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In what follows we study a formula of Gessel which gives an interpretation for the Tutte polyno-
mial TG(x, y) evaluated at x = 1. We will prove the formula using deletion-contraction techniques
often appearing with the Tutte polynomial.

Theorem 1 (Gessel [Ges95]). Let G be a connected graph on the vertices {1, . . . , n} with distin-
guished vertex v = n. If Vi ⊂ V (G)\{v}, then let G[Vi] be the induced subgraph of G at Vi. Let
ε(Vi) be the number of edges from vertices in Vi to v. Then

IG(y) =
∑

V1,...,Vk

k∏
i=1

(
1 + y + · · ·+ yε(Vi)−1

)
IG[Vi](y), (1)

Where the sum is over all partitions {V1, . . . , Vk} of V (G)\{v} such that G[Vi] is connected for all
i.

Proof. We may compute IG(y) by performing the deletion-contraction process for computing the
Tutte polynomial, and replacing all x’s with 1’s. We will delete and contract edges of G in the
following way:

1. Only delete or contract edges which do not contain the vertex n.

2. When an edge {i, j} is contracted, label the resulting vertex {i, j}.

We do the second step in order to bookkeep which vertices were joined together. This is because in
the end, each graph will correspond to a partition of V \{n}. Once there are no more edges which
do not contain the vertex n which can be deleted or contracted, stop. Graphs at the end of each
path in the computation will be of the form in Figure 1. We denote by Bi the graph with two

Figure 1: The graphs at the end of the deletion-contraction process described in the proof.

vertices and i edges between them. Then, the graphs obtained at the end of our computation are
a sequence of graphs Bi1 , . . . , Bis joined together at the vertex n with trees and loops at the other
vertex.

If nj is the number of loops attached to one end of Bij , then the I(y) polynomial of this graph
is

s∏
j=1

IBij
(y)ynj =

s∏
j=1

(1 + y + · · ·+ yij−1)ynj .



Then, by the deletion-contraction formulation of the Tutte polynomial, IG(y) is the sum of these.
So, we investigate these polynomials more closely.

For each graph H at the end of a path in the computation of the Tutte polynomial, associate
to it a partition {V1, . . . , Vk} of V \{v} in the following way. Remove the vertex n from the graph.
Then take the union of the labels on all vertices in any single connected component of the resulting
graph, and let this be one part in the partition. To denote this, we will write H ∼ {V1, . . . , Vk}.

Then,

IG(y) =
∑

{V1,...,Vk}

∑
H∼{V1,...,Vk}

IH(y)

=
∑

{V1,...,Vk}

∑
H∼{V1,...,Vk}

k∏
i=1

(1 + y + · · ·+ yε(Vi)−1)IH[Vi](y)

=
∑

{V1,...,Vk}

∑
H∼{V1,...,Vk}

(
k∏
i=1

(1 + y + · · ·+ yε(Vi)−1)

)(
k∏
i=1

IH[Vi](y)

)

=
∑

{V1,...,Vk}

(
k∏
i=1

(1 + y + · · ·+ yε(Vi)−1)

) ∑
H∼{V1,...,Vk}

k∏
i=1

IH[Vi](y)

 .

Now, we claim that ∑
H∼{V1,...,Vk}

k∏
i=1

IH[Vi](y) =
k∏
i=1

IG[Vi](y),

and this will complete the proof. First notice that

∑
H∼{V1,...,Vk}

k∏
i=1

IH[Vi](y) =
k∏
i=1

∑
H[Vi]

IH[Vi](y),

where the sum on the right is over possible H[Vi] such that H ∼ {V1, . . . , Vk}, and the sum
contains no duplicate H[Vi]. We interpret this in the following way. In order to create an H
with H ∼ {V1, . . . , Vk}, one must select one of a number of possible H[Vi] for each 1 ≤ i ≤ k.
Furthermore, every H created in this way is indeed possible.

Then it remains to show that ∑
H[Vi]

IH[Vi](y) = IG[Vi](y).

To do this, we consider what happens in the branches of the Tutte computation that give graphs
corresponding to the partition {V1, . . . , Vk}. To obtain {V1, . . . , Vk}, all edges from a vertex of Vi to
a vertex of Vj must be deleted. From that point, I claim that the possible deletions and contractions
which preserve the partition are exactly those which are either also legal in G[Vi] or do not alter
the polynomial I(y). If an edge e is in G[Vi], then one of several things may happen.

1. It is not legal to delete or contract e.

2. It is legal to delete or contract e in G and in G[Vi].
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3. It is legal to delete or contract e in G, but not in G[Vi].

The first and second cases give no problems. In the third case, we must consider what happens
when we decide to delete and contract e. The path in which we delete e alters the partition, so
we ignore this path when considering those corresponding to the partition {V1, . . . , Vk}. On the
other hand, if it is not legal to contract e in G[Vi], this means that e is a bridge in G[Vi], and so
contracting it will make no new loops. Since loops are the only contributors to I(y), contracting e
does not affect the computation.

The set of moves which are legal in G[Vi] will always be legal in G. So, we have shown that
the paths in the computation of IG(y) which preserve the partition {V1, . . . , Vk} are in direct
correspondence with the paths of the computation of IG[V1]∪···∪G[Vk](y). Furthermore, contributions
from the graphs in each path in both computations will be the same. Hence,∑

H[Vi]

IH[Vi](y) = IG[Vi](y).

This completes the proof.

Example. We now give an example to illustrate how the deletion-contraction process works in
this proof. Let G be the graph depicted at the top of Figure 2.

Figure 2: Computation of the Tutte polynomial using no edges connected to v. In the end,
each graph is labeled with the partition {V1, . . . , V2} that it corresponds to, as well as its
contribution to IG(y).

After completing the deletion-contraction process ignoring any edges connected to v, if we add
together all I(y) which correspond to the same partition, we get the corresponding component in
the sum of Gessel’s formula. So, we have:
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Partition of V \{v} Contribution to IG(y)

{{1, 2, 3, 4}} (1 + y)(y + 2)
{{1, 4}, {2, 3}} 1
{{1}, {2, 3, 4}} 1

For each partition {V1, . . . , Vk}, these are precisely the
∏k
i=1

(
1 + y + · · ·+ yε(Vi)−1

)
IG[Vi](y), so we

sum them to obtain IG(y).

References

[Ges95] Ira M. Gessel. Enumerative applications of a decomposition for graphs and digraphs.
Discrete Mathematics, 139(1–3):257 – 271, 1995.

4


