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Abstract

A polynomial p(x, y) on a region S in the plane is called a packing polynomial if the
restriction of p(x, y) to S ∩ Z2 yields a bijection to N. In this paper, we determine
all quadratic packing polynomials on rational sectors of R2.

1. Introduction

Let S ⊆ R2, and let I = S ∩ N2. A polynomial f : R2 → R is a packing polynomial
on S if f |I is a bijection from I to N. In 1923 Fueter and Pólya [1] proved that the
Cantor polynomials,

f(x, y) = (x+y)2

2 + x+3y
2 and g(x, y) = (x+y)2

2 + 3x+y
2 ,

are the only quadratic packing polynomials on R2
≥0, and Vsemirnov [5] gives two

elementary proofs of this theorem. Fueter and Pólya also conjectured that the Can-
tor polynomials are in fact the only packing polynomials on N2. In 1978, Lew and
Rosenberg [2] showed that there are no cubic or quartic packing polynomials on N2,
but the existence of higher degree packing polynomials remains unknown.

In this paper, we study quadratic packing polynomials on rational sectors. For
all α ∈ R≥0, let

S(α) = {(x, y) ∈ R2 | x, y ≥ 0 and y ≤ αx},

and let I(α) be the set of lattice points contained in S(α). If α is an integer (ratio-
nal, irrational), we call S(α) an integral (rational, irrational) sector. The following
results are known for quadratic packing polynomials on rational sectors.

In 2013, Nathanson [3] gave two quadratic packing polynomials on S(n), for
n ∈ N,

fn(x, y) =
n

2
x2 +

(
1− n

2

)
x+ y,
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gn(x, y) =
n

2
x2 +

(
1 +

n

2

)
x− y.

Subsequently, Stanton [4] proved that these polynomials, along with four poly-
nomials on S(3) and S(4), are the only quadratic packing polynomials on integral
sectors. After classifying the polynomials on integral sectors, Stanton discovered a
necessary condition for quadratic packing polynomials on rational sectors.

Theorem 1 (Stanton [4]). Let n/m ≥ 1 and (n,m) = 1. Suppose S( n
m ) has a

quadratic packing polynomial p, and let p2(x, y) denote the homogeneous quadratic
part of p. Then n divides (m− 1)2, and

p2(x, y) =
n

2

(
x− m− 1

n
y

)2

.

We observe that the restriction n/m ≥ 1 does not result in any loss of gener-
ality because there is a bijection, observed by Nathanson in [3], from I(n/m) to

I
(

n
m−nbm/nc

)
given by

Wn/m =

(
1 −bm/nc
0 1

)
.

In light of this, we will say that two packing polynomials p on S(α) and q on S(β)
are equivalent if there exists a linear map T : I(α)→ I(β) which is a bijection from
I(α) to I(β) such that p = q ◦ T .

In this paper, we determine all quadratic packing polynomials on rational sectors
up to equivalence by finding the necessary equations for quadratic packing polyno-
mials on rational sectors, and then by finding a sufficient condition for the resulting
polynomials to be packing polynomials. In Section 2, we start by introducing the
notion of a k-stair polynomial, giving some basic results on their properties, and
demonstrating that all quadratic packing polynomials must be k-stair polynomials.
We proceed to give necessary and sufficient conditions for k-stair polynomials to be
packing polynomials in Section 3. We conclude in Section 4 with our main result:
the classification of all quadratic packing polynomials on rational sectors.

2. k-Stair Polynomials

For the remainder of this paper, assume that m and n are relatively prime, the
integer n divides (m−1)2, and let l = (n,m−1). Let p(x, y) be a packing polynomial,
so that by Theorem 1 we may write

p(x, y) =
n

2

(
x− m− 1

n
y

)2

+ dx+ ey + f.
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Definition We call the line segment

y =
n

m− 1
x− c l

m− 1

for c ∈ N and (x, y) ∈ S(n/m) the cth staircase of I(n/m). A stair is a point with
integer coordinates on a staircase. The first stair on the cth staircase is the stair
with minimal x-coordinate. Two stairs r, s are consecutive if they are on the same
staircase and there is no other stair on the line segment from r to s. For c ∈ N,
define

Sc ≡
{

(x, y) ∈ I
( n
m

)
| y =

n

m− 1
x− c l

m− 1

}
.

Lemma 1. We have I(n/m) = ∪c∈NSc.

Proof. Clearly I(n/m) ⊇ ∪c∈NSc. For the other direction, let (a, b) ∈ I( n
m ), and

let h = an
l − b

m−1
l . Consider the following line with slope n

m−1 through the point
(a, b):

y =
n

m− 1
x− l

m− 1
h.

Since l | n and l | m− 1, and b/a ≤ n/m, we have h ∈ N. Therefore, (a, b) is a stair
on Sh.

Lemma 2. If p is a quadratic packing polynomial on S( n
m ), and (x, y) ∈ S( n

m ),
then for some k ∈ N,

p

(
x+

m− 1

l
, y +

n

l

)
− p(x, y) = ±k.

Proof. By Stanton’s necessary condition, p2(x, y) = n
2 (x− m−1

n y)2. If L is a stair-
case, then p|L is linear because p2|L is constant.

Definition Let p : S( n
m ) → R be a quadratic polynomial with p2(x, y) = n

2 (x −
n

m−1y)2 and p(Z2) ⊆ Z. Then p is a k-stair polynomial if for any two consecutive
stairs r, s, we have p(r)− p(s) = ±k. If |r| < |s| and p(s)− p(r) = k, then p we call
ascending, otherwise we call p descending.

Lemma 2 shows that all quadratic packing polynomials on sectors S(n/m) are
k-stair polynomials for some k. Figure 1 gives examples of two 1-stair packing
polynomials. The next proposition shows that ascending and descending k stair
packing polynomials are equivalent.

Proposition 1. There is an ascending k-stair packing polynomial on S( n
m ) if and

only if there is a descending k-stair packing polynomial on S( n
n+2−m ).
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Figure 1: An ascending 1-stair packing polynomial p+ and a descending 1-
stair packing polynomial p−, both on S( 8

5 ).

Proof. Let m′ = n+ 2−m, and

Tn/m =

(
m′ 1−m′m

n
n −m

)
.

It is straightforward to show that Tn/m is a bijection from I( n
m ) to I( n

m′ ), so that
if p is a quadratic packing polynomial on S( n

m ), then p ◦ Tn/m′ is a quadratic
packing polynomial on S( n

m′ ). A simple calculation shows that if p is an ascending
(descending) k-stair polynomial, then p ◦ Tn/m′ is a descending (ascending) k-stair
packing polynomial on S( n

m′ ).

2.1. Properties of k-stair polynomials.

Let p be a k-stair polynomial. Then the following immediate observations can be
made. If a, b lie on the same staircase, then p(a) ≡ p(b) mod k. Moreover, the
numbers 0, 1, . . . , k− 1 must all occur on the first (last) stairs for an ascending (de-
scending) k-stair packing polynomial, because otherwise the first (last) stairs will
take on negative values. Figure 2 gives an example of a 3-stair packing polyno-
mial. The following lemma provides more information about the behavior of k-stair
polynomials.

Lemma 3. There exists some j0 such that whenever j ≥ j0, if (a, b) ∈ Sj, and
(a′, b′) ∈ Sj+k, then

p(a, b) ≡ p(a′, b′) mod k.
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Figure 2: An ascending 3-stair polynomial on S(12/7).

Proof. The function p(x, 0) is increasing for all x > x0 for some x0. Let j0 = x0
n
l ,

and j ≥ j0. Suppose that for any (a, b) ∈ Sj , we have that p(a, b) ≡ c mod k.
Let j′ > j be the smallest integer such that for any (a′, b′) ∈ Sj′ , we have that
p(a′, b′) ≡ c mod k.

Suppose j′ − j > k. Then by the pigeonhole principle, there exist i, i′ such that
for any (a, b) ∈ Si and any (a′, b′) ∈ Si′ , p(a, b) ≡ p(a′, b′) mod k. Let s(l) be
the number of stairs on the lth staircase, and let p̄(l) be the value of p on the first
stair on the lth staircase. Note that s(i) = b(m − 1)i lnc ≥ b(m − 1)(j l

n + l
n )c ≥

b(m− 1)j l
nc+ 1.

Then,

p (j′l/n, 0) ≤ p̄(j′)
= p̄(j) + k · s(j)
< p̄(i) + k · s(j)
≤ p̄(i) + k · (s(i)− 1)

= p̄(i′)− k
< p (i′l/n, 0) ,

which is a contradiction because p(x, 0) is strictly increasing for x > x0. Therefore,
j′−j ≤ k. If j′−j < k, then there exist i, i′ such that i′−i > k and for any (a, b) ∈ Si

and any (a′, b′) ∈ Si′ , we have p(a, b) ≡ p(a′, b′) mod k, but we previously showed
that this can not happen. Therefore, j′ − j = k.

Lemma 4. Let p be an ascending k-stair packing polynomial.
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1. If j is a (large enough) integer, and (a, b) is the first stair on the (j nl + k)th

staircase, then
p(a, b)− k = p(mj, nj).

2. If (a, b) is the first stair on the jth staircase (for large enough j), and (c, d)
is the intersection of the line y = n

mx and the j − kth staircase, then

p(a, b)− k ≤ p(c, d).

Proof.

1. This is an immediate consequence of the bijectivity of p and Lemma 3.

2. If p(a, b) − k > p(c, d) then the value p(a, b) − k does not occur on any ith

staircase where i ≡ j mod k. However, if p(x, y) ≡ p(a, b) mod k, and p(x, y)
is on the ith staircase, then i ≡ j mod k, by Lemma 3. Therefore, the value
p(a, b)− k is missing from the range of p, so p is not surjective.

Lemma 5. Let r be the multiplicative inverse of m−1
l mod n

l . Let j ≡ j′ mod n
l

and z = −j′r mod n
l . Then first stair on the jth staircase has coordinates(

m− 1

n
z + j

l

n
, z

)
.

Proof. Let φ : Zn
l
→ Zn

l
send j ∈ Zn

l
to the y coordinate of the first stair of the jth

staircase. We only define φ on the first stairs because if j ≡ i mod n
l , then the y

coordinate of the first stair of the jth staircase will be the same as the y coordinate
of the first stair of the ith staircase. Note that φ(j) ∈ Zn/l because if (x, y) is the

first stair on the jth staircase and φ(j) > n
l , then (x− m−1

l , y− n
l ) is a stair on the

jth staircase with smaller x-coordinate.

Then observe that φ−1(−i) = im−1l , so that φ(j) = −j(m−1
l )−1. The x coordi-

nate comes from solving

y =
n

m− 1

(
x− j l

n

)
.

3. Necessary and Sufficient Conditions for k-Stair Packing Polynomials
on S( n

m )

Theorem 2. Let p(x, y) = n
2 (x− m−1

n y)2 + dx+ ey+ f be a packing polynomial on
S(n/m), where l = (n,m− 1). Then either
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1. p is an ascending k-stair polynomial where k ≡ m−1
l mod n

l , and

p(x, y) =
n

2

(
x− m− 1

n
y

)2

+

(
1− kl

2

)
x+

2(1−m) + kl(m+ 1)

2n
y + f,

or

2. p is a descending k-stair polynomial where k ≡ −m−1
l mod n

l , and

p(x, y) =
n

2

(
x− m− 1

n
y

)2

+

(
1 +

kl

2

)
x+

2(1−m)− kl(m+ 1)

2n
y + f.

Proof. Let p be an ascending k-stair packing polynomial on S(n/m). Let k =
q n

l +k′, where k′ < n
l and q is an integer; let r be the multiplicative inverse of m−1

l
mod n

l , and let z = −k′r mod n
l . By Lemma 2 and Lemma 4, for large enough j

and x, we have

k = p

(
x+

(m− 1)

l
, y +

n

l

)
− p(x, y)

and

k = p

(
m− 1

n
z + j + k

l

n
, z

)
− p(mj, nj),

so that

e =
−2(m− 1)n+ ((m+ 1)nq + 2(m− 1)z)l + k′(m+ 1)l2

2nl
,

and

d =
1

2

(
−nq − 2z +

2n

l
− k′l

)
.

By Lemma 4, we also have when (a, b) is a first stair (for large enough a),

p

(
a− (m− 1)

l
, b− n

l

)
≤ p

(
m

(
b
(1−m)

n
+ a− (q

n

l
+ k′)

l

n

)
,

n

(
b
(1−m)

n
+ a− (q

n

l
+ k′)

l

n

))
.

Plugging in these points using the e and d given above, we find that this inequality
is satisfied if and only if

0 ≤ − (b− z)(nq + k′l)

n
.

In particular, there are first stairs (a, b) where b = n
l − 1, and because nq+k′l

n > 0,
we therefore must have that 0 ≤ z − b. Since z < n

l , this implies that z = n
l − 1.

So, −k′r ≡ −1, so k′ ≡ r−1, which implies that k′ = m−1
l mod n

l . The coefficients
of p(x, y) follow from simplifying d and e with this requirement.

The case where p is a descending polynomial follows from Proposition 1.
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Since the coefficients e, f must be set to satisfy the inequalities from Lemma 4 for
large enough x, y, they will also satisfy the inequalities for all other x, y. Therefore,
we find that p(x, y) automatically satisfies the inequalities from Lemma 4 for all
x, y.

Theorem 3. Let a1, . . . , ak be the first stairs on the first k staircases on S(n/m).
Then p is an ascending packing polynomial if and only if p is a k-stair polynomial
of the necessary form given in Theorem 2, and

{p(a1), . . . , p(ak)} = {0, 1, . . . , k − 1}.

Proof. Suppose p is an ascending k-stair polynomial with the necessary form, and
{p(a1), . . . , p(ak)} = {0, 1, . . . , k − 1}. For any i ∈ {1, . . . , k}, let

Ri = ∪{Sc | c ≡ i mod k}.

If p|Ri is a bijection from Ri ∩ N2 to p(ai) + kN for any i, then p is a packing
polynomial on S(n/m).

Since p satisfies the inequality from Lemma 4, p|Ri
is surjective to p(ai) + kN

(since no values congruent to i mod k will be skipped). Then p|Ri
will be injective

if whenever (a, b) is the first stair on the jth staircase and (c, d) is the last stair on
the (j − k)th staircase, we have

p(a, b) > p(c, d).

We also have

0 <
m− 1 + nq

n
= p

(
j
l

n
, 0

)
− p

(
m
l

n
(j − k), l(j − k)

)
.

Since

p(a, b) ≥ p
(
j
l

n
, 0

)
> p

(
m
l

n
(j − k), l(j − k)

)
≥ p(c, d),

we have p(a, b) > p(c, d), so p|Ri
is injective and so p is a packing polynomial.

Conversely, suppose p is a packing polynomial. Let i ∈ {0, 1, . . . , k − 1}. If
p(ai) ≡ j mod k where 0 ≤ j < k, but p(ai) 6= j, then by the above, for any
a ∈ Ri, we have p(a) ≥ p(ai). So, there is no (x, y) such that p(x, y) = j. There-
fore, p(ai) = j for some j ∈ {0, 1, . . . , k−1}. On the other hand, if there is some j ∈
{0, 1, . . . , k− 1} such that p(ai) 6= j for any i ∈ {1, . . . , k}, then p will never achieve
values congruent to j mod k. Therefore, {p(a1), . . . , p(ak)} = {0, 1, . . . , k − 1}.
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4. Packing Polynomials on S( n
m )

Now we are prepared to determine, up to isomorphism, the k-stair packing polyno-
mials for each k. In particular, we will prove that there are no k-stair polynomials
when k ≥ 4. We first provide two additional results.

Proposition 2. If there is an ascending k-stair packing polynomial on S( n
m ) for

n
m > 1 and m 6= 1, then k | l.

Proof. Suppose l 6≡ 0 mod k. Let (ai, bi) be the first stair on the ith staircase,
where i < k. Let ξi = −i(m−1

l )−1 mod n
l . Then by Lemma 5 and Theorem 2 we

have

p(ai, bi)− f =
l

2n
(i(i− k)l + 2(i+ kξi)).

By Theorem 3, for any i, j < k, we need that p(ai, bi) 6≡ p(aj , bj) mod k. Since n
l

and k = q n
l + m−1

l (for some integer q) are relatively prime, n/l is not a zero divisor
in Zk. Therefore, p(ai, bi) 6≡ p(aj , bj) mod k if and only if n

l p(ai, bi) 6≡
n
l p(aj , bj)

mod k. Then,

n

l
p(ai, bi) =

l

2
i2 + i

(
1− kl

2

)
=
l

2

(
i+

1

l
− k

2

)2

− l

2

(
k

2
− 1

l

)2

.

So, if j = −i − 2
l + k, then p(ai, bi) ≡ p(aj , bj) mod k. If j = i, then i = k

l −
1
l ,

which will only happen for one i, so for some i, j, we have that p(ai, bi) ≡ p(aj , bj)
mod k.

Theorem 4. If p is a k-stair packing polynomial on S( n
m ) where n

m > 1 and m 6= 1,
then either k = m−1

l or n
m = 12

7 .

Proof. By Theorem 2, we have k = q n
l + m−1

l for some q ∈ N. Suppose that

q 6= 0. Then the point (1, 0) is the first stair on the n
l
th staircase, and substituting

l = q n
k + m−1

k , we find that

p(1, 0)− f =
1

2
(3−m+ n− nq).

By Theorem 3, we have |p(1, 0)−f | ≤ k−1. In particular, the inequality p(1, 0)−f ≥
−(k − 1) implies that

2k ≥ m− 1 + n(q − 1).

If q > 1, then

2k ≥ m− 1 + n(q − 1)

≥ m− 1 + n

> 2(m− 1),
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which implies that k > m − 1. This is impossible; by Proposition 2, we have k | l,
and l | m− 1, so k ≤ m− 1 (when m 6= 0).

Suppose that q = 1. Then 2k ≥ m − 1 ≥ k, and since k | m − 1, we must have
2k = m− 1, or k = m− 1 = l.

1. Suppose that 2k = m− 1. Then k | l and l | 2k, so either l = 2k = m− 1 or
l = k.

(a) Suppose that l = 2k = m− 1. Then the equality k = q n
l + m−1

l implies
that k = n

m−1 + 1, so

(m− 1)2

n
=
m− 1

k − 1
=

2k

k − 1
.

Moreover, this quantity is an integer. We conclude that either k = 2 or
(k − 1) | 2, so that k = 2 or 3.

If k = 2, then m = 5 and n = 4, contradicting the assumption that
n > m.

If k = 3, then m = 7 and n = 12, and we obtain a 3-stair packing
polynomial on S( 12

7 ).

(b) Suppose that 2l = 2k = m− 1. Then the equality k = q n
l + m−1

l implies
that k = 2n

m−1 + 2, so

(m− 1)2

n
=

2(m− 1)

k − 2
=

4k

k − 2
.

Moreover, this quantity is an integer. For any integer k, gcd(k, k−2) = 1
or 2.

If gcd(k, k − 2) = 1, then (k − 2) | 4, which forces k = 3. If k = 3, then
n = 3 and m = 7, contradicting the assumption that n > m.

If gcd(k, k−2) = 2, then 2 | k, so n
m−1 is an integer, forcing l = m−1 = 2l,

so this case cannot occur.

2. Suppose that k = m − 1 = l. Then the equality k = q n
l + m−1

l implies that
k = n

m−1 + 1, so

(m− 1)2

n
=
m− 1

k − 1
=

k

k − 1
.

Moreover, this quantity is an integer, so that k = 2. It follows that m = 3
and n = 2, contradicting the assumption that n > m.

Therefore, if k 6= m−1
n , then n

m = 12
7 .
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Theorem 5. Let n
m ∈ Q, (n,m) = 1, m 6= 1, and n

m > 1. The following results
give the k-stair packing polynomials on sectors S( n

m ) for k ∈ {1, 2, 3, 4}.

1. There is an ascending 1-stair packing polynomial p on S(n/m) if and only if
n | (m− 1)2 and m− 1 | n.

2. There is an ascending 2-stair packing polynomial p on S(n/m) if and only if
m ≡ 9 mod 16 and n = 1

16 (m− 1)2.

3. There is an ascending 3-stair packing polynomial p on S(n/m) if and only if
m ≡ 10 mod 27 or m ≡ 19 mod 27 and n = 1

27 (m− 1)2, or n
m = 12

7 .

4. There are no 4-stair packing polynomials.

Proof. 1. By Theorem 2, we have k = 1 if and only if m−1
l = 1, so m − 1 | n.

By setting f = 0, the sufficient condition from Theorem 3 is satisfied since
p(0, 0) = f = 0.

2. Suppose p is an ascending 2-stair polynomial on S(n/m). By Theorem 4,

k = m−1
l = 2, 2 - n

l . Note that 2(n
l −

n/l−1
2 ) ≡ 1 mod n

l , so the first stair on
the first staircase (by Lemma 5) is(

1,
n/l − 1

2

)
.

Then by Theorem 3, p is a packing polynomial if and only if{
p(0, 0), p

(
1,
n/l − 1

2

)}
= {0, 1}.

Since p(0, 0) = f , we may find an f which satisfies this as long as |p(0, 0) −
p(1, n/l−12 )| = 1. So, using the necessary form of p given in Theorem 2 we
have,

±1 = p

(
1,
n/l − 1

2

)
− p(0, 0)

=
(m− 1)2 − 8n

8n
.

Since m 6= 1, we find that p is a packing polynomial if and only if n = (m−1)2
16 .

Then because l = m−1
2 , we have that 8 | m− 1 but 16 - m− 1.

In the case where m = 1, Stanton in [4] found two 2-stair packing polynomials
on S(4). However, by the above we note that S(4/9) has a 2-stair packing
polynomial, and Stanton’s polynomials are both equivalent to the ascending
2-stair packing polynomial on S(4/9).

11



3. By Theorem 4, either n/m = 12/7, or k = 3 = m−1
l . The case where 3 =

m−1
l follows by a method similar to that used to prove (2). We note that

the ascending 3-stair packing polynomial on S(12/19) is equivalent to the
ascending 3-stair packing polynomial on S(12/7).

In the case where m = 1, Stanton in [4] found two 3-stair packing polynomials
on S(3). In a fashion similar to (2), these are both equivalent to the ascending
3-stair packing polynomial on S(3/10).

4. Stanton [4] proved that there are no 4-stair packing polynomials on S(n). By
Theorem 4, we have that if m 6= 1, then 4 = m−1

l . Since n
l is relatively prime

to m−1
l = 4, either n

l ≡ 1 mod k or n
l ≡ 3 mod k.

(a) Suppose n
l ≡ 1 mod k. Then if (ai, bi) are the first stairs on the first 4

staircases by Lemma 5 we have

(a0, b0) = (0, 0)

(a1, b1) =

(
1,
n/l − 1

4

)
(a2, b2) =

(
2,
n/l − 1

2

)
(a3, b3) =

(
3, 3

n/l − 1

4

)
,

and so

p(a0, b0)− f = 0

p(a1, b1)− f =
−3(m− 1)2 + 32n

32n

p(a2, b2)− f =
(m− 1)2 − 16n

8n

p(a3, b3)− f =
−3((m− 1)2 − 32n)

32n
.

By Theorem 3, {p(ai, bi)− f | i ∈ {0, 1, 2, 3}} ⊂ {−3,−2,−1,−, 1, 2, 3}.
Let x = p(a1, b1) − f . Then 32n(1 − x) = 3(m − 1)2, so x < 0. Let
x′ = p(a2, b2)− f . Then −8nx′ + 16n = (m− 1)2, so

8n(2− x′) =
32n

3
(1− x),

which implies that 3 | 1− x and 4 | 2− x′, so x = x′ = −2. We conclude
that p is not injective.

(b) The case where n
l ≡ 3 mod k follows similarly; we find that there are

no packing polynomials in this case.

12



Theorem 6. There are no k-stair polynomials for k ≥ 4.

Proof. Stanton [4] showed that in the case where m = 1, there are no k-stair packing
polynomials for k ≥ 4, so assume m 6= 1. Let p be a k-stair packing polynomial
where k ≥ 4. By Theorem 4, this implies that k = m−1

l . Then by Theorem 2,

p(x, y) =
n

2

(
x− m− 1

n
y

)2

+
3−m

2
x+

(m− 1)2

2n
y + f.

Let (a, b) be the first stair on S1. By Theorem 3, we know that

|p(a, b)− f | ≤ k − 1.

Also, p(a, b) − p( l
n , 0) ≤ k − 1 since p is k-stair, so that p( l

n , 0) − f ≥ −2(k − 1).
From the above form of p(x, y), we find that

p

(
l

n
, 0

)
=

(m− 1)2

2kn

(
1− k
k

+
2

m− 1

)
.

Then p( l
n , 0)− f ≥ −2(k − 1) if and only if

(m− 1)2

kn

(
1

k
− 2

(m− 1)(k − 1)

)
≤ 4.

Now, we claim that n ≤ l2

k . Suppose that n and m− 1 are divisible by kj , and no
higher power of k divides m− 1. Since m− 1 = kl, we have that kj−1 is the highest
power of k that divides l. But, since n and m− 1 are both divisible by kj , we also
have kj | l, which is a contradiction. Therefore, a higher power of k divides m− 1
than divides n. Also, n | (m − 1)2, so n | l2. If ki is the highest power of k that
divides l and k2i | n, then by the above, 2i < i+ 1, which implies that i = 0. This

is a contradiction since k | l. Therefore, n | l
2

k .

Plugging in n = l2

k , we find that

k − 2k

l(k − 1)
≤ (m− 1)2

kn

(
1

k
− 2

(m− 1)(k − 1)

)
≤ 4. (1)

Therefore, if

k > 4 +
2k

l(k − 1)
,

then inequality (1) does not hold, and so p is not a packing polynomial. We find
that k > 4 + 2k

l(k−1) whenever k ≥ 5. This result, along with Theorem 5, implies

that there are no k-stair packing polynomials when k ≥ 4.
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Thus, there are only k-stair polynomials for k ∈ {1, 2, 3}. By Theorem 5 and
extra details provided in the proof, we conclude that up to equivalence, the poly-
nomials given in Theorem 2.1 on the sectors S( n

m ) given by Theorem 5 along with
Nathanson’s fn, gn on S(n) represent all quadratic packing polynomials on rational
sectors.

5. Future Directions

Lew and Rosenberg [2] proved that there are no packing polynomials of degree three
or four on N2. It is an open question whether there exist packing polynomials of
degree greater than two on rational sectors. In addition, the conjecture of Nathanson
[3] that there are no packing polynomials on S(α) for irrational α remains open.
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