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Robots

1.1 Introduction

The material and techniques we have learned this semester may be applied to an inter-
esting problem in robotic motion planning. A systematic approach can be developed
for understanding the possible configurations of a “robot arm” with specified segments
and joints. Several simplifying assumptions about robots and their possible compo-
nents are made in order to examine them geometrically. These include that the robot
lives in a plane, that its arm has rigid segments, and that its joints are of specific types.
We also assume that one end of the robot is held fixed, while the other end is a “hand”
for which we may wish to know the possible positions. The goal is to describe the
correspondence between configurations of the arm and the possible hand locations.

The motion of the robot is determined by the possible motions of the joints. We
will consider two types of joints: revolute joints and prismatic joints. Revolute joints

Figure 1.1: A revolute joint.

can rotate, while prismatic joints can extend in length. The position of a revolute joint
occurring between segments i and i+ 1 is described by an angle θ ∈ [0, 2π] = S1 mea-
sured counterclockwise from segment i to segment i + 1 (Figure 1.1). The position of
a prismatic joint is specified by its total length, l ∈ [0, lmax] ⊆ R (Figure 1.2). A robot
is specified by segments and joints; the segments and joints of a robot are numbered
in increasing order from the fixed end of the robot to the hand (Figure 1.3).

Each of the joint settings can be set independently, so the possible settings of the
joints on a robot with r revolute joints and p prismatic joints is parametrized by a
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Figure 1.2: A prismatic joint in two configurations.

Cartesian product containing r copies of S1 and p intervals corresponding each to one
of the prismatic joints:

J = S1 × · · · × S1 × I1 × · · · Ip.

We call J the joint space of the robot.

Figure 1.3: An example of a robot.

We can also describe the space of possible configurations of the hand. The hand
will have both a location and an orientation. We let U ⊂ R2 be the set of possible
locations of the hand, and we let V = S1 be the set of possible orientations of the
hand. Then we call C = U × V the configuration space of the hand.

Each collection of joint settings will uniquely determine a hand location and orien-
tation. This gives rise to

f : J → C,

which describes how the joint settings yield hand configurations.
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Two main problems will be considered:

• The Forward Kinematic Problem is to find an explicit formula for f given
the joint settings and the lengths of the robot arms.

• The Inverse Kinematic Problem is to find, given c ∈ C, the j ∈ J such that
f(j) = c. There may be multiple j which accomplish this, or none whatsoever!

The forward kinematic problem can be solved relatively easily, and it will be shown
that f may be written as a polynomial mapping. The inverse problem is more difficult,
as we will need to solve the equation f(j) = c. It might be that there is more than
one j which works. In some cases, this is desirable. We may wish specify certain
barriers for the robot to work around, in which case some of the solutions will not
actually be physically realizable. To determine if it is possible to reach a specific hand
configuration, then, we might determine all solutions to f(j) = c, and then check which
of those work given the constraints of the robot’s environment.

1.2 Forward Kinematic Problem

The goal for this section is to provide a standard method for solving the forward
kinematic problem for a given robot. That is, we wish to find a way to generate the
mapping f : J → C for a robot, so that we may determine the location of the hand
provided a specific configuration of the joints of the robot. We will begin by finding
this function trigonometrically, and then converting this trigonometric formulation into
an algebraic one.

First, we must define a coordinate system for the robot. The initial endpoint of
segment 1 is always assumed to be fixed. Then, the cartesian coordinate system is
used, with the origin fixed at joint 1 of the robot arm (note that joint 1 is fixed
because segment 1 is fixed). We call this the (x1, y1) coordinate system.

Next, we will define a local coordinate system for each revolute joint as follows.
Consider revolute joint i. Define the (xi+1, yi+1) coordinate system with (refer to
Figure 1.4):

• the origin located at joint i,

• the positive xi+1-axis is along the direction of segment i+ 1,

• and the positive yi+1-axis forms the regular right-handed coordinate system with
the xi+1-axis as described.

Note that the (xi, yi) coordinates of joint i are (li, 0), where li is the length of segment i.
Now, the first thing we need to do is relate the (xi+1, yi+1) coordinates to the (xi, yi)
coordinates. Once we have done this, we can relate the position of the hand to the
(x1, y1) coordinates by translating it through each coordinate system. To that end, let
θi be the counterclockwise angle from the xi axis to the xi+1 axis. Let q be a point
in the plane with (xi+1, yi+1) coordinates (ai+1, bi+1). Let the corresponding (xi, yi)
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Figure 1.4: Example coordinate system.

coordinates be (ai, bi). Then, we must perform two operations. First, we must rotate
by θi and then translate by (li, 0).This can be written using matrices:(

ai
bi

)
=

(
cos θi − sin θi
sin θi cos θi

)(
ai+1

bi+1

)
+

(
li
0

)
.

Then, this entire operation can be rewritten as one 3× 3 matrix:aibi
1

 =

cos θi − sin θi li
sin θi cos θi 0

0 0 1

ai+1

bi+1

1

 . (1.1)

Now, we will want to convert these trigonometric expressions into algebraic ones. This
can be accomplished by using the parametrization of the variety V (x2 + y2 − 1):

x = cos θ

y = sin θ.

So, let
ci = cos θi

si = sin θi,

and subject ci and si to the constraint c2i + s2i − 1 = 0. Then the joint space J of a
robot with r revolute joints is given by V (x21 + y21 − 1, . . . , x2r + y2r − 1). Geometrically,
this is just r copies of the unit circle. Now, we can rewrite Equation 1.1:aibi

1

 =

ci −si li
si ci 0
0 0 1

ai+1

bi+1

1

 ≡ Ai

ai+1

bi+1

1

 . (1.2)
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Example 1.2.1. Consider a robot with 3 segments of lengths l1, l2, l3 and a hand
(which we think of as segment 4), with a revolute joint between each segment. Then

A1 =

c1 −s1 0
s1 c1 0
0 0 1

 A2 =

c2 −s2 l2
s2 c2 0
0 0 1

 A3 =

c3 −s3 l3
s3 c3 0
0 0 1

 ,

where A1 reflects the fact that the origin of the (x2, y2) coordinate system is at joint
1. Then the global coordinates of any point in the (x4, y4) coordinate system can be
found by finding the coordinates of the point in preceding coordinate systems one at a
time. Then, x1y1

1

 = A1A2A3

x4y4
1

 .

Since the (x4, y4) coordinates of the hand are (0, 0), we havex1y1
1

 =

l2c1 + l3(c1c2 − s1s2)
l2s1 + l3(c2s1 + c1s2)

1

 .

This solves for the coordinates of the hand. The direction of the hand can be computed
as follows. The final direction of the hand will be θ1 + θ2 + θ3 = α. Then let c = cos(α)
and s = sin(α). Then by expanding the sum,

c = c1c2c3 − c1s2s3 − s1c2s3 − s1s2c3
s = −s1s2s3 + s1c2c3 + c1s2c3 + c1c2s3.

Now, we can get an explicit mapping f : J = V (x21+y21−1, x22+y22−1, x23+y23−1)→ R4

as a function of c1, c2, c3, s1, s2, s3:

f(c1, c2, c3, s1, s2, s3) =


l2c1 + l3(c1c2 − s1s2)
l2s1 + l3(c2s1 + c1s2)

c1c2c3 − c1s2s3 − s1c2s3 − s1s2c3
−s1s2s3 + s1c2c3 + c1s2c3 + c1c2s3

 .

So far, we have only dealt with revolute joints, however we can easily extend the
solution given in the previous example to accommodate prismatic joints.

Example 1.2.2. Consider the robot from Example 1.2.1, but let let there be an ad-
ditional prismatic joint between segment 4 and the hand. Then l4 ∈ [m1,m2] for some
m1,m2 ∈ R. Then if we know the setting of l4, then the position of the hand in (x4, y4)
coordinates is (l4, 0). Therefore, the position of the hand can be found by:x1y1

1

 = A1A2A3

l40
1

 .
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The direction of the hand will be the same as in the previous problem, so now we have
f : J = V (x21 + y21 − 1, x22 + y22 − 1, x23 + y23 − 1) × [m1,m2] → R4 as a function of
c1, c2, c3, s1, s2, s3, l4:

f(c1, c2, c3, s1, s2, s3, l4) =


c1l2 + l3(c1c2 − s1s2) + l4(c1c2c3 − c1s2s3 − s1c2s3 − s1s2c3)
l2s1 + l3(c2s1 + c1s2) + l4(−s1s2s3 + s1c2c3 + c1s2c3 + c1c2s3)

c1c2c3 − c1s2s3 − s1c2s3 − s1s2c3
−s1s2s3 + s1c2c3 + c1s2c3 + c1c2s3

 .

If l2 and l3 had variable length, they could also become parameters of the function f .

The appendix will outline how to find f for a robot with n revolute joints.

1.3 Inverse Kinematic Problem

Given a point (a, b) ∈ R2 and an orientation φ ∈ [0, 2π], we wish to know if the robot
hand can achieve this positioning, and what configuration of the joints will allow it to
do so. In other words, if we have solved for f : J → C, given c ∈ C, what is f−1(c)?

Consider the robot from Example 1.2.1, pictured in Figure 1.5.

Figure 1.5: A robot with 3 revolute joints.

If l2 = l3 = l, then the hand can achieve any (a, b) in the disc of radius 2l centered
at joint 1. If l2 6= l3, this becomes an annulus (as in Figure 1.7). If the hand is
directly connected to a revolute joint, it can achieve any orientation α by simply letting
θ3 = α − θ1 − θ2. Hence, we will primarily consider the inverse kinematic problem for
the position of the hand, (a, b). Then from Example 1.2.1, the possible hand positions
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(a) l2 = l3 (b) l2 > l3

Figure 1.6

are described by the system of polynomial equations (in c1, s1, c2, and s2):

a = l2c1 + l3(c1c2 − s1s2)
b = l2s1 + l3(c2s1 + c1s2)

0 = c21 + s21 − 1

0 = c22 + s22 − 1

(1.3)

To solve this system of equations, we may simply compute a Groebner basis using
lex order with c2 > s2 > c1 > s1. The solutions will depend on a, b, l2, l3, which are
treated as coefficients of the Groebner basis. The reduced Groebner basis for the ideal
I ⊆ R(a, b, l2, l3)[s1, c1, s2, c2], I = (−a + l2c1 + l3(c1c2 − s1s2),−b + l2s1 + l3(c2s1 +
c1s2), c

2
1 + s21 − 1, c22 + s22 − 1) is

G =

{
c2 −

a2 + b2 − l22 − l23
2l2l3

,

s2 + s1 ·
a2 + b2

al3
− a2b+ b3 + b(l22 − l23)

2al2l3
,

c1 + s1 ·
b

a
− a2 + b2 + l22 − l23

2al2
,

s21 − s1 ·
a2b+ b3 + b(l22 − l23)

l2(a2 + b2)
+

(a2 + b2)2 + (l22 − l23)2 − 2a2(l22 + l23) + 2b2(l22 − l23)
4l22(a

2 + b2)

}
We must proceed with caution when working over R(a, b, l2, l3). In practice, we

will simply substitute these variables with real numbers. This substitution creates an
ideal Ī ⊆ R[c1, s1, c2, s2] which corresponds to a specific configuration of the robot
for the chosen values of a, b, l2, l3. Under this substitution, is G still a Groebner basis?
Replacing variables by specific values over a field is called specialization. Then, we wish
to know how a Groebner basis behaves under specialization. Glancing at the Groebner
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basis, it is reasonable to guess that we will encounter problems when the denominators
vanish. Vanishing denominators are not the only thing that can go wrong in general
(for this example, however, vanishing denominators are the only thing that can go
wrong). It is fairly typical for the Groebner basis to behave nicely everywhere except
on a couple of values of the parameters.

For this example, then, if l2, l3 6= 0, a 6= 0, and a2 + b2 6= 0, then everything works
out nicely and this Groebner basis is still a Groebner basis. By observing G, we can see
that any s1 which is a zero of the last polynomial in G can be extended to a full solution
for the configuration of the robot. Furthermore, the solution set is finite, because the
last equation is quadratic in s1, so there are two solutions. One thing to consider is
which a, b will give real solutions for s1. Intuition based on geometry would indicate
that we need a2 + b2 ≤ (l2 + l3)

2.
Let l2 = l3 = 1, and substitute this into G, call this Ḡ:

Ḡ =

{
c2 −

a2 + b2 − 2

2
, s2 + s1 ·

a2 + b2

a
− a2b+ b3

2
,

c1 + s1 ·
b

a
− a2 + b2

2a
, s21 − bs1 +

(a2 + b2)2 − 4a2

4(a2 + b2)

}
Since the last element is quadratic in s1, we can use the quadratic formula to solve for
the possible values of s1. This gives

s1 =
b

2
± |a|

√
4− a2 − b2

2
√
a2 + b2

.

This only has real solutions when a2 + b2 ≤ 4 = (l2 + l3)
2, which is what we would

expect. For all 0 < a2 +b2 < 4, we have two solutions (see Figure 1.7a). Geometrically,
we can see that if one solution has been found, with the configuration (θ1, θ2), then the
other solution which will give the same configuration is given by (θ1 + θ2− π, 2π− θ2).
When a2 + b2 = 4, there is only one solution (which makes sense geometrically). From
here, we could solve for the other variables.

In the case that a = b = 0, the hand is at the origin. Geometrically, this means
that θ1 can be any angle so long as θ2 = π, and this represents all of the solutions in
this case (see Figure 1.7b).

If a = 0 and b 6= 0, we do not expect anything to go wrong. However, some denom-
inators in the Groebner basis vanish. To fix this, we set a = 0 and l2 = l3 = 1 prior to
computing the Groebner basis, and then recompute the Groebner basis.

In the cases where a2 + b2 = 0, 4, unexpected things occurred. This would lead
us to believe that something a little more is going on here. Let f : J → C be the
configuration mapping for some planar robot. Let the dimension of J dim(J ) be
defined as the number of degrees of freedom (in the previous example it would have
been 3), and let dim(C) also represent the number of degrees of freedom (in the previous
example, this would also be 3). Suppose that dim(J ) = m and dim(C) = n. We have
that f is differentiable, and the Jacobian matrix Jf for f will be an n×m matrix. Then
if j ∈ J is substituted into Jf , we obtain the best linear approximation for f near j.
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(a) Two possible solutions for the hand being
in the same location in the a 6= 0 case.

(b) The case when a = b = 0.

Figure 1.7

We also know that rank(Jf ) ≤ min(m,n). If rank(Jf ) < min(m,n), this indicates that
there may be some singular behavior of f near j.

Definition A kinematic singularity is a point j ∈ J such that Jf (j) has deficient
rank.

Example 1.3.1. For the robot in the previous examples with three revolute joints and
l2 = l3 = 1, the Jacobian is

Jf (θ1, θ2, θ3) =

− sin(θ1 + θ2)− sin(θ1) − sin(θ1 + θ2) 0
− cos(θ1 + θ2)− cos(θ1) − cos(θ1 + θ2) 0

1 1 1.


This matrix will have deficient rank iff the determinant is zero. So, we set

0 = det(Jf )

= sin(θ1 + θ2) cos(θ1 + θ2) + sin(θ1) cos(θ1 + θ2)

− (sin(θ1 + θ2) cos(θ1 + θ2) + cos(θ1) sin(θ1 + θ2))

= sin(θ2).

This implies that there are kinematic singularities when θ2 = 0 or when θ2 = π,
which are the two special configurations we identified earlier.

Definition A robot is kinematically redundant if the dimension of J is larger than
the dimension of the configuration space C.
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Suppose we have a kinematically redundant robot with r revolute joints and j ∈ J
is not a kinematic singularity. Then f : Rr → R3 is continuously differentiable, and
suppose f(j) = c. Since j is not a kinematic singularity, the Jacobian of f at j has an
invertible 3 × 3 submatrix. Let the variables corresponding to those in the matrix be
(y1, y2, y3), and let the remaining variables be the xi, and let j = (j1, . . . , jr−3, k1, k2, k3).
Then by the implicit function theorem, there exists an open set U ⊆ Rr−3 containing
(j1, . . . , jr−3) and an open subset V ⊆ R3 containing (k1, k2, k3), and a continuously
differentiable function g : U → V such that such that

{(x, g(x))|x ∈ U)} = {(x,y) ∈ U × V |f(x,y) = c}.

Therefore, there are an infinite number of configurations which will allow the robot to
be at c.

The last thing we may want is for the robot to follow a parametrized path c(t) ∈ C
starting from one point and ending at another point. To that end, we would need to
find a path j(t) ∈ J such that f(j(t)) = c(t). We may also want the path to have
certain properties, such as j(t) being a closed path (for repetitive tasks), a maximum
joint speed, and a path with minimized joint movement.
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Geometric Theorems

2.1 Automatic Geometric Theorem Proving

For many geometric theorems, we may introduce coordinates onto the Euclidean plane,
and then restate the hypotheses and conclusions as polynomial equations. Then, al-
gorithmic methods can be used to prove the theorems. Consider the following example:

Example 2.1.1. Let A, B, C, D be the vertices of a parallelogram in the plane. Then
AD and BC intersect at a point which bisects each of them (see Figure 2.8). In this
example, I will show how this can be restated as a system of polynomial equations.
Let A be at the origin, and B be along the x axis. So A = (0, 0) and B = (u1, 0) for

Figure 2.8

some u1 6= 0. Let C = (u2, u3), where u3 6= 0. Then we could write the coordinates
for D in terms of polynomial equations based on our assumption that AC is parallel
to BD and that CD is parallel to AB, but it is equivalent and simpler to just notice
that D = C+B = (u1 +u2, u3). Now, we must find the coordinates of point E. Notice
that E is collinear with A,D, and that it is also collinear with C,D. Let E = (x1, x2).
Then we get that

A,E,D collinear :
x2
x3

=
u3

u1 + u2

B,E,C collinear :
x2

x1 − u1
=

u3
u2 − u1

,
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And this gives the polynomial equations:

h1 = x2(u1 + u2)− x3u3 = 0

h2 = x2(u2 − u1)− u3(x1 − u1) = 0.

This system of equations gives the hypotheses of the theorem. The conclusions can be
stated using the pythagorean theorem:

AE = ED : x21 + x22 = (u1 + u2 − x1)2 + (u3 − x2)2

CE = EB : (x1 − u2)2 + (u3 − x2)2 = (u1 − x1)2 + x22

So, the theorem states that if the polynomial equations corresponding to the hypothe-
ses are true, then the polynomial equations stating the conclusion should be true.

Several geometric statements can be easily stated in terms of polynomial equations.
Let A,B,C,D be points in the plane. Then the following represent ways to rewrite
hypotheses as polynomial equations:

Hypothesis Polynomial Equation

AB is parallel to CD =⇒ b2 − a2
b1 − a1

=
d2 − c2
d1 − c1

AB is perpendicular to CD =⇒ b2 − a2
b1 − a1

= −d1 − c1
d2 − c2

A,B,C are collinear =⇒ b2 − a2
b1 − a1

=
c2 − a2
c1 − a1

AB = CD =⇒ (b2−a2)2+(b1−a1)2=(d2−c2)2+(d1−c1)2

C is on the circle at A with radius AB =⇒ AB = AC

C is the midpoint of AB =⇒ A,B,C collinear and AC = CB

Definition A geometric theorem is admissible if both its hypotheses and conclusions
can be translated into polynomial equations.

What is the typical form of an admissible geometric theorem? Let u1, . . . , um be
independent variables, and let x1, . . . , xn be dependent variables. Then the hypotheses
will be some collection of polynomials in the ui, xj. It is typical for there to be n
hypotheses, so we may write them as:

h1(u1, . . . , um, x1, . . . , xn) = 0

...

hn(u1, . . . , um, x1, . . . , xn) = 0
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and the conclusion may be written as

g(u1, . . . , um, x1, . . . , xn) = 0.

Then g should vanish whenever the hi do. This gives us the following definition.

Definition The conclusion g follows strictly from the hypotheses h1, . . . , hn if g ∈
I(V ) ⊂ R[u1, . . . , um, x1, . . . , xn], where V = V (h1, . . . , hn).

This seems like a reasonable definition, but it turns out to be too strict. Many
geometric theorems have “degenerate” cases that this definition does not account for.

Proposition 2.1.1. If g ∈
√
〈h1, . . . , hn〉, then g follows strictly from h1, . . . , hn.

This follows directly from the fact that
√
I ⊆ I(V (I)). Since radical membership

is computable, this is a useful proposition.
In certain cases, a geometric theorem may be true but the conclusion will not strictly

follow from the hypotheses. In such cases, the variety decomposes into irreducible
varieties, and degeneracies occur on some of the components of the decomposition,
and on other components of the decomposition the conclusion g vanishes, as desired.
Frequently when a degeneracy occurs, it is because an equation which is only dependent
on one ui holds on the variety, which is problematic because the ui are independent
variables. To that end, we will make the following definition.

Definition Let W be an irreducible variety in the affine space Rm+n with coordi-
nates u1, . . . , um, x1, . . . , xn. Then the u1, . . . , um are algebraically independent on W
if I(W ) ∩ R[u1, . . . , um] = {0}.

Let V be written as a finite union of irreducible varieties as follows:

V = W1 ∪ · · · ∪Wp ∪ U1 ∪ · · · ∪ Uq,

where u1, . . . , um are algebraically independent on the Wi components and not on
the Uj components. To make sure that the ui are actually arbitrary, we should only
consider

V ′ = W1 ∪ · · · ∪Wp.

Definition The conclusion g follows generically from the hypotheses h1, . . . , hn if
g ∈ I(V ′) ⊆ R[u1, . . . , um, x1, . . . , xn].

A geometric theorem is true if the conclusions follow generically from the hy-
potheses. How do we determine in as computationally easy way as possible whether
g ∈ I(V ′)?

Proposition 2.1.2. We can say that g follows generically from h1, . . . , hn whenever
there is some nonzero polynomial c(u1, . . . , um) such that

c · g ∈
√
H,

where H is the ideal generated by the hypotheses.
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Proof. Suppose that there exists a c such that c · g ∈
√
H, and let Vj be one of the

irreducible components of V ′. Then c · g vanishes on Vj ⊆ V , so c · g ∈ I(Vj). Since
Vj is irreducible, I(Vj) is a prime ideal. This implies that either c or g is in I(Vj), but
c 6∈ I(Vj) since the ui are algebraically independent on Vj. Therefore, g ∈ I(Vj). Since
this is true for all j, we have that g ∈ I(V ′).

For this to be useful, we need to find a way of determining when there is a c such
that c · g ∈

√
H. This holds iff

(c · g)s =
n∑

j=1

Ajhj

for some Aj ∈ R[u1, . . . , um, x1, . . . , xn]. Dividing by cs,

gs =
n∑

j=1

Aj

cs
hj,

so that g ∈
√
H̃ generated by h1, . . . , hn over the ring R(u1, . . . , um)[x1, . . . , xn]. Con-

versely, if g ∈
√
H̃, then

gs =
n∑

j=1

Bjhj.

Let c be the least common denominator for all the Bj, and multiply both sides by cs

(clearing the denominators),

(c · g)s =
n∑

j=1

B′jhj.

Then c · g ∈
√
H.

This gives an algorithmic method for proving that a conclusion follows generically
from a set of hypotheses (because we know how to localize the relevant polynomial ring,
and compute radical membership). Making the ui invertible removes the degenerate
cases. In the next section, we will look at another method for proving geometric
theroems.

2.2 Wu’s Method

A second method for algorithmically proving geometric theorems is Wu’s method,
which will be discussed here. First, we need something called pseudodivision.

Proposition 2.2.1. Let f and g be polynomials in the ring k[x1, . . . , xn, y] be written
in the form

f = cpy
p + · · ·+ c1y + c0

g = dmy
m + · · ·+ d1y + d0,
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where the ci, dj are polynomials in the xk, g 6= 0, and m ≤ p. Then there exist q and r
such that

dsmf = qg + r,

where q, r ∈ k[x1, . . . , xn, y], and the degree of r in y is less than m. Furthermore,
r ∈ (f, g).

Algorithm: We may find q, r by employing the following algorithm, which is called
pseudodivision with respect to y. Let deg and LC refer to the degree and leading
coefficients of polynomials in y. Then

input : f, g

output : q, r

r := f ;

g := 0

WHILE r 6= 0 AND deg(r) ≥ m DO

r := dmr − LC(r)gydeg(r)−m

r := dmq + LC(r)ydeg(r)−m.

The polynomials q and r are known as the pseudoquotient and the pseudoremainder.
Let Rem(f, g, y) be the pseudoremainder of the pseudodivision of f by g with respect
to y.

Recall that we had V = V ′ ∪U , where V ′ is the union of the components on which
the ui are algebraically independent. We wish to show that g, the conclusion, vanishes
on V ′. I will present an elementary version of Wu’s method in the case that V ′ is
irreducible. There are two main steps:

• Use pseudodivision to reduce the hypotheses hi to a set of polynomials fi of the
form:

f1 = f1(u1, . . . , um, x1)

f2 = f2(u1, . . . , um, x1, x2)

...

fn = fn(u1, . . . , um, x1, . . . , xn)

Such that V (f1, . . . , fn) contains V ′.

• Use pseudodivision og g by successive fi with respect to the variable xi in order
to determine whether g ∈ I(V ′):

Rn−1 = Rem(g, fn, xn)

Rn−2 = Rem(Rn−1, fn−1, xn−1)

...

R0 = Rem(R1, f1, x1).
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First, I will discuss step 1. The process for step 1 goes one variable at a time,
starting with xn, as follows:

1. Let S be the set of all polynomials with the variable xn

2. If there is only one polynomial in S, call it fn, and then start over with h1, . . . , hn−1
with respect to xn−1.

3. If there is more than one polynomial in S, but one of them has degree 1 (say hk)
in xn, then let hk = fn, and replace all other hi ∈ S with Rem(hi, hk, xn).

4. If there is more than one polynomial in S, and none has degree 1, do the following:

(a) pick a, b ∈ S where 0 < deg(b, xn) ≤ deg(a, xn)

(b) compute r = Rem(a, b, xn)

(c) replace S by (S\{a}) ∪ {r},

and repeat this procedure until only one polynomial has xn in it, and call this
polynomial fn.

Then, the process is repeated for each xi as i decreases, until the polynomials are of
triangular form. The triangular equations relate to the original hypotheses.

Proposition 2.2.2. Suppose that f1 = · · · = fn = 0 are triangular equations obtained
from h1 = · · · = hn = 0 by the given algorithm. Then V ′ ⊂ V ⊂ V (f1, . . . , fn)

Proof. We have that (f1, . . . , fn) ⊂ (h1, . . . hn) by the previous proposition, so V ⊆
V (f1, . . . , fn), and we already know have that V ′ ⊂ V .

The following theorem completes Wu’s method.

Theorem 2.2.1. Consider the set of hypotheses and the conclusion g for a geometric
theorem. Let R0 be the final remainder computed when completing successive pseudo-
division using the triangular polynomials fi. Let dj be the leading coefficient on fj as
a polynomial in xj. Then

(i) There are nonnegative integers s1, . . . , sn and polynomials A1, . . . , An in the ring
R[u1, . . . , um, x1, . . . , xn] such that:

ds11 · · · dsnn g = A1f1 + · · ·+ Anfn +R0.

(ii) If R0 is the zero polynomial, then g is zero at every point of V ′\V (d1d2 · · · dn) ⊂
Rm+n

Proof.
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(i) This follows by applying the pseudodivision algorithm one polynomial and vari-
able at a time:

Rn−1 = dsnn g − qnfn
 

Rn−2 = d
sn−1

n−1 d
sn
n g − qn−1fn−1 − d

sn−1

n−1 fn

 
...

 
R0 = ds11 · · · dsnn g − (A1f1 + · · ·+ Anfn)

(ii) By (i), if R0 = 0 then ds11 · · · dsnn g = A1f1 + · · ·+ Anfn, so the left hand side and
the right hand side vanish on the same points, V (f1, . . . , fn). Then either g or one
of the d

sj
j vanishes on this variety. Since V ′ ⊆ V (f1, . . . , fn), one of them vanishes

on V ′. Therefore, we must have that g is zero on every point of V ′\V (d1d2 · · · dn).

This version of Wu’s method only gives g = 0 under the condition that dj 6= 0.
This can lead to problems, especially when V ′ is reducible. Stronger versions of this
theorem are known. The attached Mathematica file implements Wu’s method and uses
it to prove the Circle Theorem of Apollonius.
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Appendix

This section will solve the forward kinematic problem for a robot with n revolute joints.
Consider a planar robot with a fixed segment 1, and with n revolute joints linking the
segments of length l2, . . . , ln. The hand is segment n+ 1, and is attached to segment n
by joint n. Then we have that J = (S1)n and C = R2 × S1. The mapping f : J → C
is given by

f(θ1, . . . , θn) =


∑n−1

i=1 li+1 cos
(∑i

j=1 θj

)
∑n−1

i=1 li+1 sin
(∑i

j=1 θj

)∑n
j=1 θj

 .

Proof. The third entry of this vector is clear, because this represents the orientation of
the hand, and the orientation of the hand is simply given by the sum of the angles of
the revolute joints. I will proceed with the first two entries of the vector by induction.

Suppose n = 1. Then

x1y1
1

 =

0
0
1

 =


∑0

i=1 li+1 cos
(∑i

j=1 θj

)
∑0

i=1 li+1 sin
(∑i

j=1 θj

)
1

 .

Now, suppose that for a robot with n− 1 revolute joints, we know that

x1y1
1

 = A1A2 · · ·An−1

0
0
1

 =


∑n−2

i=1 li+1 cos
(∑i

j=1 θj

)
∑n−2

i=1 li+1 sin
(∑i

j=1 θj

)
1


Knowing that

A1 =

cos(θ1) − sin(θ1) 0
sin(θ1) cos(θ1) 0

0 0 1

 ,

Some algebra and trigonometric identities will yield
∑n−2

i=1 li+1 cos
(∑i

j=1 θj

)
∑n−2

i=1 li+1 sin
(∑i

j=1 θj

)
1

 = A1


∑n−2

i=1 li+1 cos
(∑i

j=2 θj

)
∑n−2

i=1 li+1 sin
(∑i

j=2 θj

)
1

 = A1(A2 · · ·An−1)

0
0
1


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So, by reindexing the previous (to find the vector that gives the product of A3 · · ·An),x1y1
1

 = A1A2 · · ·An−1

0
0
1



= A1A2


∑n−1

i=2 li+1 cos
(∑i

j=3 θj

)
∑n−1

i=2 li+1 sin
(∑i

j=3 θj

)
1



= A1


cos(θ2)

[∑n−1
i=2 li+1 cos

(∑i
j=3 θj

)]
− sin(θ2)

[∑n−1
i=2 li+1 sin

(∑i
j=3 θj

)]
+ l2

sin(θ2)
[∑n−1

i=2 li+1 cos
(∑i

j=3 θj

)]
− cos(θ2)

[∑n−1
i=2 li+1 sin

(∑i
j=3 θj

)]
1



= A1


∑n−1

i=2 li+1 cos
(∑i

j=2 θj

)
+ l2 cos

(∑1
j=2 θj

)
∑n−1

i=2 li+1 sin
(∑i

j=2 θj

)
+ l2 sin

(∑1
j=2 θj

)
1



= A1


∑n−1

i=1 li+1 cos
(∑i

j=2 θj

)
∑n−1

i=1 li+1 sin
(∑i

j=2 θj

)
1



=


cos(θ1)

[∑n−1
i=1 li+1 cos

(∑i
j=2 θj

)]
− sin(θ1)

[∑n−1
i=1 li+1 sin

(∑i
j=2 θj

)]
sin(θ1)

[∑n−1
i=1 li+1 cos

(∑i
j=2 θj

)]
− cos(θ1)

[∑n−1
i=1 li+1 sin

(∑i
j=2 θj

)]
1



=


∑n−1

i=1 li+1 cos
(∑i

j=1 θj

)
∑n−1

i=1 li+1 sin
(∑i

j=1 θj

)
1


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