.

Now, suppose l ≥ 3. Allow a hypergraph to potentially contain multiple copies
of the same edge, and let H be a hypergraph, and let H+ denote the hypergraph
H ∪ {X} ∪ · · · ∪ {X}, where there are l − 2 copies of the edge X. Then H+ can
be decomposed into k connected spanning subhypergraphs if and only if H can be
decomposed into two connected spanning subhypergraphs.

This result suggests that wreath decomposition may also be NP-complete. Let H
be a hypergraph on X. Then Exact Cover is the problem of finding a factor of H.
It is known that this problem is NP-complete. We will use that fact to prove the
following proposition.

Proposition 5.4.2. The problem of factorizing a hypergraph H into uniform factors
is NP-complete.

Proof. Given a hypergraph H on a set E, define a new hypergraph H′. If H has no
exact cover, let H′ = {} on a nonempty set X. Otherwise, let L be an exact cover of
H. Let l = lcm({|e| : e ∈ L}). Let X = {x1, . . . , xl}. For e in L, divide X into sets
of size |e|, and add these sets to H′. Do this for each e ∈ L. Then each e corresponds
to a factor of H′, and L is the factorization of H′. Therefore, H has an exact cover if
and only if H′ has a factorization where each factor is uniform.

5.5 Finding Examples for the Wreath Conjecture

I wrote an algorithm which randomly generates (n,k)
n

(
n
k

)
cyclic permutations of {1, . . . , n},

and then checks to see if the corresponding wreaths form a decomposition (since any
permutation of the vertices will give a wreath). See Appendix A.1 for theMathematica
code. This algorithm was able to check about 1,000 decompositions per second. Fairly
quickly, it gives solutions for the small examples: (n, k) ∈ {(4, 2), (5, 2), (6, 2), (6, 3)}.
We do not worry about k > n/2, since these decompositions can be obtained by
taking the complements of edges in the decomposition of (n, n − k). The pair (7, 3)
takes longer to find a decomposition for (it ran about 2.5 million examples, taking
around 45 minutes). I ran my computer overnight on (8, 3), and no solutions were
found. So far, I have found 20 decompositions of (7, 3), and 18 of them were distinct
(i.e., two were repeats of the others).
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Here is one of the decompositions of K3
7 , where each row is a wreath:

{1, 2, 3} {2, 3, 4} {3, 4, 5} {4, 5, 6} {5, 6, 7} {1, 6, 7} {1, 2, 7}

{3, 4, 7} {3, 4, 6} {2, 4, 6} {1, 2, 6} {1, 2, 5} {1, 5, 7} {3, 5, 7}

{1, 3, 5} {1, 3, 4} {1, 4, 6} {4, 6, 7} {2, 6, 7} {2, 5, 7} {2, 3, 5}

{4, 5, 7} {2, 4, 5} {2, 5, 6} {2, 3, 6} {1, 3, 6} {1, 3, 7} {1, 4, 7}

{2, 3, 7} {3, 6, 7} {3, 5, 6} {1, 5, 6} {1, 4, 5} {1, 2, 4} {2, 4, 7}

5.6 The Johnson Graph
The problem of decomposing complete uniform hypergraphs into Hamilton-Berge
cycles was first solved in the 3-uniform case in the papers by J.C. Bermond [4] and
Verrall [34]. Bermond solved the case when n ≡ 2 mod 3 and n ≡ 4 mod 6, while
Verrall completed the result by proving it when n ≡ 1 mod 6 or when n ≡ 0 mod 3
and the graph to be decomposed wasK3

n−I, where I is a 1-factor ofK3
n. In both cases,

the authors used something called a choice design which gives a distinguished element
for every triple, and then used theorems for graphs to obtain cycle decompositions,
and then added to each edge in these decompositions the vertices selected by the
choice design. They proved that this process gave a Hamilton-Berge decomposition
of K3

n.
In a similar fashion, I decided to start with the case k = 3 and try to translate the

question of a wreath decomposition of K3
n into a question about graph theory, and

then hope that there were known results in graph theory that would give the desired
decompositions. This led me to the following.

Definition 5.6.1. Let 1 ≤ k < n/2. The Johnson Graph J(n, k) is the graph whose
vertex set is the edges of Kk

n, and any two vertices v, w form an edge whenever
|v ∩ w| = k − 1.

Definition 5.6.2. Let G = (V,E) be a graph, and let W ⊂ V . Then the induced
subgraph at W is the graph (W,EW ), where EW is the set of all e ∈ E such that
e ⊂ W .

Then, if n, k are relatively prime, Kk
n has a wreath decomposition if and only if

there exists a partition P = {W1, . . . ,W(n
k)/n
} of the vertices of J(n, k) into n-sets such

that the induced subgraph at eachWi is a cycle. Of course, theWi would be precisely
the wreaths in the wreath decomposition. For example, in the case n = 5, k = 3, we
have the cycles in J(5, 3) given by Figure 5.2, and the cycles in J(7, 3) corresponding
to the wreaths from the previous section in Figure 5.3. See Appendix A.4 for the
code used to make these figures.

Then the question is: what do we know about the Johnson graph?
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Figure 5.2: The cycle partition for J(5, 3).

Figure 5.3: The cycle partition for J(7, 3).

Figure 5.4 displays the Johnson graphs for k ∈ {1, 2, 3}, n ∈ {4, 5, 6, 7}. For
some special values of n, k, the Johnson graphs are familiar. We have that J(n, 1)
is the complete graph, J(n, 2) is called the triangular graph, and J(n, 3) is called
the tetrahedral graph. The complement of J(5, 2) is the Petersen graph. In general,
J(n, 2) is the complement of the Kneser graph, K(n, 2), which has the same vertex
set as J(n, 2) but the vertices are connected when the corresponding sets are disjoint.
The Johnson graphs are distance transitive, which means that if x, y are vertices at
distance d, and w, v are vertices at distance d, then there is an automorphism of the
graph which takes x to w and y to v. Any pair of vertices in the Johnson graph are
the endpoints of a Hamiltonian path in the graph.

The following question was studied by Naimi and Shaw in [31]. When is a graph
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G an induced subgraph of a Johnson graph? They proved that all trees, cycles, and
complete graphs are induced subgraphs of some Johnson graph.

Ramras and Donovan in [32] studied the automorphism group of the Johnson
graph. When n 6= 2k, the automorphism group is Sn, where Sn acts on the vertices
by permuting the elements in the vertices. When n = 2k, they conjecture that the
automorphism group is Sn×〈T 〉, where T takes an edge to its complement. Ganesan
proves that this is true in [18].

JH4,1L JH5,1L JH6,1L JH7,1L

JH4,2L JH5,2L JH6,2L JH7,2L

JH4,3L JH5,3L JH6,3L JH7,3L

Figure 5.4: J(n, k) for k ∈ {1, 2, 3}, n ∈ {4, 5, 6, 7}.





Chapter 6

Wreath Conjecture Implies
Erdős-Ko-Rado Theorem

In this thesis, we had hoped to expand the proof that the Baranyai theorem implies
the Erdős-Ko-Rado theorem in the case when k divides n (see Section 1.3) to a full
proof of the Erdős-Ko-Rado theorem. However, we found that the Baranyai theorem
alone was not strong enough to prove the Erdős-Ko-Rado theorem in the way that
we had hoped to use it. First, we will demonstrate why the Baranyai theorem was
not strong enough to prove the Erdős-Ko-Rado theorem. Then, we will show that the
wreath conjecture implies the Erdős-Ko-Rado theorem. The contents of this chapter
are original to this thesis.

6.1 Weakness of the Baranyai Theorem
We had hoped to use the following version of the Baranyai theorem to prove the
Erdős-Ko-Rado theorem. Let e1, . . . , es be non-negative integers such that

∑
ei =

(
n
k

)
.

Then Kk
n = H can be partitioned into s sets H1, . . . ,Hs such that |Hi| = ei and every

hypergraph Hi is almost-regular. Then a proof of the Erdős-Ko-Rado Theorem from
this theorem would go as follows. Given n and k we would specify the ei. Then for
each Hi, we would put a bound on the size of an intersecting hypergraph which sits
inside of Hi. Call this number s(ei). Then we would show that

∑
(s(ei)) ≤

(
n−1
k−1

)
.

Note that this is the way the proof works when k divides n: all ei are n/k, and then
s(ei) = 1 (see Section 1.3).

Now, I will demonstrate that in the case of n = 7, k = 3, there is no suitable
selection of ei. First, note that a selection of ei corresponds to a partition of 35 =

(
7
3

)
.

What are the values of s(n)? First, we observe that s(n) is increasing, and s(n) ≤ n,
and s(n) ≤ 15. By drawing small examples, we determine that

s(1) = 1, s(2) = 1, s(3) = 2, s(4) ≥ 3, s(5) ≥ 4, s(6) ≥ 6, s(7) = 7

where s(7) = 7 because of the Fano plane, which is a 3-uniform, intersecting hyper-
graph with 7 edges (see Figure 6.1). We do not need to determine the exact values
of s(n), as it turns out that these estimates will be enough. Then by the increasing
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Figure 6.1: The Fano Plane

property, we know s(i) ≥ 7 for 7 ≤ i ≤ 13. Then s(14) = 14, because it is possible to
layer two disjoint Fano planes on top of one another. Then s(i) = 14 for 14 ≤ i ≤ 32.
These values are exact, since we know that by the Erdős-Ko-Rado Theorem, 15 is the
maximal size for an intersecting graph, and in this case, one vertex will have degree
15, so the others have degree at least 14 in order for the factor to be almost regular.
Then s(33) = s(34) = 15.

Now, for all partitions λ = (e1, . . . , es) of 35, we compute
∑
s(ei) (using the lower

bounds for s determined above). By running this on the computer (see Appendix
A.2), we find that none of these values is less than or equal to 15, and so there do
not exist ei which we can use to prove the theorem.

This shows that we need to know something about the structure of the factors in
order to improve the bounds on the number of edges which can be taken from each
factor. We note that none of the extensions of the Baranyai theorem discussed in the
previous chapter will suffice. The strongest of these results states that Kk

n can be
decomposed into Hamilton-Berge cycles, but in the example above, this would leave
the values of s(n) the same.

6.2 Wreath Conjecture Implies Erdős-Ko-Rado The-
orem

Since the wreath conjecture gives much more information about the structure of the
factors, we can say more about the maximal size of an intersecting hypergraph inside
of each of the factors.

Proposition 6.2.1. The Wreath Conjecture implies the Erdős-Ko-Rado Theorem.

Proof. Suppose the Wreath Conjecture is true, meaning the edges Kk
n can be parti-

tioned into disjoint wreaths:

Kk
n = W1 ∪ · · · ∪Wl.

Let n > 2k. We observe that each wreath is k-uniform, k
(n,k)

-regular, has n
(n,k)

edges,
and is on n vertices. Additionally, there are (n,k)

n

(
n
k

)
wreaths in the decomposition.
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Let H be a k-uniform, intersecting hypergraph on n vertices. We view H as a
subgraph of Kk

n.

Claim 6.2.2. An intersecting subhypergraph of a wreath has at most k
(n,k)

edges.

Proof of claim. Let W be a wreath, and let F ⊂ W be an intersecting hypergraph.
For wi ∈ W , define

I(wi) = {wj ∈ W | wi ∩ wj 6= ∅}.

Then for any fi ∈ F , we have that F ⊂ I(fi). Then, F ⊂ ∩iI(fi). We observe that
(using the fact that n > 2k)

|I(wi)| = 2
k

(k, n)
− 1,

and that
| ∩li=1 I(wi)| ≤ 2

k

(k, n)
− l.

This is because after w1, for each wi we add, we must remove from I(w1) the unique
edge in I(w1) which is the complement of wi in w1. Then,

|F| ≤ | ∩i I(fi)| ≤ 2
k

(n, k)
− |F|,

which implies that |F| ≤ k
(n,k)

.

Then by Claim 6.2.2, for each wreath Wi, we have that |Wi ∩H| ≤ k
(n,k)

, so that

|H| = | ∪i (Wi ∩H)| ≤
(

k

(n, k)

)(
(k, n)

n

(
n

k

))
=

(
n− 1

k − 1

)
.





Appendix A

Mathematica Code

Here, I will present the Mathematica code I wrote during this thesis. This includes
algorithms to find wreath decompositions, my computations demonstrating the weak-
nesses of the Baranyai theorem, the shifting operation, and the code which generates
the figures related to the Johnson graphs.

A.1 Finding Wreath Decompositions
MakeWreath takes in n, k, and an ordering of n elements, and returns the k-uniform
wreath on n elements under that ordering (with the first edge as the first k elements
listed in the ordering)

MakeWreath [n_, k_, pi_ ] :=
Table [ Sort [

Table [ p i [ [ Mod[ i + j GCD[ n , k ] , n ] + 1 ] ] , { i , 0 , k − 1 } ] ] , { j , 0 ,
n/GCD[ n , k ] − 1} ]

CompleteGraph takes in n, k and makes the complete k-uniform graph on n vertices.
Completenk [n_, k_] := Subsets [ Table [ i , { i , 1 , n } ] , {k } ]

SetMake will take a list and make Mathematica treat it like a set: order elements and
remove duplicates.

SetMake [L_] := Sort [ De l e t eDup l i ca t e s [ L ] ]

TestWreath will test if a wreath is compatible with the decomposition already formed,
where K is the set of wreaths.

TestWreath [K_, W_] := Length [ I n t e r s e c t i o n [ F lat ten [K, 1 ] , W] ] == 0

FindDecomp takes in n, k and makes a wreath decomposition by testing each permu-
tation of n elements to decide if the corresponding wreath fits in with the collection
already formed. Then, it either adds in the new wreath or throws it out correspond-
ingly, and tests the next permutation. This algorithm will not necessarily give a
wreath decomposition. In many cases, it will only give a partial decomposition.

FindDecomp [n_, k_] :=
Module [ { P i n i t i a l , P, Wreaths , g , GoodPerms , W, i , K} ,
P = Permutations [ Table [ i , { i , 1 , n } ] ] ;
GoodPerms = {} ;
Wreaths = {} ;
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i = 1 ;
K = Completenk [ n , k ] ;
While [ Length [ Wreaths ] < WreathNumber [ n , k ] && i < Length [P] ,
W = MakeWreath [ n , k , P [ [ i ] ] ] ;
I f [ TestWreath [ Wreaths , W] , AppendTo [ GoodPerms , P [ [ i ] ] ] ] ;
I f [ TestWreath [ Wreaths , W] , AppendTo [ Wreaths , W] ] ;
i = i + 1 ;
] ;

Return [ { Wreaths , i , GoodPerms } ] ;
]

WreathNumber takes in n, k and gives the number of wreaths needed for a wreath
decomposition.

WreathNumber [n_, k_] := GCD[ n , k ] / n Binomial [ n , k ]

RandomWreathDecomp makes wreath decompositions by randomly selecting Wreath-
Number[n,k] permutations and tests to see if this is a wreath decomposition.

RandomMakeDecomp [n_, k_] := Module [ {Decomp , t e s t , perms } ,
Decomp = {} ;
i = 1 ;
While [ Length [ Decomp ] == 0 ,
perms =
Join [ { Table [ i , { i , 1 , n } ] } ,
Table [ Permute [ Table [ i , { i , 1 , n } ] , RandomPermutation [ n ] ] , { j , 1 ,

WreathNumber [ n , k ] − 1 } ] ] ;
t e s t =
Table [ MakeWreath [ n , k , perms [ [ j ] ] ] , { j , 1 , WreathNumber [ n , k ] } ] ;

I f [ Length [ Union [ F lat ten [ t e s t , 1 ] ] ] == Binomial [ n , k ] ,
Decomp = { te s t , perms}
] ;

i = i + 1 ;
] ;

Return [ Decomp ] ;
]

SameDecomp tests to see if two wreath decompositions are the same. Here, a decom-
position is {D,P}, where D is the edges of the wreath decomposition and P is the
set of permutations that generated the wreaths. It returns true if they are the same,
false if they are different.

SameDecomp [D1_, D2_] := Module [ {De1 , De2 , T, c } ,
De1 = D1 [ [ 1 ] ] ;
De2 = D2 [ [ 1 ] ] ;
T = Table [

Length [ Union [ De1 [ [ i ] ] , De2 [ [ j ] ] ] ] , { i , 1 , Length [ De1 ] } , { j , 1 ,
Length [ De1 ] } ] ;

c = Count [ F lat ten [T] , Length [ De1 [ [ 1 ] ] ] ] ;
I f [ c == Length [ De1 ] , Return [ True ] , Return [ Fa l se ] ]
]

A.2 Weakness of Baranyai Theorem
The following demonstrates that the Baranyai Theorem cannot be used in the way
we wished to prove the Erdős-Ko-Rado Theorem. The function s is as defined in
Section 6.1.

A = In t e g e rPa r t i t i o n s [ 3 5 , 35 , Table [ i , { i , 1 , 3 4 } ] ] ;
B = Table [ I f [ Total [Map[ s , A [ [ i ] ] ] ] <= 15 , 1 , 0 ] , { i , 1 , Length [A ] } ] ;
Count [B, 1 ]
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A.3 Shifting
The function S defined below takes in two numbers i, j and a hypergraph F and
performs the shifting operation on F .

S [ { i_ , j_} , F_] := Module [ {N, H, HH, l } ,
N = Length [F ] ;
HH = {} ;
H = Table [ Sort [F [ [ k ] ] ] , {k , 1 , N} ] ;
For [ l = 1 , l <= N, l = l + 1 ,

I f [MemberQ [H [ [ l ] ] , j ] ,
I f [ ! MemberQ [H [ [ l ] ] , i ] ,
I f [ ! MemberQ [H,

Sort [ Append [ De lete [H [ [ l ] ] , Po s i t i on [H [ [ l ] ] , j ] ] , i ] ]
] ,

HH =
AppendTo [HH,

Sort [ Append [ De lete [H [ [ l ] ] , Po s i t i on [H [ [ l ] ] , j ] ] , i ] ] ] ,
HH = AppendTo [HH, H [ [ l ] ] ]
] ,

HH = AppendTo [HH, H [ [ l ] ] ]
] ,

HH = AppendTo [HH, H [ [ l ] ] ]
] ;

] ;
Return [HH] ;
]

A.4 Johnson Graphs
J takes in n, k and gives the Johnson Graph J(n, k).

J [n_, k_] :=
Graph [ Subsets [ Table [ i , { i , 1 , n } ] , {k } ] ,

DeleteCases [
F lat ten [ Table [

I f [ Length [
I n t e r s e c t i o n [ Subsets [ Table [ i , { i , 1 , n } ] , {k } ] [ [ i ] ] ,
Subsets [ Table [ i , { i , 1 , n } ] , {k } ] [ [ j ] ] ] ] == k − 1 ,

Subsets [ Table [ i , { i , 1 , n } ] , {k } ] [ [ i ] ] <−>
Subsets [ Table [ i , { i , 1 , n } ] , {k } ] [ [ j ] ] , 1 ] , { i , 1 ,

Binomial [ n , k ] } , { j , i + 1 , Binomial [ n , k ] } ] , 1 ] , _Integer ] ]

The following set of commands help make figures of the cycle partitions of the Johnson
Graphs.
VPosition takes in n, k and gives a table of vertex coordinates for the graph.

VPosit ion [n_, k_] := Module [ {w, c0 , r } ,
w = Binomial [ n , k ] / n ;
r = 8 w/(2 \ [ Pi ] ) ;
c0 = Table [ { r Cos [ 2 \ [ Pi ] j /w] , r Sin [ 2 \ [ Pi ] j /w] } , { j , 1 , w} ] ;
Return [ Table [

Table [ { Cos [ 2 \ [ Pi ] j /n ] + c0 [ [ l , 1 ] ] ,
Sin [ 2 \ [ Pi ] j /n ] + c0 [ [ l , 2 ] ] } , { j , 1 , n } ] , { l , 1 , w} ] ]

]

CyclePic takes in n, k and the list of permutations that generate a wreath decompo-
sition and returns a picture of the cycle partition of the Johnson Graph J(n, k).

CyclePic [n_, k_, perms_ ] := Module [ { cyc l e s , VCoords , vpos } ,
c y c l e s = Flat ten [ Table [ Table [

S ty l e [
Sort [ Table [ perms [ [ j , Mod[ c , n ] + 1 ] ] , {c , i , k + i − 1 } ] ] <−>
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Sort [ Table [
perms [ [ j , Mod[ c , n ] + 1 ] ] , {c , i + 1 , k + i } ] ] , {Thickness [

0 . 0 1 ] , Red } ]
, { i , 1 , n } ] , { j , 1 , Length [ perms ] } ] , 1 ] ;

vpos = VPosit ion [ n , k ] ;
VCoords = Flat ten [ Table [ Table [

Sort [ Table [ perms [ [ l , Mod[ c , n ] + 1 ] ] , {c , i , k + i − 1 } ] ] −>
vpos [ [ l , i ] ]

, { i , 1 , n } ] , { l , 1 , Length [ perms ] } ] , 1 ] ;
Return [ Highl ightGraph [ J [ n , k ] , cyc l e s , VertexCoordinates −> VCoords ] ]
]
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