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Abstract

On Low Regularity Dynamics for Quasilinear Dispersive Equations and Free Boundary

Problems

by

Benjamin Pineau

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Daniel Tataru, Chair

This thesis provides a detailed account of several novel methods and ideas developed by

the author and collaborators to study the low regularity dynamics for a diverse selection of

nonlinear PDE. In this manuscript, these techniques are applied to resolve several questions

concerning the well-posedness of various families of quasilinear dispersive equations and free

boundary problems arising in fluid mechanics.

After giving a brief overview of the main results in Chapter 1, we begin in Chapter 2 with a

systematic analysis of the incompressible free boundary Euler equations on a time-dependent,

compact fluid domain Ωt,
∂tv + v · ∇v = −∇p− ged on Ωt,

∇ · v = 0 on Ωt,

∂t + v · ∇ is tangent to
⋃
t{t} × ∂Ωt ⊆ Rd+1,

p|∂Ωt = 0.

This system models, among other things, the dynamics of a fluid droplet under the influence

of gravity. In this chapter, a complete local well-posedness theory inHs-based Sobolev spaces

is developed. Our well-posedness theory includes (i) Local well-posedness in the Hadamard

sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on

the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness
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result holds at the level of the Lipschitz norm of the velocity and the C1, 1
2 regularity of

the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures,

in a suitable sense, the distance between two solutions (even when defined on different

domains) and we show that this distance is propagated by the flow; (iv) Energy estimates:

We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly

constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof

of a sharp continuation criterion in the physically relevant pointwise norms, at the level of

scaling. In essence, we show that solutions can be continued as long as the velocity is in

L1
TW

1,∞ and the free surface is in L1
TC

1, 1
2 , which is at the same level as the Beale-Kato-

Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular

solutions. Our entire approach is in the Eulerian framework and can be adapted to work in

more general fluid domains.

In Chapter 3, we move to a systematic study of the so-called general quasilinear ultrahyper-

bolic Schrödinger equation, i∂tu+ ∂jg
jk(u, u)∂ku = F (u, u,∇u,∇u), u : R× Rd → Cm,

u(0, x) = u0(x).

Here, g is some real, symmetric, and uniformly non-degenerate metric and F is some smooth

nonlinear function of its arguments. In this chapter, we develop novel techniques for es-

tablishing large data local well-posedness in low regularity Sobolev spaces for this equation.

Our main result represents a definitive improvement over the landmark results of Kenig,

Ponce, Rolvung, and Vega [84, 86, 87, 90], as it weakens the regularity and decay assump-

tions to the same scale of spaces considered by Marzuola, Metcalfe and Tataru in [106], but

removes the uniform ellipticity assumption on the metric from their result. Our method has

the additional benefit of being relatively simple and robust. In particular, it only relies on

pseudodifferential calculus for classical symbols.

Finally, in Chapter 4, we turn our attention to a more specialized quasilinear dispersive

model; namely, the generalized derivative nonlinear Schrödinger equation (GDNLS), i∂tu+ ∂2xu = i|u|2σ∂xu,

u(0) = u0.

We study this equation in the regime 1
2
< σ < 1 where the local theory is most difficult,

and analyze this equation at both low and high regularity to establish the first global well-
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posedness result for this problem in Hs spaces. This appears to also be the first result of its

kind for any quasilinear dispersive model where the nonlinearity is both rough and lacks the

decay necessary for global smoothing-type estimates. These two features pose considerable

difficulty when trying to apply standard tools for closing low-regularity estimates, such as

Strichartz estimates, gauge transformations or maximal function estimates. To circumvent

this issue, several new ideas are developed. In addition to establishing a suitable global

theory, we also dramatically improve the local results in the high regularity regime compared

to the previous literature.
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Chapter 1

Introduction

The primary objective of this thesis is to present a collection of new techniques developed

to understand the low regularity well-posedness of certain classes of quasilinear dispersive

equations and free boundary problems arising in fluid mechanics. This text is divided into

three main chapters, each focusing on a different model problem. In Chapter 2, we system-

atically study the Cauchy problem for the free boundary Euler equations. This is a system

of nonlinear PDE that models the dynamics of an inviscid fluid in a time-dependent domain.

In Chapters 3 and 4, we turn our attention to understanding two distinct classes of quasi-

linear dispersive equations. In such problems, one is generally tasked with understanding

the dynamics of nonlinear wave interactions. Some fundamental models are the nonlinear

Schrödinger equations, nonlinear wave equations, the Korteweg–De Vries equation, and so

forth. In this thesis, we will be concerned primarily with dispersive equations of Schrödinger

type. The models we consider here arise in many physical scenarios including water waves,

integrable systems, quantum mechanics and magnetohydrodynamics.

In the literature, what one means by well-posedness tends to vary somewhat from one

equation to another, but to heuristically describe the key elements that one would like in

such a theory, let us begin by considering the following general model nonlinear evolution

equation,  ∂tu+ F (u,Du, . . . , Dku) = 0, on [0, T ]× Rd,

u(0) := u0, on Rd.
(1.0.1)

Here [0, T ] is some time interval, F is a smooth function of its arguments and u0 is some

suitable initial datum. Above, D := (∂x1 , ..., ∂xd).

Remark 1.0.1. Of course, the spatial domain Rd above can be replaced by more general
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domains (for instance, when we study the free boundary Euler equations later, it will be

some time-dependent open subset of Rd). Moreover, F need not be smooth (which we will

have to contend with in Chapter 4). However, for the sake of our heuristic discussion, we

specialize for now to the above situation.

At the bare minimum, well-posedness for (1.0.1) amounts to studying the following ques-

tion: For some suitable function space X0 (for instance, a Sobolev space) and u0 ∈ X0,

can we construct a unique solution u ∈ C([0, T ];X0) to (1.0.1) on some time interval whose

size depends on u0? Of course, whether this question is well-defined depends heavily on

the nature of the PDE in question and on the function space X0. It also turns out that in

many situations, insisting that a solution u (with given initial data) be unique in the class

C([0, T ];X0) is too strong. It is often convenient to instead work with a stronger function

space XT which embeds continuously into C([0, T ];X0) for which one can establish existence

and uniqueness for (1.0.1) in XT . In the context of nonlinear dispersive equations, this could

take the form of a Strichartz space or local smoothing type space (which we will employ in

Chapters 3 and 4).

Many equations of the form (1.0.1) come directly from real-world physical systems.

Therefore, it is also of fundamental importance to understand how sensitive the dynamics of

solutions are to small perturbations of the initial data. This is the question of continuous de-

pendence. More precisely, if we have a sequence of initial data un0 ∈ X0 with un0 → u0 ∈ X0,

does it follow that the corresponding solutions (after possibly restricting the time interval)

un ∈ XT generated by un0 converge to the solution u ∈ XT generated by u0? To build on this

notion, it is also often of interest to quantify the strength of this dependence. For instance,

one can ask whether we have a Lipschitz-type bound roughly of the form

∥v − u∥XT
≤ C∥u0 − v0∥X0 ,

for solutions v and u generated by data v0 and u0, respectively. Here, C > 0 is a constant

which can in general depend on v and u. For many nonlinear equations, one can fruitfully

treat the nonlinear part of the equation as a perturbative error term (at least on short time

scales), to construct a solution by means of Picard iteration or the Contraction Mapping

Theorem. This (by design) allows one to construct a data-to-solution map which is Lipschitz

in the above sense. When it is possible to construct solutions in this way, it is common to

call the corresponding problem semilinear. For instance, it is well known that the nonlinear
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Schrödinger equation  (i∂t +∆)u = |u|p−1u on [0, T ]× Rd,

u(0) := u0 on Rd,

is semilinear in this sense when p is a positive odd integer, X0 is a suitable Sobolev space and

XT is a suitable Strichartz space (see Chapter 4 for a discussion of these spaces). To show

this, one can often exploit the various dispersive estimates that hold for the corresponding

inhomogeneous linear flow  (i∂t +∆)u = f on [0, T ]× Rd,

u(0) := u0 on Rd.

When one does not have Lipschitz dependence on the initial data, but merely continuous

dependence, it is common to refer to the Cauchy problem under consideration as quasilinear.

These are problems in which one cannot (in contrast to semilinear problems) treat the

nonlinear part of the equation perturbatively in the function spaces being considered. In

most cases, this makes the question of local well-posedness considerably more challenging.

For instance, in Chapter 4, we will consider a Schrödinger type equation in which (unlike

the nonlinear Schrödinger equation above) one cannot (directly) apply standard Strichartz

estimates or other dispersive tools in the analysis.

All three of the equations considered in this thesis are of quasilinear type. Despite the

overarching theme of this thesis being one of well-posedness, the methods used to address

each problem are rather diverse and vary considerably from equation to equation. The

purpose of the remainder of this introduction is to provide an expository overview of each

of the main results. We opt to postpone a more technical overview of each problem to their

corresponding chapters. This manuscript is structured such that each chapter can be read

independently of the other, in a relatively modular fashion.

1.1 Free boundary problems

Chapter 2 will be focused on the contents of the preprint [75], which is concerned with

the well-posedness of a class of free boundary problems arising in fluid mechanics. Free

boundary problems in this context are equations where the evolution of the fluid boundary

is strongly coupled to that of the flow. Classical examples include the dynamics of water
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waves or a gaseous star. A large subset of these problems are modeled by the free boundary

incompressible Euler equations ∂tv + v · ∇v = −∇p− ged,

∇ · v = 0,
(1.1.1)

which describes the motion of an inviscid fluid on some time-dependent domain Ωt ⊂ Rd.

Here, v is the fluid velocity, p is the pressure and g ≥ 0 is the gravitational constant. The

dynamics of v are coupled to the domain by the kinematic boundary condition, which asserts

that the material derivative vector field

Dt := ∂t + v · ∇ is tangent to
⋃
t

{t} × ∂Ωt ⊆ Rd+1. (1.1.2)

Physically, this asserts that the free surface Γt := ∂Ωt moves with the fluid velocity v.

Additionally, we have the dynamic boundary condition

p|Γt = σκ, (1.1.3)

where σ ≥ 0 is the surface tension and κ is the mean curvature of the free surface. This

represents a balance of forces at the fluid interface between the interior of the fluid and the

atmosphere. In this thesis, we specialize in the case of zero surface tension (that is, σ = 0).

Of fundamental importance is understanding the Cauchy problem for the free boundary

Euler equations, which roughly amounts to the question: Given an initial state (v0,Γ0) ∈ Hs

with v0 divergence-free, can we find a unique solution (v,Γ) ∈ C([0, T ];Hs) which persists on

some non-trivial time interval [0, T ]? For zero surface tension, this question turns out to be

fundamentally tied to the sign of the Taylor coefficient, a, which is defined on the boundary

Γt by

a := −∇p · nΓt . (1.1.4)

It is a classical result of Ebin [40] that the free boundary Euler equations are ill-posed unless

a ≥ 0. Therefore, it is natural to assume a uniform lower bound a > c0 > 0 on the Taylor

term for the initial data (which one hopes to propagate for some time). Physically, this

condition ensures that the pressure increases into the fluid. Geometrically, it asserts that p

is a non-degenerate defining function for the free boundary hyper-surface Γt.
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To understand the correct Sobolev regularities for studying this problem, our first clue

comes from the natural scaling symmetry,

vλ(t, x) = λ−
1
2v
(
λ

1
2 t, λx

)
, pλ(t, x) = λ−1p

(
λ

1
2 t, λx

)
, (Γλ)t = {λ−1x : x ∈ Γ

λ
1
2 t
},

which is exactly the scaling that leaves the Taylor term dimensionless. We remark that the

scale-invariant Sobolev index is given by sc = d+1
2
, which naturally restricts our range of

exponents to s ≥ sc. However, this does not tell the full story, as even in the boundaryless

case a result of Bourgain-Li [17] shows that well-posedness holds only in the more restricted

range

s >
d

2
+ 1,

which is heuristically connected to another scaling law of the boundaryless problem; namely,

v(t, x) 7→ λ−1v(t, λx).

This latter exponent range s > d
2
+ 1 is what is considered in this thesis. Now, we aim

to present a schematic overview of the results obtained in this thesis and [75] related to

this question. To avoid cumbersome topological issues and notation, we postpone providing

completely precise statements until Chapter 2. In a nutshell, the results can be divided into

three main theorems. The first is Hadamard well-posedness.

Theorem 1.1.1 (Ifrim, P., Tataru, Taylor, [75]). Fix s > d
2
+1. For any (v0,Γ0) in H

s with

v0 divergence-free, there exists a time T > 0, depending only on the data size and the lower

bound in the Taylor term, for which there exists a unique solution (v(t),Γt) ∈ C([0, T ];Hs)

to the free boundary Euler equations. Moreover, the data-to-solution map is continuous with

respect to the Hs topology.

This in particular establishes the first proof of local well-posedness for the free boundary

Euler equations at the optimal regularity threshold on a compact fluid domain. It also

provides the first proof of continuity of the data-to-solution map for this problem which was

previously unknown at any regularity. This last issue is notoriously difficult to deal with

due to the highly nonlinear character of the problem and because it requires one to compare

solutions that are defined on different domains. One important ingredient to overcome this is

the construction of a novel nonlinear distance functional, which is suitable for obtaining local

L2 stability type bounds for this problem. This construction as well as some consequences

are very roughly summarized by the following theorem.
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Theorem 1.1.2 (Ifrim, P., Tataru, Taylor, [75]). Suppose that (v,Γt) and (vh,Γt,h) are

sufficiently nearby solutions to the free boundary Euler equations in a time interval [0, T ]

and satisfy the Taylor condition a,ah > c0 > 0. Then there exists a distance functional

(v, vh) 7→ D(v, vh) which is propagated by the flow, with the bound

d

dt
D(v, vh) ≲A,Ah

(B +Bh)D(v, vh)

where

B := ∥v∥C1(Ωt) + ∥Γt∥C1, 12
+ ∥Dtp∥C1(Ωt), A := ∥v∥

C
1
2+ε(Ωt)

+ ∥Γt∥C1,ε ,

and Bh and Ah are the analogous quantities corresponding for (vh,Γh).

Here, A is an implicit growth parameter used to control constants in fixed-time elliptic

estimates and B is a dynamic control parameter that appears to linear order, which controls

the growth of the distance functional in time. One can observe that this estimate is essentially

scale-invariant. We postpone providing a precise description of D(v, vh) until Chapter 2, but

it measures (in a suitably coercive manner) the L2 distance between the two velocity functions

v and vh as well as the boundary hypersurfaces Γ and Γh. This bound plays a critical role

in the proof of the continuous dependence result mentioned above. One other important

consequence is the following new uniqueness result that holds at very limited regularity (i.e.

at even lower regularity than our well-posedness result). It can roughly be stated as follows.

Theorem 1.1.3 (Ifrim, P., Tataru, Taylor, [75]). For every initial data (v0,Γ0) ∈ C1×C1, 1
2 ,

there is at most one solution (v,Γ) in the class A ∈ L∞
T and B ∈ L1

T .

Another fundamental question to consider are necessary conditions under which locally

well-posed solutions can develop singularities. On this note, in Chapter 2 we also establish

the first criterion in this direction which is on the same scale as the celebrated Beale-Kato-

Majda criterion [11] for the Euler equations in the boundaryless case. Roughly speaking,

our result is as follows:

Theorem 1.1.4 (Ifrim, P., Tataru, Taylor, [75]). Let s > d
2
+ 1. Then Hs solutions can be

continued for as long as

sup
0≤t<T

∥v(t)∥
C

1
2+ε(Ωt)

+ ∥Γ(t)∥C1,ε <∞,

∫ T

0

∥v(t)∥C1(Ωt) + ∥Γ(t)∥
C1, 12

dt <∞.
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This result gives a very definitive answer to a well-known question of Craig and Wayne

[92]. It is also notable in that it is phrased only in terms of the natural dynamic variables

(v,Γ) in point-wise norms, in contrast to almost all other works on this problem. This

question has received quite a bit of attention recently. We note, for instance, a small sample of

the much weaker results in this direction obtained in [35, 48, 157]. The proof of Theorem 1.1.4

relies on novel and very delicate scale-invariant energy estimates and a careful usage of the

distance functional above. To establish the requisite energy estimates, we had to develop a

new family of elliptic estimates that more precisely balance the contributions of the input

function and the domain-dependent constants in the bounds for various elliptic operators

(one example being the Dirichlet-Neumann operator), simultaneously, in both pointwise and

L2 based norms. The reader is referred to Section 2.5 in Chapter 2 for details. These

estimates can be thought of as significant generalizations of the so-called tame estimates

which have been fundamental in the analysis of many free boundary problems. See [5, 95],

for instance.

1.2 Quasilinear Schrödinger equations

In both Chapters 3 and 4, we turn our attention to the realm of nonlinear dispersive equa-

tions. One of the most important classes of such equations are the so-called nonlinear

Schrödinger equations. In one of the most general formulations, they take the form i∂tu+ ∂jg
jk(u, u)∂ku = F (u, u,∇u,∇u), u : R× Rd → Cm,

u(0, x) = u0(x),
(1.2.1)

where g is some real, symmetric, and uniformly non-degenerate metric (which here, we allow

to depend on u itself) and F is some nonlinear function of its arguments. Even at this level

of generality, such an equation is ubiquitous in several physical systems. Some well-known

examples come from the study of water waves [34] and the theory of completely integrable

models [76, 137]. More recently, it was shown that the Hall magnetohydrodynamic equations

without resistivity behave at leading order like a degenerate quasilinear Schrödinger system

of the above type [80]. A very well-studied sub-class of the above is the nonlinear Schrödinger

equation (NLS),

i∂tu+∆u = ±|u|p−1u, p ≥ 1, (NLS)

which is a fundamental semilinear dispersive model. Another intensely studied example,

which is more quasilinear, is given by the one dimensional generalized derivative nonlinear
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Schrödinger equation (GDNLS)

i∂tu+ ∂2xu = i|u|2σ∂xu, σ ≥ 1

2
. (GDNLS)

When σ = 1, this equation is referred to as the derivative nonlinear Schrödinger equa-

tion (DNLS) and is physically motivated by the study of the one-dimensional compressible

magneto-hydrodynamic equation in the presence of the Hall effect, and the propagation of

circular polarized nonlinear Alfvén waves in magnetized plasmas.

In Chapter 3, we begin by studying the low regularity well-posedness problem for (1.2.1)

in its most general form when F is a smooth function of its arguments. In particular, unlike

with the models (NLS) and (GDNLS), we do not even assume that the principal operator

gjk∂j∂k is elliptic. In this setting, (1.2.1) is often referred to as the quasilinear ultrahyperbolic

Schrödinger equation. The contents of this chapter are based on the preprint [128].

Arguably, the first well-posedness results for this equation stem from the pioneering

series [84, 86, 87, 90] of Kenig, Ponce, Rolvung and Vega (KPRV). This sequence ultimately

culminates in a proof of large data well-posedness under a nontrapping assumption on the

metric for systems of the form (1.2.1) in high regularity weighted Sobolev spaces of the

form Hs ∩ L2(⟨x⟩Ndx). Here, s and N are suitably large, dimension-dependent parameters.

In these fundamental works, [87] studies the well-posedness problem assuming ellipticity

of the principal operator ∂ig
ij∂j, while [84, 86, 90] consider more general symmetric, non-

degenerate metrics, first in the constant coefficient case and then later for variable coefficients.

The regularity and decay assumptions on the data in these results are rather strong. Given

the physical motivation for this problem, it is therefore of considerable interest to weaken

these assumptions as much as possible. One significant advance in this direction comes

from the article [106] of Marzuola, Metcalfe and Tataru (MMT), which studies the problem

in low regularity Sobolev spaces in the case that the principal operator gjk∂j∂k is elliptic.

Instead of weighted Sobolev spaces, the data here comes from the much weaker space l1Hs,

s > d
2
+ 2. Here, l1Hs is an appropriate translation invariant Sobolev-type space, imposing

similar regularity requirements as Hs, but slightly stronger decay. See [106] or Section 3.2

for the precise definition. This additional decay is necessary in general. To understand why

this is the case, it is instructive to inspect the leading part of the linearized flow which is
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given by  i∂tv + ∂jg
jk∂kv + bj∂jv + b̃j∂jv = f,

v(0, x) = v0.
(1.2.2)

A well-known necessary condition for L2 well-posedness of the above linear system is that

the first order coefficient Re(bj) is integrable along the bicharacteristic (or Hamilton) flow

of the principal differential operator ∂jg
jk∂k. This is the well-known Mizohata condition,

which is not guaranteed by the milder decay condition u0 ∈ Hs. Therefore, the introduction

of the space l1Hs is natural. It is worth remarking that these spaces impose considerably

weaker decay and regularity than the weighted Sobolev spaces considered by Kenig, Ponce,

Rolvung, and Vega.

In the small data regime (i.e. ∥u0∥l1Hs ≪ 1) where gjk(u0, u0) is close to a Euclidian

metric and the first order coefficients bj and b̃j are small in a suitable sense, this additional

decay is essentially the only further requirement in establishing local well-posedness. In this

case, the Hamilton trajectories are approximately straight lines and the first-order terms can

be treated perturbatively through the use of local smoothing type estimates similar to those

exhibited by the flat flow. However, in the large data regime, the Hamilton trajectories can a

priori be confined to a compact set for an infinite length of time and moreover, the first-order

coefficients can be large. In light of the Mizohata condition, to deal with the first issue, it

is natural to impose a non-trapping condition on the (initial) metric, which ensures that all

nontrivial bicharacteristics escape to spatial infinity at both ends. Dealing with the large

first-order terms on the other hand requires considerable care and this issue is at the heart

of the arguments in the works of KPRV and MMT and also our work discussed in Chapter 3.

The crucial role played by the Hamilton flow also suggests a natural regularity threshold

to aim for in the study of the local well-posedness of the above system; namely s > d
2
+ 2.

From the perspective of Sobolev embeddings, this ensures that for (1.2.1) the metric g has at

least C2 regularity, which in particular ensures the Hamilton flow for the principal operator

∂jg
jk∂k is locally well-defined. This is important for making sense of the Mizohata condition

mentioned above. The following theorem, which is the main result of our paper [128] shows

that this regularity assumption is actually sufficient for constructing solutions to (1.2.1) in

the large data regime,

Theorem 1.2.1 (P., Taylor, [128]). Let s > d
2
+ 2 and suppose that the initial data u0 ∈

l1Hs is such that g(u0) is a real, symmetric, uniformly non-degenerate, nontrapping metric.



CHAPTER 1. INTRODUCTION 10

Assume that F is smooth and vanishes at least quadratically at the origin. Then (1.2.1) is

locally well-posed in l1Hs.

Our result therefore represents a definitive improvement over the landmark results of

Kenig, Ponce, Rolvung, and Vega [84, 86, 87, 90]. A detailed overview of the proof of this

result can be found in Section 3.3. We remark that our method is very robust and also

relatively simple, as unlike in some of the above-mentioned papers, it only relies on the use

of pseudodifferential operators with classical symbols.

Finally, in Chapter 4, we turn our attention to a more specialized model quasilinear

Schrödinger equation; namely, the generalized derivative nonlinear Schrödinger equation

given by (GDNLS). The contents of this chapter are based on the preprint [129].

In stark contrast to (GDNLS), we begin by remarking that both the local and global

well-posedness theory for the semilinear equation (NLS) is by now very well understood in

many cases of interest. Indeed, if sc is the critical index, i.e., the index for which the Sobolev

norm ∥u∥Ḣsc is invariant under the scaling symmetry of (NLS), one can often establish local

well-posedness (and global well-posedness when the nonlinearity is defocusing) in Hs based

spaces when s ≥ max{0, sc}. See Tao’s book [150] for an overview of some of the results in

this direction. Like with (NLS), the (GDNLS) equations admit a one-parameter family of

scaling symmetries,

u(t, x) 7→ uλ(t, x) := λ
1
2σu(λ2t, λx), λ > 0,

which makes the critical Sobolev index sc =
1
2
− 1

2σ
. In particular, the problem is L2

x critical

when σ = 1 and subcritical when σ < 1. Moreover, (GDNLS) admits the following conserved

quantities:

M(u) =
1

2

∫
R
|u|2dx,

P (u) =
1

2
Re

∫
R
iuuxdx,

E(u) =
1

2

∫
R
|ux|2dx+

1

2(σ + 1)
Re

∫
R
i|u|2σuuxdx,

which are the mass, momentum and energy, respectively. In terms of Sobolev regularity,

these quantities correspond to L2
x, H

1
2
x and H1

x, respectively. Motivated by the conserved

energy above, a longstanding question until very recently was to understand in the case
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σ = 1 whether the equation (GDNLS) is globally well-posed in H1. This was resolved in

[10]. Global well-posedness in L2 was shown shortly after in [59]. Ultimately, the resolution of

this problem rested heavily on the fact that when σ = 1 the equation is completely integrable,

which allowed for the systematic use of methods from inverse scattering. Amusingly, until

our preprint [129], the question of whether the equation (GDNLS) is globally well-posed in

H1 was unknown for any σ ̸= 1. This is despite considerable efforts in the literature. In

fact, the main motivation for introducing (GDNLS) was to better understand the global

theory when σ = 1. It turns out that the obstructions in the case σ > 1 and σ < 1 are

essentially dual. For the case σ > 1, the nonlinearity has enough decay (and regularity) to

allow for one to obtain local H1 solutions. This can be done with a contraction argument

using a variety of now standard methods ranging from the global smoothing or maximal

function type estimates of Kenig, Ponce, and Vega or even just Strichartz estimates (after

performing a suitable gauge transformation to conjugate out the derivative nonlinearity).

On the other hand, in this case, the problem is L2 supercritical with respect to scaling.

Therefore, like in the case σ = 1 (i.e. the L2
x critical case), the energy and mass are in

general not suitably coercive to control the H1
x norm for long times. In fact, when σ > 1,

finite-time blowup is expected, but has yet to be proved. On the other hand, in the case

σ < 1, the problem is L2
x subcritical. As a result, the conserved mass and energy above

can be used to control the H1
x norm of a solution globally in time. Therefore, the crux of

the matter is in obtaining a suitable local well-posedness theory in the energy space H1
x.

However, the methods that work for this purpose in the case σ ≥ 1 completely fail here.

This is because the nonlinearity in (GDNLS) lacks the decay and regularity necessary for

implementing either global smoothing type estimates or a gauge transformation to ameliorate

the derivative nonlinearity. Nevertheless, we managed to prove the following result.

Theorem 1.2.2 (P., Taylor, [129]). Let σ ∈ (
√
3
2
, 1) and let 1 ≤ s < 4σ. Then (gDNLS) is

globally well-posed in H1(R).

When s = 1, the key idea in this theorem is to introduce a family of partial gauge

transformations adapted to each dyadic frequency scale for a suitable paralinearization of

(GDNLS). Unlike in the case σ ≥ 1, one cannot conjugate away the entire derivative non-

linearity due to the lack of decay of the coefficient |u|2σ (one would need it to be at least

integrable). However, one useful strategy is to compromise and instead try to conjugate

away only the portion of |u|2σ∂xu where the coefficient |u|2σ is “sufficiently large”. What

sufficiently large means in this context depends on the dyadic frequency localization scale

of ∂xu and on the power σ. Because we cannot conjugate away the entire nonlinearity, we
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still face some derivative loss when trying to estimate the Strichartz norms of a solution

u. However, this loss is weakened considerably because in the remaining nonlinearity, the

coefficient |u|2σ is now small and can be used to compensate for some of the loss from the

high-frequency factor ∂xu. It turns out that this is weak enough to allow us to then make

use of the maximal function estimates of Kenig, Ponce, and Vega to establish local well-

posedness. The technical restriction σ >
√
3
2

comes from suitably balancing the losses from

the partial gauge transformation (which get worse as σ gets smaller) with the gain from the

maximal function estimates. For the sake of brevity, a detailed discussion will not be given

here, but a more thorough overview can be found in Chapter 4. One nice consequence of

this result is that it validates the soliton stability results in an article by Liu, Simpson, and

Sulem [102] which were contingent on establishing H1(R) well-posedness for this problem

for a small range of σ < 1.

When σ < 1, since the nonlinearity in (GDNLS) is quite rough, one also expects an

upper bound on the scale of Sobolev spaces for which one can construct solutions. We

managed to extend the range for which globally well-posed solutions exist to s < 4σ. This is

significant, as the nonlinearity in (GDNLS) is only C1,2σ−1-Hölder continuous. Put another

way, this threshold is twice as large as the threshold one would get from a naive energy

estimate. The proof of this rests on a modulation analysis, where near the characteristic

hypersurface τ + ξ2 = 0 for the linear flow, one can use time derivatives (which in this region

act like two spatial derivatives) to measure the regularity of a solution. This explains why the

threshold of 4σ is twice the näıve threshold. Away from the characteristic set, the equation

is essentially elliptic and it is relatively straightforward to deal with the nonlinearity in this

region. Again, the reader is referred to Chapter 4 for a detailed overview.
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Chapter 2

The free boundary Euler equations

2.1 Introduction

This chapter is concerned with the contents of the preprint [75]. Here, our goal is to study

the dynamics of an inviscid fluid droplet in the absence of surface tension. At the time t, our

fluid occupies a compact, connected, but not necessarily simply connected region Ωt ⊆ Rd,

and its motion is governed by the incompressible Euler equations ∂tv + v · ∇v = −∇p− ged,

∇ · v = 0.
(2.1.1)

Here, v is the fluid velocity, p is the pressure, g ≥ 0 is the gravitational constant, and ed is the

standard vertical basis vector. In the local theory of the droplet problem, the gravity can be

freely neglected. However, it becomes important in the case of an unbounded fluid domain

and in the case of a domain with a rigid bottom, so we retain it in (2.1.1) for completeness.

An essential role in the analysis of the droplet problem is played by the vector field

Dt := ∂t + v · ∇,

which is called the material derivative and describes the particle trajectories. On the free

boundary, we require the kinematic boundary condition

Dt is tangent to
⋃
t

{t} × ∂Ωt ⊆ Rd+1, (2.1.2)

which says that the domain Ωt is transported along the material derivative (or equivalently,

the particle trajectories), and that the normal velocity of Γt := ∂Ωt is given by v · nΓt .
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Additionally, we require the dynamic boundary condition

p|Γt = 0, (2.1.3)

which represents the balance of forces at the fluid interface in the absence of surface tension.

Using the above boundary conditions, it is easy to see that the energy

E :=

∫
Ωt

(
|v|2

2
+ gx · ed

)
dx

is formally conserved. Throughout the chapter, we will refer to the system (2.1.1)-(2.1.3) as

the free boundary (incompressible) Euler equations.

As is the case with all Euler flows, an important role in the above evolution is played by

the vorticity, ω, defined by

ωij = ∂ivj − ∂jvi.

By taking the curl of (2.1.1), the vorticity is easily seen to solve the following transport

equation along the flow:

Dtω = −(∇v)∗ω − ω∇v. (2.1.4)

If initially ω = 0, then (2.1.4) guarantees that this condition is propagated dynamically. Such

velocity fields are called irrotational, and the corresponding solutions to the free boundary

incompressible Euler equations are called water waves.

By taking the divergence of (2.1.1), we obtain the following Laplace equation for the

pressure:  ∆p = −tr(∇v)2 in Ωt,

p = 0 on Γt.
(2.1.5)

For regular enough v on sufficiently regular Ωt, the equation (2.1.5) uniquely determines the

pressure from the velocity and domain. A key role in the study of the free boundary Euler

equations is played by the Taylor coefficient, a, which is defined on the boundary Γt by

a := −∇p · nΓt . (2.1.6)

Indeed, a classical result of Ebin [40] asserts that the free boundary Euler equations are

ill-posed unless a ≥ 0. For this reason, we will always assume that the initial data for the

free boundary Euler equations verifies the following:
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Taylor sign condition. There is a c0 > 0 such that a0 := −∇p0 · nΓ0 > c0 on Γ0.

For irrotational data on compact simply connected domains, the Taylor sign condition

is automatic by the strong maximum principle [101]. See also [69, 159] for similar results

on unbounded domains when g > 0. Geometrically, enforcing a0 > 0 ensures that the ini-

tial pressure p0 is a non-degenerate defining function for the initial boundary hypersurface

Γ0, and thus can be used to describe the regularity of the boundary. As part of our well-

posedness theorem below, we prove that the Taylor sign condition is propagated by the flow

on some non-trivial time interval.

Another important role in this chapter is played by the material derivative of the Taylor

coefficient, Dta, which turns out to be closely related to (a derivative of) the normal com-

ponent of the velocity v · nΓt . We will elaborate further on this relation shortly when we

discuss our choice of control parameters and good variables.

The Cauchy problem: scaling, Sobolev spaces and control

parameters

A state for the free boundary Euler equations consists of a domain Ω and a velocity field v

on Ω. A bounded connected domain Ω can be equally described by its boundary Γ. Hence,

in the sequel, by a state we mean a pair (v,Γ).

Describing the time evolution of (v,Γ) along the free boundary incompressible Euler

flow is most naturally done in a functional setting described via appropriate Sobolev norms.

To understand the proper setting, it is very helpful to consider the scaling properties of our

problem. The boundaryless incompressible Euler flow admits a two parameter scaling group.

However, when considering the free boundary flow there is an additional constraint; namely,

that the pointwise property a ≈ 1 rests unchanged. At a technical level, this is reflected in

the fact that the Taylor coefficient appears as a weight in the Sobolev norms which are used

on Γ. Imposing this constraint leaves us with a one parameter family of scaling laws, which

have the form

vλ(t, x) = λ−
1
2v
(
λ

1
2 t, λx

)
,

pλ(t, x) = λ−1p
(
λ

1
2 t, λx

)
,

(Γλ)t = {λ−1x : x ∈ Γ
λ

1
2 t
}.
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As noted earlier, the above transformations have the property that the Taylor coefficient has

the dimensionless scaling,

aλ(t, x) = a
(
λ

1
2 t, λx

)
.

A first benefit we derive from the scaling law is to understand what are the matched Sobolev

regularities for v and Γ. This leads us to the following definition.

Definition 2.1.1 (State space). The state space Hs is the set of all pairs (v,Γ) such that Γ

is the boundary of a bounded, connected domain Ω and such that the following properties

are satisfied:

(i) (Regularity). v ∈ Hs
div(Ω) and Γ ∈ Hs, where Hs

div(Ω) denotes the space of divergence

free vector fields in Hs(Ω).

(ii) (Taylor sign condition). a := −∇p · nΓ > c0 > 0, where c0 may depend on the choice

of (v,Γ), and the pressure p is obtained from (v,Γ) by solving the elliptic equation

(2.1.5) associated to (2.1.1) and (2.1.3).

For states (v,Γ) as above, we define their size by

∥(v,Γ)∥2Hs := ∥Γ∥2Hs + ∥v∥2Hs(Ω).

Note, however, that Hs is not a linear space, so ∥·∥Hs does not induce a norm topology in the

usual sense. Heuristically, the state space Hs may be thought of as an infinite dimensional

manifold, though a precise interpretation of this is beyond the scope of this thesis. For

our purposes, it suffices to define a consistent notion of topology on Hs. Although we will

not describe the precise topology in the introduction, this topology will allow us to define

the space C([0, T ];Hs) of continuous functions with values in Hs, as well as an appropriate

notion of Hs continuity of the data-to-solution map (v0,Γ0) 7→ (v(t),Γt). Armed with these

notions, it makes sense to talk about the Cauchy problem.

Problem 2.1.2 (Cauchy problem for the free boundary Euler equations). Given an initial

state (v0,Γ0) ∈ Hs, find the unique solution (v,Γ) ∈ C([0, T ];Hs) in some time interval

[0, T ].

A natural question to ask is what are the exponents s for which the Cauchy problem is

well-posed in Hs. Our first clue in this direction comes from scaling, which leads us to the

critical exponent

sc =
d+ 1

2
,
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and implicitly the lower bound s ≥ sc. However, this does not tell the entire story, as even

in the boundaryless case a result of Bourgain-Li [17] shows that well-posedness holds only

in the more restricted range

s >
d

2
+ 1,

which is heuristically connected to another scaling law of the boundaryless problem; namely,

v(t, x) 7→ λ−1v(t, λx).

This latter exponent range s > d
2
+1 is exactly what we consider in our work. Specifically, in

this chapter we solve the Cauchy problem for the free boundary incompressible Euler equa-

tions at the same regularity level as the incompressible Euler equations on a fixed domain.

The reader who is more familiar with the boundaryless case may ask at this point why we

confine ourselves to L2 based Sobolev spaces, instead of using the full range of indices Lp as in

the boundaryless case. The reason for this is precisely the boundary, where a portion of the

dynamics is concentrated. In particular, as a subset of our problem we have the irrotational

case ω = 0, when the flow may be fully interpreted as the flow of the free boundary. This case,

commonly identified as water waves, yields a dispersive flow, where Lp based Sobolev spaces

are disallowed if p ̸= 2. This is not to say that exponents p ̸= 2 do not play a central role

in our analysis. Instead, we use them, particularly the case p = ∞, in the definition of our

control parameters, which control the size and growth of our energy functionals. Precisely,

our analysis involves two such control parameters, which ideally should be appropriately

scale invariant, as follows:

(i) An “elliptic” control parameter A♯, used to control implicit constants in fixed time

elliptic estimates, given by

A♯ = ∥v∥
Ċ

1
2 (Ω)

+ ∥Γ∥Lip, (2.1.7)

which is exactly invariant under scaling.

(ii) A “dynamical” control parameter B♯, used to control the growth of energy in time,

given by

B♯ = ∥v∥Lip(Ω) + ∥Γ∥
Ċ1, 12

. (2.1.8)

This latter control parameter is 1/2 derivatives above scaling, and instead the scale

invariant quantity is ∥B♯∥L1
t
, which is what will actually appear in our continuation

criterion later on.
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With these control parameters in hand, we would like to have energy estimates in the

scale invariant form
d

dt
Ek(v,Γ) ≲A♯ B♯Ek(v,Γ), (2.1.9)

where Ek denotes a suitable energy at the Hk regularity. As noted earlier, these are our

ideal choices, but for our results we need to make some small adjustments and relax them a

bit, as follows:

a) Working with A♯ would require edge case elliptic estimates in Lipschitz domains, bring-

ing forth a broad host of issues which are less central to our problem, if even possible

to overcome. So, instead, we will simply add ε derivatives to the norms in A♯.

b) In the case of B♯, we do not want to lose the sharp scaling, which is exactly as in

the Beale-Kato-Majda criteria in the boundaryless case. Therefore, we do not want to

add extra derivatives as we did with A♯. However, as we shall soon see, the quantity

∥Dta∥L∞(Γ) appears as a control parameter in the L2 estimate for the linearized equa-

tion. As it turns out, in order to propagate our low regularity difference bounds, control

of ∥Dta∥L∞(Γ) will be needed. However, for the energy estimates, a careful analysis will

show that the control parameter B♯ is sufficient, if we slightly modify the form of the

estimate (2.1.9). In both cases, maintaining the sharp top order control parameter is

non-trivial. In the difference estimates, it requires a careful analysis on intersections

of domains (and hence, in particular, performing elliptic theory on Lipschitz domains)

and in the energy estimates it requires (amongst several other things) finding a way

to appropriately absorb the logarithmic divergences occurring in the endpoint elliptic

estimates when attempting to control ∥Dta∥L∞(Γ) by B
♯. To deal with this latter issue,

we will take some inspiration from the proof of Beale-Kato-Majda [11].

The issues mentioned above have well-known counterparts in the boundaryless Euler flow.

In fact, strong ill-posedness of the boundaryless Euler equations has been recently proven in

the “ideal” pointwise spaces C1 and Lip [18, 41].

Historical comments

The local well-posedness problem for the free boundary Euler equations has a long history.

For irrotational flows, the first rigorous local existence result in Sobolev spaces was obtained

by Wu [159, 160], in the late 1990s. Since then, various methods have been introduced to
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shorten the proofs, lower the regularity threshold and allow for more complicated geome-

tries. For a small sample of such results we cite Beyer and Günther in [12], Lannes in [95],

Alazard, Burq and Zuily in [6, 5], Hunter, Ifrim and Tataru in [69], Ai in [2, 3] and Ai, Ifrim

and Tataru in [4]. Although physically restrictive, the irrotationality assumption allows one

to reduce the dynamics to a system of equations on the free boundary. Depending on the

choices made, this typically culminates in either the Zakharov-Craig-Sulem formulation of

the water waves problem used in [2, 3, 6, 5, 95], or the holomorphic coordinates formulation

used in [4, 69]. In either case, the reduction to a system of equations on Rd−1 greatly sim-

plifies the analysis.

For the free boundary Euler equations with non-trivial vorticity, certain generalized sys-

tems based on the above irrotational reductions have been proposed [20, 163]. However,

historically, the most successful approach has been to use Lagrangian coordinates to fix the

domain. For an execution of this approach to proving local existence, the reader may con-

sult the papers of Christodoulou and Lindblad [28], Coutand and Shkoller [32] and Lindblad

[101]. One may also compare with the article [93] of Kukavica and Tuffaha, which uses

the so-called arbitrary Lagrangian-Eulerian change of variables, as well as the more recent

advances in the Lagrangian analysis presented in [9, 37].

In contrast to the above articles, we will utilize a fully Eulerian strategy to prove the local

well-posedness of the free boundary Euler equations. In other words, we will work directly

with the physical equations (2.1.1)-(2.1.3), and avoid the use of any non-trivial coordinates

changes. On time-independent domains, both the Lagrangian and Eulerian approaches have

been widely successful in analyzing fluid equations. However, for free boundary problems,

the Eulerian approach has seen relatively little attention, due to the obvious difficulty in

having the domain of the fluid itself serve as a time-dependent unknown. Our aim in this

chapter is to directly confront this issue. Corollaries of our newly obtained insights include:

(i) The first proof of the continuity of the data-to-solution map for this problem.

(ii) An enhanced uniqueness result, requiring only pointwise norms of very limited regu-

larity.

(iii) Refined low regularity energy estimates with geometrically natural pointwise control

parameters.

(iv) A new, direct proof of existence for regular solutions.
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(v) A method to obtain rough solutions as unique limits of regular solutions at a Sobolev

regularity that matches the optimal result for the Euler equations on Rd.

(vi) An essentially scale invariant continuation criterion akin to that of Beale-Kato-Majda

for the incompressible Euler equations on the whole space.

We will elaborate further on the ideas for obtaining the above results in Section 2.1. For

now, it is important to note that we are not the first to utilize an Eulerian approach to

analyze the well-posedness of fluid equations in the free boundary setting. The pioneering

work in this regard is the remarkable series of papers by Shatah and Zeng [140, 139, 141].

However, Shatah and Zeng primarily consider the free boundary Euler equations with surface

tension. While they are able to produce a solution to the pure gravity problem in the zero

surface tension limit, it seems that their construction at least requires bounded curvature,

which corresponds to greater regularity assumptions on the data than we need here. For

this reason, the overlap between their analysis and ours tends to be on a more philosophical

level, which we will elaborate on further in Section 2.1. A more direct comparison is with

the memoir [157] of Wang, Zhang, Zhao and Zheng. In [157], the authors construct solutions

to the free boundary Euler equations in an unbounded graph domain at the same Sobolev

regularity that we achieve here. That is, they prove existence and uniqueness of solutions

in Hs for s > d
2
+ 1. The approach in [157] is in the style of Alazard, Burq and Zuily [6, 5],

though the addition of vorticity makes the execution much more technical. Our approach

is completely different to the one that they follow and works well in more complicated fluid

domains. Additionally, we prove properties (i)-(vi) above. We also remark that all other

fully Eulerian approaches (see, e.g., [111, 110, 112]) follow Shatah and Zeng, and hence re-

quire the regularizing effect of surface tension and higher regularity. The one step towards

a fully Eulerian proof without surface tension is the work [134] of de Poyferré, who proves

energy estimates for the pure gravity shoreline problem. However, the energy estimates in

[134] have Hs based control norms and no well-posedness proof is presented.

The goal of this thesis is twofold. First, we intend to present a comprehensive, Hadamard

style well-posedness theory, with an aim towards proving sharp results. At the same time,

we provide a novel, geometric analysis, which we argue is more direct and streamlined than

previous works. For instance, our proofs do not require paralinearization or Chemin-Lerner

spaces as in [157]. Moreover, our existence scheme is new and direct - it does not use Nash-

Moser, the approach in [157], or go through the zero surface tension limit as in [140, 139,

141]. For this reason, we believe that the techniques introduced in this thesis will have a
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wide range of applicability.

Finally, we mention that the analysis we present here is for the case of a compact fluid

domain. In the study of the free boundary Euler equations, it is also common to consider

the case of an infinite ocean of either finite or infinite depth. The choice of compact fluid

domain emphasizes the geometric nature of our problem, and removes the temptation to

flatten the domain into a strip or a half-space. Although some changes need to be made, as

with the analysis of the capillary problem [140, 139, 141] by Shatah and Zeng, the general

strategy we use here can be adapted to all three geometries. That being said, to streamline

the exposition, we do allow some of our estimates to depend on the domain volume, which

is a conserved quantity for the droplet problem.

An overview of the main results

In a nutshell, our main result asserts that the free boundary incompressible Euler equations

are well-posed in Hs for s > d
2
+ 1. However, simply stating this fails to convey the full

strength of both the result and of its various aspects and consequences. Instead, it is more

revealing to divide the result in a modular way into four independently interesting parts;

namely, (a) uniqueness and stability, (b) well-posedness, (c) energy estimates and (d) the

continuation criteria.

To set the stage for our results, let Ω∗ be a bounded, connected domain with smooth

boundary Γ∗. Given ε, δ > 0, consider the collar neighborhood Λ∗ := Λ(Γ∗, ε, δ) consisting

of all hypersurfaces Γ which are δ-close to Γ∗ in the C1,ε topology. As long as δ > 0 is small

enough, hypersurfaces in Λ∗ can be written as graphs over Γ∗. This permits us to define

Sobolev and Hölder norms on these hypersurfaces in a consistent fashion. To state our

results, we will assume that a collar neighborhood Λ∗ has been fixed, and consider solutions

with initial data (v0,Γ0) having Γ0 ∈ Λ∗. A more precise description of the functional setting

will be given later, in Section 2.3. For now, we remark that, while the collar neighborhood is

very useful in order to uniformly define the Hs norms, it is not needed at all for the definition

of our control parameters.
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Uniqueness and stability

We start by stating our uniqueness result, which requires the least in terms of notations and

preliminaries. Here, of crucial importance are the control parameters

A := Aε := ∥v∥
C

1
2+ε
x (Ωt)

+ ∥Γt∥C1,ε
x
, ε > 0, (2.1.10)

and

Bdiff := ∥v∥W 1,∞
x (Ωt)

+ ∥Dtp∥W 1,∞
x (Ωt)

+ ∥Γt∥
C

1, 12
x

, (2.1.11)

which represent slight adjustments of the ideal control parameters A♯ and B♯, as discussed

earlier. Using these control parameters, our main uniqueness result is as follows:

Theorem 2.1.3 (Uniqueness). Let ε, T > 0 and let Ω0 be a domain with boundary Γ0

of C1, 1
2 regularity. Then for every divergence free initial data v0 ∈ W 1,∞(Ω0), the free

boundary Euler equations with the Taylor sign condition admit at most one solution (v,Γt)

with Γt ∈ Λ∗ and

sup
0≤t≤T

Aε(t) +

∫ T

0

Bdiff(t) dt <∞.

To the best of our knowledge, Theorem 2.1.3 is the first uniqueness result for the free

boundary Euler equations which involves only low regularity pointwise norms. Indeed, as

far as we are aware, all other papers on this subject are content to prove uniqueness in the

same class of Hs spaces for which they prove existence.

While uniqueness is a fundamental property in its own right, in our work it can be seen

as a corollary of a far more useful stability result, which we now explain. Let (v,Γt) and

(vh,Γt,h) be two solutions to the free boundary Euler equations with corresponding domains

Ωt and Ωt,h. An obvious objective is to show that if (v,Γt) and (vh,Γt,h) are “close” at time

zero, then they remain close on a suitable timescale. However, since the domains Ωt and

Ωt,h are evolving in time, we cannot compare the solutions (v,Γt) and (vh,Γt,h) in a linear

way. To resolve this issue, we construct a nonlinear functional which quantifies the distance

between solutions and is propagated by the flow.

To avoid comparing solutions whose corresponding domains are very different, we harm-

lessly restrict ourselves to solutions (v,Γt) and (vh,Γt,h) evolving in the same collar neigh-

borhood Λ∗. For such solutions we define the nonlinear distance functional

D((v,Γ), (vh,Γh)) :=
1

2

∫
Ω̃t

|v − vh|2dx+
1

2

∫
Γ̃t

b|p− ph|2 dS. (2.1.12)
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Here, p and ph are the pressures, Γ̃t is the boundary of Ω̃t := Ωt ∩ Ωt,h and b is a suitable

weight function. Morally speaking, the first term on the right-hand side of (2.1.12) measures

the L2 distance between v and vh. On the other hand, by the Taylor sign condition, p and ph

are non-degenerate defining functions for Γt and Γt,h, so the second term on the right-hand

side of (2.1.12) gives a measure of the distance between Γt and Γt,h. In Section 2.4, we

prove that (2.1.12) does indeed act as a proper measure of distance between solutions. More

crucially, we prove that this distance is propagated by the flow, in the sense that

d

dt
D((v,Γ), (vh,Γh)) ≲A,Ah

(Bdiff +Bdiff,h)D((v,Γ), (vh,Γh)). (2.1.13)

Here, Ah and Bdiff,h are the control parameters (2.1.10) and (2.1.11) corresponding to the

solution (vh,Γt,h). An immediate corollary of the stability estimate (2.1.13) is the afore-

mentioned Theorem 2.1.3. However, (2.1.13) will also prove to be useful in various other

scenarios. For example, we will use it in our proof of the continuity of the data-to-solution

map, as well as in the construction of rough solutions as unique limits of regular solutions.

Well-posedness

Our second main result is concerned with the well-posedness problem. To fix the notations,

we start with a collar neighborhood Λ∗ and s > d
2
+ 1. We then consider initial data

(v0,Γ0) ∈ Hs with Γ0 ∈ Λ∗. Viewing Γ0 as a graph over Γ∗, we may unambiguously define

its Hs norm. With this setup, we may state our well-posedness theorem as follows:

Theorem 2.1.4 (Hadamard local well-posedness). Fix s > d
2
+ 1 and a collar Λ∗. For any

(v0,Γ0) in Hs with Γ0 ∈ Λ∗ there exists a time T > 0, depending only on ∥(v0,Γ0)∥Hs

and the lower bound in the Taylor sign condition, for which there exists a unique solution

(v(t),Γt) ∈ C([0, T ];Hs) to the free boundary Euler equations satisfying a proportional

uniform lower bound in the Taylor sign condition. Moreover, the data-to-solution map is

continuous with respect to the Hs topology.

The regularity of the velocity in Theorem 2.1.4 matches the optimal Sobolev regularity

for the Euler equations on Rd. Indeed, as shown by Bourgain and Li [17], the Euler equations

are ill-posed in Hs(Rd) when s = d
2
+ 1.

We note crucially that our work is not the first to reach the s > d
2
+ 1 Sobolev thresh-

old for the free boundary Euler equations. Indeed, this threshold was achieved for the first
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time in the recent memoir [157], in the case of an unbounded fluid domain with graph ge-

ometry. However, it is important to note that the approach in [157] is very different from

ours, as it passes through a paralinearization and utilizes properties of strip-like domains

and Chemin-Lerner spaces. In particular, the approach in [157] cannot be easily modified

to the droplet problem, whereas our approach applies equally well in unbounded domains.

Moreover, there is no mention of the continuity of the data-to-solution map in [157]. To

the best of our knowledge, Theorem 2.1.4 gives the first proof of this important property

for the free boundary Euler equations. In addition, our approach significantly refines the

well-posedness theory by adding properties (ii)-(vi) above as well as introduces an entirely

new set of techniques that we believe will have broad applications.

When it comes to free boundary problems, the continuity of the data-to-solution map

– if justified – is usually proven by reformulating the problem on a fixed domain and then

working with the standard notion of continuous dependence on fixed domains. As far as we

are aware, the only exception to this appears in the work [140, 139, 141] of Shatah and Zeng,

where continuous dependence is proven for the free boundary Euler equations with surface

tension directly in the Eulerian setting. The drawback of Shatah and Zeng’s proof, however,

is that it relies crucially on the regularizing effect of surface tension, so is not applicable

to the pure gravity problem. In particular, Shatah and Zeng do not construct a distance

functional, as we do here. For this reason, our robust proof which simultaneously avoids

domain flattenings and works on a quasilinear problem without regularizing effects can be

seen as one of the main novelties of our result.

Energy estimates

Controlling the growth of solutions to our boundary value problem is essential for both lo-

cal well-posedness and understanding potential blowup. This control is achieved via energy

estimates. Due to the complex geometry of our problem, the first challenge is to construct

good energy functionals.

Fix an integer k ≥ 0. In light of Theorem 2.1.3 and the stability estimate (2.1.13), it

is natural to try to construct an energy functional Ek = Ek(v,Γ) satisfying Ek(v,Γ) ≈A

∥(v,Γ)∥2
Hk and the estimate

d

dt
Ek(v,Γ) ≲A BdiffE

k(v,Γ).
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Indeed, by Grönwall’s inequality, this would yield the bound

∥(v,Γ)(t)∥2Hk ≲ exp

(∫ t

0

CABdiff(s) ds

)
∥(v,Γ)(0)∥2Hk ,

for some constant CA depending only on A, the collar, and the verification of the Taylor sign

condition. Morally speaking, such an estimate would then allow one to conclude that solu-

tions to the free boundary Euler equations with the Taylor sign condition can be continued

as long A remains bounded and Bdiff ∈ L1
t .

However, there is one issue with the above estimates. Note that the control parameter

A in (2.1.10) depends only on the Hölder norms of our main variables (the surface and

the velocity) at (nearly) the correct scale. However, the control parameter Bdiff in (2.1.11)

depends also on the auxiliary variable Dtp. From the point of view of the analysis of the

free boundary Euler equations, this is completely natural. Indeed, even at the level of the

linearized equation, one sees that the uniform norm of∇Dtp (or more specifically the uniform

norm of Dta, but these are essentially equivalent) appears as a control parameter for the L2

energy estimates in Proposition 2.2.2. On the other hand, for the purpose of providing a

clear and physical description of how solutions to the free boundary Euler equations break

down, we would ultimately like to use the control parameter B := B♯ defined in (2.1.8),

which depends only on the Hölder norms of Γ and v. To achieve this, our key observation

is that, as long as k > d
2
+ 1, we can use a log of the energy to absorb endpoint losses, and

hence prove an estimate of the form

∥Dtp∥W 1,∞
x (Ωt)

≲A log(1 + Ek)B. (2.1.14)

An estimate akin to (2.1.14) is not to be expected in the difference estimates, as the distance

functional is too low of regularity to absorb the logarithmic divergences inevitably arising

from C1 and W 1,∞ elliptic estimates. With the above discussion in mind, the actual energy

estimates we prove can be essentially stated as follows.

Theorem 2.1.5 (Energy estimates). Fix a collar neighborhood Λ∗, let s ∈ R with s > d
2
+1

and let k > d
2
+1 be an integer. Then for Γ restricted to Λ∗ there exists an energy functional

Hk ∋ (v,Γ) 7→ Ek(v,Γ) such that

(i) (Energy coercivity).

Ek(v,Γ) ≈A ∥(v,Γ)∥2Hk . (2.1.15)
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(ii) (Energy propagation). If, in addition to the above, (v,Γ) = (v(t),Γt) is a solution to

the free boundary incompressible Euler equations, then Ek(t) := Ek(v(t),Γt) satisfies

d

dt
Ek ≲A B log(1 + ∥(v,Γ)∥Hs)Ek. (2.1.16)

Here, A is as in (2.1.10) and B = B♯.

By Grönwall’s inequality, (2.1.15) and (2.1.16) yield the following single and double

exponential bounds of the type

∥(v(t),Γt)∥2Hk ≲A exp

(∫ t

0

CAB log(1 + ∥(v,Γ)∥Hs)ds

)
∥(v0,Γ0)∥2Hk ,

∥(v(t),Γt)∥2Hk ≲A exp

(
log(1 + CA∥(v0,Γ0)∥2Hk) exp

∫ t

0

CAB ds

)
,

(2.1.17)

for all integers k > d
2
+ 1. We do not directly prove the analogue of Theorem 2.1.5 for

noninteger exponents k. Nevertheless, as a consequence of our analysis in the last section

of the chapter, we do obtain the bounds (2.1.17) also for noninteger k. This is achieved

by using frequency envelopes in order to combine the distance functional and the energy

estimates akin to a nonlinear Littlewood-Paley type theory. It is also worth noting that a

similar double exponential growth rate for the L1
TL

∞
x norm of the vorticity appears in the

classical Beale-Kato-Majda [11] criteria as a consequence of trying to weaken the natural

control parameters of the problem.

In order to understand the form of the energy functionals used in Theorem 2.1.5, a key

step is to identify Alinhac style good variables for the problem, which are as follows:

(i) The vorticity ω, which is measured in Hk−1(Ω).

(ii) The Taylor coefficient a, which is measured in Hk−1(Γ).

(iii) The material derivative Dta of the Taylor coefficient, which is measured in Hk− 3
2 (Γ).

Our energy functionals are constructed as certain combinations of well-chosen norms of

the above good variables. The general strategy for constructing these norms is to apply

appropriate vector fields and elliptic operators to ω, a and Dta at the Hk regularity in such

a way that the resulting variables solve the linearized equation to leading order. After this,

the nonlinear energy Ek may be essentially defined as the linear energy evaluated at these
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good variables. As it turns out, after completing this process, we arrived at essentially the

same energy as [134], which was derived by different means. However, as can be immediately

inferred from our control norms, the way we treat the energy is very different from [134].

Indeed, without going into details, we mention that the proof of Theorem 2.1.5 requires not

only a delicate analysis of the fine structure and cancellations present in the free boundary

Euler equations, but also the use of a new family of refined elliptic estimates. Although

we refrain from stating them here in the introduction, these elliptic estimates serve as an

important part of the chapter. Moreover, since they are quite general, we believe that they

will prove to be useful in other problems as well.

Low regularity continuation criterion

A very natural objective in the study of the Euler equations is to find a geometric charac-

terization of how solutions break down. For the Euler equations without free boundary, this

direction traces back to the famous paper of Beale, Kato and Majda [11]. In recent years, in-

terest in sharp blow up criterion for the free boundary Euler equations has risen, and progress

has been made by de Poyferré [35], Ginsberg [48], Wang and Zhang [156] and Wang, Zhang,

Zhao and Zheng [157]. Here, we explain our rather definitive answer to this question, which is

essentially a consequence of our local well-posedness result in Theorem 2.1.4 and the energy

estimates in Theorem 2.1.5. However, to avoid topological issues, we must first introduce a

notion of thickness for the fluid domain.

Definition 2.1.6. The fluid domain Ω has thickness at least R > 0 if for each x ∈ Γ,

B(x,R) ∩ Γ is the graph of a C1,ε function which separates B(x,R) into two connected

components.

With this notion in hand, our continuation criterion reads as follows:

Theorem 2.1.7 (Continuation criterion). A solution (v,Γ) ∈ C(Hs), s > d
2
+ 1, of the free

boundary incompressible Euler equations with the Taylor sign condition can be continued

for as long as the following properties hold:

a) (Uniform bound from below for the Taylor coefficient). There is a c > 0 such that

a ≥ c > 0.

b) (Uniform thickness). There is an R > 0 such that Ωt has thickness at least R.
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c) (Control parameter bounds). The control parameters satisfy

A ∈ L∞
t , B ∈ L1

t .

One may compare our continuation criteria for the free boundary problem with the

classical Beale-Kato-Majda criteria for the boundaryless problem and note that they are es-

sentially at the same level, with the natural addition of the C1, 1
2 boundary regularity bound.

Another minor difference is that we use the Lipschitz bound on the velocity v rather than

the uniform bound on the vorticity ω. One may ask whether it is possible to further relax

our criterion in order to use only the vorticity bound. The major obstruction is that while

in fixed domains the vorticity uniquely determines the velocity, in our case an appropriate

boundary condition is also needed, which is best described via the Dta good variable. So, a

potential conjecture might be that in order to use only the vorticity bound in the interior,

one might have to compensate by adding a uniform bound on Dta, as seen in the linear

control parameter Blin and in the difference estimates. That being said, in this thesis we

have opted for a continuation criteria involving only the natural variables v and Γ and no

auxiliary pressure related terms.

As mentioned above, several recent articles [35, 48, 156, 157] have focused on obtaining

improved continuation criterion for the free boundary Euler equations. The most significant

of these contributions is the memoir [157], which proves that Hk solutions to the free bound-

ary Euler equations with the Taylor sign condition can be continued after t = T as long as

properties a) and b) in Theorem 2.1.7 hold and

sup
t∈[0,T ]

(
∥κ(t)∥(Lp∩L2)(Γt) + ∥v(t)∥W 1,∞(Ωt)

)
<∞ for some p > 2d− 2. (2.1.18)

Here, κ denotes the mean curvature of the surface. To motivate their result, [157] recalls

a question of Craig and Wayne [92], which asks one to find (in the context of the irrota-

tional water waves problem) the lowest Hölder regularity of the surface and velocity potential

whose boundedness on [0, T ] implies that one can continue the solution past t = T . Although

(2.1.18) makes significant progress on this question, it fails to achieve purely pointwise norms

and is far from scale invariant. Moreover, the criterion (2.1.18) only applies to solutions which

a priori live in integer based Sobolev spaces Hk. This limits the applicability of (2.1.18) to

solutions with at least a half derivative of excess regularity. In contrast, Theorem 2.1.7 re-

places the criterion v ∈ L∞
T W

1,∞
x by the sharp and scale invariant criterion v ∈ L1

TW
1,∞
x , and

only requires control of Hölder norms of the free surface at the correct scale. In particular,
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Theorem 2.1.7 gives a rather definitive answer to Craig and Wayne’s question for the full

free boundary Euler equations. For the state-of-the-art result for the two-dimensional irro-

tational water waves problem, see [4]. Also, note that Theorem 2.1.7 applies to solutions in

all Sobolev spaces Hs with s > d
2
+ 1, not just to those in integer spaces. This improvement

is by no means trivial; rather, it follows from a careful usage of our distance functional.

Outline of the chapter

This chapter has a modular structure, where, for the essential part, only the main results of

each section are used later.

The linearized equations

The starting point for our analysis, in Section 2.2, is to derive the linearization of our problem

in Eulerian coordinates. The linearized system will serve as a guide to several of the choices

made in our nonlinear analysis. In particular, it will suggest the correct variables to use, as

well as the form of our distance functional. Moreover, when proving energy estimates, the

Alinhac style good variables we construct will be shown to solve the linearized equations to

leading order. This is also where the control parameters A and Blin (an enhanced version of

B) make their first appearance.

Function spaces and the geometry of moving domains

Section 2.3 describes the appropriate functional setting for our analysis. We begin by setting

up a basic framework for our problem, including introducing low regularity control neighbor-

hoods which will allow us to establish uniform control over constants in Sobolev and elliptic

estimates in certain topologies for an appropriate family of domains. After defining the

function spaces and norms that we will be using, we define the state space Hs where we will

seek solutions to the free boundary Euler equations. Unlike in problems on fixed domains,

the state space Hs will not be linear. However, it will be equipped with an appropriate

notion of convergence, allowing us to define continuity of functions with values in Hs as well

continuity of the data-to-solution map.
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Stability estimates and uniqueness

The aim of Section 2.4 is to construct a nonlinear distance functional which will allow us to

track the distance between two solutions at very low regularity. The general scheme is akin

to the difference bounds in a weaker topology which are common in the study of quasilinear

problems on fixed domains. However, here there are fundamental difficulties to overcome, as

we are seeking to not only compare functions on different domains, but also track the evolu-

tion in time of this distance. These difficulties are embedded into the nonlinear character of

our distance functional; both careful choices and delicate estimates are required to propagate

this distance forward in time. To the best of our knowledge, this is only the second time

difference estimates have been successfully proven in the free boundary setting. The other

successful execution, which conceptually inspired the present approach, was in the case of a

compressible gas [36, 72], which is very different from the incompressible liquid we consider

here. In particular, unlike in the gas case, the boundary of our fluid contains non-trivial

energy, requiring interesting geometric insights to understand.

As a consequence of our stability estimates, we deduce uniqueness of solutions at very low

regularity. Also, as we shall see in later sections, the low regularity distance bounds we prove

will serve both as an essential building block in our construction of rough solutions as unique

limits of regular solutions as well as in the proof of the continuity of the data-to-solution

map.

Elliptic theory

The main goal of Section 2.5 is to introduce a new family of refined elliptic estimates which

will be crucial for obtaining the sharp pointwise control norms in the higher energy bounds.

The secondary objective of Section 2.5 is to define a relevant Littlewood-Paley theory, collect

various “balanced” product, Moser and Sobolev type estimates, and note several identities

for operators and functions defined on moving domains. For the most part, the material

in Section 2.5 does not rely on any specific structure of the Euler equations, so should

be applicable to other free boundary problems as well. In Section 2.6, we construct the

regularization operators which we will need for our existence scheme and the frequency

envelopes for states (v,Γ) ∈ Hs that we will use to establish the refined properties of the

data-to-solution map.
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Energy estimates

In Section 2.7 we establish energy estimates within the Hk scale of spaces. As a first step,

we construct a coercive energy functional (v,Γ) 7→ Ek(v,Γ) associated to each integer k >
d
2
+ 1. The scheme here is to identify Alinhac style “good variables” (wk, sk) which solve

the linearized equation modulo perturbative source terms. We then define our energy as the

sum of the rotational energy and the linearized energy evaluated at these good variables. To

prove the energy estimates, we split the argument in a modular fashion into two parts. First,

we prove the coercivity of our energy functional; that is, we show that Ek(v,Γ) ≈ ∥(v,Γ)∥2
Hk .

After this, we track the time evolution of the energy, establishing control of Ek(v,Γ) in terms

of the initial data, with growth dictated by the pointwise control parameters A and B. Both

steps of this argument are delicate. In particular, the former makes extensive use of the

refined elliptic estimates from Section 2.5, and the latter requires us to identify and exploit

various structural properties and fine cancellations present in the Euler equations.

Construction of regular solutions

Section 2.8 is devoted to the construction of regular solutions to the free boundary Euler

equations. The overarching scheme we utilize is similar to [72], which analyzed the case

of a compressible gas. However, we stress that the main difficulties in the incompressible

liquid case are quite different than for the gas, especially near the free boundary, as the

surface of a liquid carries a non-trivial energy. As a general overview, the scheme we utilize

is constructive, employing a time discretization via an Euler type method together with a

separate transport step to produce good approximate solutions. However, a näıve implemen-

tation of Euler’s method loses derivatives. To overcome this, we ameliorate the derivative

loss by an initial regularization of each iterate in our discretization. To ensure that the

uniform energy bounds survive, such a regularization needs to be chosen carefully. For this,

we employ a modular approach and try to decouple this process into two steps, where we

regularize individually the domain and the velocity. We believe that this modular approach

will serve as a recipe for a new and relatively simple method for constructing solutions to

various free boundary problems. That being said, the execution of this scheme is still quite

subtle, requiring several novel ideas in addition to those coming from [72].
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Rough solutions and continuous dependence

The last section of the chapter aims to construct rough solutions as strong limits of smooth

solutions. This is achieved by considering a family of dyadic regularizations of the initial

data, which generate corresponding smooth solutions. For these smooth solutions we control

on one hand higher Sobolev norms Hk, using our energy estimates, and on the other hand

the L2 type distance between consecutive ones, from our difference estimates. Combining

the high and the low regularity bounds directly yields rapid convergence in all Hl spaces for

l < k. To gain strong convergence in Hk, we use frequency envelopes to more accurately

control both the low and the high Sobolev norms above. This allows us to bound differences

in the strong Hk topology. Interpolation and a similar argument yields local existence in

fractional Sobolev spaces as well as continuous dependence of the solutions in terms of the

initial data in the strong topology. Finally, our main continuation result in Theorem 2.1.7

follows along similar lines, given the careful treatment of our control norms in the energy

and difference estimates.

For problems on Rd, the scheme outlined above for obtaining rough solutions from smooth

solutions, good energy estimates and difference estimates is more classical; see the expository

article [71]. However, as we shall see, the fact that solutions are all defined on different

domains leads to some new subtleties in our free boundary setting.

2.2 The linearized equation

The first goal of this section is to formally derive the linearization of our problem, working

entirely in Eulerian coordinates; this is the system of equations (2.2.6). Then, we prove The-

orem 2.2.1, which asserts that the linearized system is well-posed in L2, with energy bounds

determined by our sharp control parameters. The key elements here are the linearized energy

(2.2.9) and the basic energy estimate (2.2.10).

Conceptually, the linearized system is an essential piece of the puzzle. On a practical

level, however, it is not immediately useful in proving well-posedness, as it is not clear that

C1 one parameter families of solutions exist in the first place. It is only a posteriori, after

well-posedness is established, that the linearized energy estimates may be used to derive

bounds for differences of solutions. Instead, we will use our understanding of the linearized

system to guide us in our choice of distance functional in Section 2.4 and later in our choice
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of energy functionals in Section 2.7.

To derive the linearized system, we take a one parameter family of solutions (vh, ph) de-

fined on domains Ωt,h, with (v0, p0) := (v, p) and Ωt,0 := Ωt. We define w = ∂hvh|h=0 and

q = ∂hph|h=0.

In Ωt, the linearized equation is rather standard: ∂tw + w · ∇v + v · ∇w = −∇q,

∇ · w = 0.

However, we also need to linearize the kinematic and dynamic boundary conditions on the

surface Γt. For this, let us denote by Γt,h the free surface at time t for the solution (vh, ph),

so Γt,0 := Γt. Fix a one parameter family of diffeomorphisms ϕh(t) : Γt → Γt,h, with

ϕ0(t) = IdΓt . The dynamic boundary condition (2.1.3) asserts that for every point x ∈ Γt,

ph(t, ϕh(t)(x)) = 0.

Differentiating in h and evaluating at h = 0 gives

q|Γt = −∇p|Γt · ψ(t),

where ψ(t) := ∂
∂h
ϕh(t)|h=0. Using that ∇p|Γt is normal to Γt we deduce that

q|Γt = −∇p|Γt · nΓtψ(t) · nΓt =: as. (2.2.1)

Here, we define s := ψ(t) · nΓt which we loosely interpret as the normal velocity in the pa-

rameter h of the family Γt,h at h = 0. We will use this as one of our linearized variables.

Note that since a > 0, s does not depend on the choice of diffeomorphisms ϕh(t).

Next, we linearize the kinematic boundary condition. Analogously to v · nΓt describing

the normal velocity of the free surface, we expect w · nΓt to describe the “normal velocity”

of our linearized variable s. Therefore, up to a perturbative error, Dts should agree with

w · nΓt . In fact, we obtain the relation

Dts− w · nΓt = s(nΓt · ∇v) · nΓt . (2.2.2)

To derive (2.2.2), we note that (2.1.2) and (2.1.3) imply that

Dtp = 0 on Γt. (2.2.3)
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This is the equation that we will linearize to obtain (2.2.2). As before, let ϕh(t) : Γt → Γt,h

be a diffeomorphism. We then have for x ∈ Γt,

[(∂t + vh · ∇)ph](t, ϕh(t)(x)) = 0.

Taking h derivative and evaluating at h = 0 yields,

w · ∇p+Dtq +∇Dtp · ψ = 0 on Γt. (2.2.4)

Using (2.2.1), and that ∇Dtp is normal to Γt by (2.2.3), we deduce (2.2.2) from (2.2.4)

after some simple algebraic manipulation. Indeed, we have ∇p|Γt = −anΓt . Then using the

relation q|Γt = as, we compute Dtq = aDts+ sDta. This reduces (2.2.4) to

−aw · nΓt + aDts+ sDta+ s∇Dtp · nΓt = 0. (2.2.5)

After division by a, the first two terms in (2.2.5) evidently align with the left-hand side of

(2.2.2). The right-hand side of (2.2.2) appears by commuting the gradient with the material

derivative in the last term of (2.2.5), and by using the fact that ∇p · DtnΓt = 0 to rewrite

sDta = −sDt(∇p · nΓt) = −sDt∇p · nΓt .

Putting everything together, the linearized system takes the form:
Dtw +∇q = −w · ∇v in Ωt,

∇ · w = 0 in Ωt,

Dts− w · nΓt = s(nΓt · ∇v) · nΓt on Γt,

q = as on Γt,

(2.2.6)

where the terms on the right-hand side can be viewed as perturbative source terms.

In order to study the well-posedness of the linearized system (2.2.6), we introduce an

enhanced version Blin of the control parameter B♯:

Blin(t) := ∥a−1Dta∥L∞(Γt) + ∥∇v∥L∞(Ωt). (2.2.7)

Using this, we may state our main linearized well-posedness result as follows.

Theorem 2.2.1. Let (v,Γ) be a solution to the free boundary incompressible Euler equations

in a time interval [0, T ] so that a > 0, A♯ stays uniformly bounded and Blin ∈ L1
T . Then the

linearized system (2.2.6) for (w, s) is well-posed in L2(Ω)× L2(Γ) in [0, T ].



CHAPTER 2. THE FREE BOUNDARY EULER EQUATIONS 35

Here we recall that Ω and Γ are time dependent. The rest of this section is devoted to

the proof of this very simple theorem. The basic strategy is to construct a suitable energy

functional and prove corresponding energy estimates. Once this is done, well-posedness fol-

lows via a standard duality argument, which is left for the reader. To execute this argument,

one simply notes that the adjoint system is essentially identical to the direct system (2.2.6),

modulo perturbative terms, and that the energy estimates are time reversible.

Below, we will work with a slightly more general system, since this is what will appear

in the higher order energy bounds later on. We define the generalized linearized system as

follows: 
Dtw +∇q = f in Ωt,

∇ · w = 0 in Ωt,

Dts− w · nΓt = g on Γt,

q = as on Γt,

(2.2.8)

where we allow for arbitrary source terms f and g on the right-hand side of the first and

third equation.

It remains to prove a suitable energy estimate for the system (2.2.8). The natural energy

associated to this system is

Elin(w, s)(t) =
1

2

∫
Ωt

|w|2 dx+ 1

2

∫
Γt

as2 dS. (2.2.9)

Using (2.2.9), the main energy estimate for the generalized linear system is as follows:

Proposition 2.2.2. Suppose a > 0. Then the system (2.2.8) satisfies the energy estimate

d

dt
Elin(w, s)(t) ≤ BlinElin(w, s)(t) + ⟨as, g⟩L2(Γt) + ⟨w, f⟩L2(Ωt). (2.2.10)

We note that the energy functional (2.2.9) is also the energy functional for the linearized

system (2.2.6), and that this proposition yields energy estimates for (2.2.6), thereby con-

cluding the proof of Theorem 2.2.1.

Proof. We will make use of the following standard Leibniz type formulas (see; for example,

[39, Appendix A]).



CHAPTER 2. THE FREE BOUNDARY EULER EQUATIONS 36

Proposition 2.2.3. (i) Assume that the time-dependent domain Ωt flows with Lipschitz

velocity v. Then the time derivative of the time-dependent volume integral is given by

d

dt

∫
Ωt

f(t, x) dx =

∫
Ωt

Dtf + f∇ · v dx.

(ii) Assume that the time-dependent hypersurface Γt flows with divergence free velocity v.

Then the time derivative of the time-dependent surface integral is given by

d

dt

∫
Γt

f(t, x) dS =

∫
Γt

Dtf − f(nΓt · ∇v) · nΓt dS.

Now, to prove the energy estimate (2.2.10), we apply Proposition 2.2.3 to obtain

d

dt
Elin(w, s)(t) =

∫
Ωt

Dtw · w dx+
∫
Γt

asDts dS +
1

2

∫
Γt

Dtas
2 dS

− 1

2

∫
Γt

[nΓt · ∇v · nΓt ]as
2 dS

≤
∫
Ωt

Dtw · w dx+
∫
Γt

asDts dS +BlinElin(w, s)(t).

(2.2.11)

Integrating by parts, we obtain∫
Ωt

Dtw · w dx+
∫
Γt

asDts dS =

∫
Ωt

w · f dx+
∫
Γt

asDts dS −
∫
Γt

qw · nΓt dS

= ⟨as, g⟩L2(Γt) + ⟨w, f⟩L2(Ωt).

Combining this with (2.2.11) completes the proof.

2.3 Analysis on moving domains

One difficulty when working directly on moving domains is that many of the standard Sobolev

and elliptic estimates have domain dependent constants. It is therefore necessary to work

in a framework which allows for uniform control of these constants in certain topologies.

This section is devoted to dealing with this issue. Our approach in this regard is somewhat

analogous to that of Shatah and Zeng [140, 139, 141] and de Poyferré [134, Section 3], but

with the key difference being that our control neighborhoods will only be uniform in the

pointwise C1 or C1,ε topologies as opposed to the stronger L2 based topologies considered

in those papers. This will be essential for establishing the pointwise continuation criterion

for solutions.
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Function spaces

To begin, we precisely define the function spaces and norms that we will be using. Through-

out, Ω ⊆ Rd will denote a bounded, connected domain. We define Hs(Ω), s ≥ 0, as the set

of all f ∈ L2(Ω) such that

∥f∥Hs(Ω) := inf
{
∥F∥Hs(Rd) : F ∈ Hs(Rd), F |Ω = f

}
(2.3.1)

is finite. Here, ∥ · ∥Hs(Rd) is defined in the standard way, via the Fourier transform. We let

Hs
0(Ω) denote the closure of C∞

0 (Ω) in Hs(Ω) and identify H−s(Ω) isometrically with the

dual space (Hs
0(Ω))

∗. Importantly, with this definition of the Hs norm, the constants in

Sobolev embedding theorems (either Hs → Lp or Hs → Cα) are independent of Ω. For reg-

ular enough domains and integer s, the norm defined in (2.3.1) is equivalent to the standard

one. We will precisely quantify this equivalence later.

We next define the regularity of the boundary of a connected domain Ω, which is char-

acterized in terms of the regularity of local coordinate parameterizations of ∂Ω. Indeed, in

general, an m-dimensional manifold M ⊆ Rd is said to be of class Ck,α or Hs, s > d
2
, if,

locally in linear frames, M can be represented by graphs with the same regularity.

If s > d+1
2
, then given Ω as above with boundary of class Hs, we can define what it means

to be an Hr function on ∂Ω for s ≥ r ≥ −s. Indeed, these are simply the functions whose

coordinate representatives are locally in Hr(Rd−1). It is easy to see that the space of Hr

functions on ∂Ω, s ≥ r ≥ −s, can be made into a Banach space. Indeed, a norm can be

chosen by taking a covering of ∂Ω by a finite number of coordinate patches and an adapted

partition of unity. However, there is one problem with this approach. Although such a norm

is well-defined up to equivalence, the precise value of the norm is dependent on the choice of

local coordinates. Since we will be dealing with a family of domains, we need to make sure

that we define norms on their boundaries in a consistent and uniform way.

Collar coordinates

As a first step towards resolving the above issue, we fix a bounded, connected reference

domain Ω∗ with smooth boundary Γ∗ := ∂Ω∗. We define Hs and Ck,α based norms on Γ∗

by making an appropriate choice of local parameterizations of Γ∗. Letting δ > 0 be a small

positive constant, we define N(Γ∗, δ) to be the collection of all C1 hypersurfaces Γ such that
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there exists a C1 diffeomorphism ΦΓ : Γ∗ → Γ with

∥ΦΓ − idΓ∗∥C1(Γ∗) < δ.

If δ > 0 is small enough, we can represent hypersurfaces Γ ∈ N(Γ∗, δ) as graphs over Γ∗.

Indeed, we denote the outward unit normal to Γ∗ by nΓ∗ . Following [141, Section 2.1], if we

have a smooth unit vector field ν : Γ∗ → Sd−1 which is suitably transversal to Γ∗ (that is,

ν ·nΓ∗ > 1− c for some small c > 0), it follows from the implicit function theorem that there

exists a δ > 0, determined by Γ∗ and ν, such that the map

φ : Γ∗ × [−δ, δ] → Rd, φ(x, µ) = x+ µν(x)

is a C1 diffeomorphism from its domain to a collar neighborhood of Γ∗. If δ > 0 is small

enough, the above coordinate system associates each hypersurface Γ ∈ N(Γ∗, δ) with a unique

function ηΓ : Γ∗ → R such that

ΦΓ(x) := φ(x, ηΓ(x)) = x+ ηΓ(x)ν(x) (2.3.2)

is a diffeomorphism in C1(Γ∗,Γ ⊆ Rd). We can think of the map ΦΓ as a way to represent Γ

as a (global) graph over Γ∗. With this notation in hand, we can now define what it means

to be a Hs hypersurface which is close to Γ∗.

Definition 2.3.1. For δ > 0 small enough and α ∈ [0, 1), define the control neighborhood

Λ(Γ∗, α, δ) as the collection of all hypersurfaces Γ ∈ N(Γ∗, δ) such that the associated map

ηΓ : Γ∗ → R satisfies

∥ηΓ∥C1,α(Γ∗) < δ.

Definition 2.3.2. Suppose s ≥ 0, Γ ∈ N(Γ∗, δ) for δ > 0 small enough, and the associated

map ηΓ : Γ∗ → R satisfies ηΓ ∈ Hs(Γ∗). We then define the Hs norm of Γ by

∥Γ∥Hs := ∥ηΓ∥Hs(Γ∗).

In the above definitions, ∥ηΓ∥C1,α(Γ∗) and ∥ηΓ∥Hs(Γ∗) are computed with respect to fixed,

independent of Γ, local coordinates on Γ∗. In an analogous way, we define for γ ∈ [0, 1) and

integers k ≥ 0, the Ck,γ norm, ∥Γ∥Ck,γ . As was essentially noted in [141, Section 2.1], when

0 < δ ≪ 1, each Γ ∈ Λ(Γ∗, α, δ) is associated to a well-defined domain Ω.

Remark 2.3.3. One key point in Definition 2.3.1 is that we only require Γ be close to Γ∗

in the C1,α topology, as opposed to the stronger L2 based topologies used in [134, 140, 139,



CHAPTER 2. THE FREE BOUNDARY EULER EQUATIONS 39

141]. In practice, we will want the control topology to be as weak as possible. For our

purposes, we will typically take α = ε > 0 for some arbitrarily small (but fixed) constant

ε > 0.

Remark 2.3.4. A second key point in Definition 2.3.1 concerns the choice of the small

parameter δ. This will not be arbitrarily small, but instead its size may also be chosen to

depend on weaker topologies; namely, (i) the C1,ε norm of Γ∗ and (ii) the thickness (see

Definition 2.1.6) of the domain Ω. This will serve two purposes:

• To allow us to place any rough Hs boundary Γ within a suitable control neighborhood

Λ(Γ∗, ε, δ).

• To allow us to obtain the robust continuation result in Theorem 2.1.7, which does not

require any reference to control neighborhoods.

Following the discussion in the above two remarks, throughout the chapter we will often

abbreviate Λ(Γ∗, ε, δ) by Λ∗, where the suppressed parameters ε > 0 and δ > 0 are understood

to be small but fixed universal parameters, which depend only on s and on the thickness of

Ω.

State space

Fix a collar neighborhood Λ∗ and s > d
2
+ 1. We define Hs as the set of all pairs (v,Γ) such

that Γ ∈ Λ∗ is the boundary of a bounded, connected domain Ω and such that the following

properties are satisfied:

(i) (Regularity). v ∈ Hs
div(Ω) and Γ ∈ Hs, where Hs

div(Ω) denotes the space of divergence

free vector fields in Hs(Ω).

(ii) (Taylor sign condition). a := −∇p · nΓ > c0 > 0, where c0 may depend on the choice

of (v,Γ), and the pressure p is obtained from (v,Γ) by solving the standard elliptic

equation (2.1.5) associated to (2.1.1) and (2.1.3).

Given initial data (v0,Γ0) in the state space Hs, our eventual goal will be to construct local

solutions (v(t),Γt) that evolve continuously in Hs. To accomplish this, we must define a

suitable notion of topology on our state space. This will enable us to establish two key

properties of our flow; namely,

(i) Continuity of solutions with values in Hs.



CHAPTER 2. THE FREE BOUNDARY EULER EQUATIONS 40

(ii) Continuous dependence of solutions (v(t),Γt) as functions of the initial data (v0,Γ0).

Note that since Hs is not a linear space, the above two continuity properties require some

explanation. To measure the size of individual states (v,Γ) ∈ Hs, we define ∥(v,Γ)∥2Hs :=

∥Γ∥2Hs + ∥v∥2Hs(Ω). However, since Hs is not a linear space, ∥ · ∥Hs does not induce a norm

topology in the usual sense. Hence, we still need an appropriate way of comparing different

states. Motivated by [36, 72], we define convergence in Hs as follows.

Definition 2.3.5. We say that a sequence (vn,Γn) ∈ Hs converges to (v,Γ) ∈ Hs if

(i) (Uniform Taylor sign condition). For some c0 > 0 independent of n, we have

an, a > c0 > 0.

(ii) (Domain convergence). Γn → Γ in Hs. That is, ηΓn → ηΓ in Hs(Γ∗) where ηΓn and ηΓ

correspond to the collar coordinate representations of Γn and Γ, respectively.

(iii) (Norm convergence). For every ε > 0 there exists a smooth divergence free function ṽ

defined on a neighborhood Ω̃ of Ω with ∥ṽ∥Hs(Ω̃) <∞ and satisfying

∥v − ṽ∥Hs(Ω) ≤ ε

and

lim sup
n→∞

∥vn − ṽ∥Hs(Ωn) ≤ ε.

With the above notion of convergence, it makes sense to define C([0, T ];Hs). We remark,

however, that in [134, 140, 139, 141], C([0, T ];Hs) is defined in a slightly different way, via

the existence of an extension to a continuous function with values in Hs(Rd). In Section 2.5,

we construct a family of extension operators which depend continuously in a suitable sense

on the domain, making the above two notions of continuity essentially interchangeable.

2.4 Difference estimates and uniqueness

Comparing different solutions is key to any well-posedness result. Since our problem is

quasilinear, such a comparison cannot be achieved uniformly in the leading Hs topology,

but instead only in weaker topologies. The main result of this section provides a Lipschitz

bound for the distance between two solutions in the L2 topology, akin to our bounds for
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the linearized equation. Notably, our distance bounds propagate at the level of our con-

trol parameters, which require for instance a Lipschitz bound on the velocity but no higher

regularity. This is what will allow us to establish uniqueness of solutions under very weak reg-

ularity assumptions. Moreover, as we shall see shortly, these low regularity distance bounds

also serve as an essential building block in our construction of rough solutions as unique

limits of smooth solutions, as well as in our proof of the continuity of the data-to-solution

map.

The fundamental difficulty in achieving our distance bounds is the need to compare states

which live on different domains. To overcome this difficulty, we construct a “distance func-

tional” which simultaneously captures the distance between (functions on) different domains

and admits a time evolution that we are able to track. To the best of our knowledge, no

such low regularity difference bounds or even uniqueness results were previously known for

any incompressible free boundary Euler model. Instead, we take our cue from the work [72]

of the first and the third authors, which considers a similar free boundary problem but for

a compressible Euler model. We note, however, that the similarity between the uniqueness

argument here and its counterpart in [72] is only at the conceptual level, as the two flows

have very different behaviors both inside the domain and near the free boundary.

The distance functional

Our first objective is to use the linearized energy as a guide to construct a distance functional

which will be suitable for comparing nearby solutions. We begin by fixing a collar neighbor-

hood Λ(Γ∗, ε, δ), where ε > 0 and δ > 0 are small. We then suppose that we have two states

(v,Γ), (vh,Γh) with respective domains Ω, Ωh. We let ηΓ and ηΓh
be the corresponding

representations of Γ and Γh as graphs over Γ∗. Following the linearized energy estimate,

we aim to define analogues of the linearized variables w and s, which heuristically should

measure the L2 distance between v and vh and the distance between Γ and Γh, respectively.

One technical caveat is that v and vh are not defined on the same domain. For this reason,

we define Ω̃ = Ω ∩ Ωh. We can represent the free boundary Γ̃ for Ω̃ as a graph over Γ∗ via

the function ηΓ̃ = ηΓ ∧ ηΓh
. Note that although the graph representation ηΓ̃ is well-defined,

Γ̃ is only Lipschitz in general, so will not be in Λ(Γ∗, ε, δ).

To measure the (signed) distance between Γ and Γh, we define s∗h : Γ∗ → R by

s∗h(x) = ηΓh
(x)− ηΓ(x). (2.4.1)
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As will become evident below, although s∗h correctly measures the distance between the free

hypersurfaces, it has the “wrong” domain. To fix this, we define the variable sh : Γ̃ → R
by pushing s∗h forward to the hypersurface Γ̃. In other words, for x ∈ Γ̃, we define sh(x) =

s∗h(π(x)), where π denotes the canonical projection, mapping the image of Γ∗× [−δ, δ] under
φ back to Γ∗. For convenience, we also extend ν to a vector field X defined on the image

of φ via X(x) = ν(π(x)). We will not actually use the displacement function sh directly in

the difference estimates below. In particular, it will not act as our desired analogue of the

linearized variable s. This is because its dynamics are somewhat awkward to work with.

Instead of using sh, it is far more convenient (and geometrically natural) to use the the

pressure difference p− ph (along with a suitable weight to be defined below) to measure the

distance between Γ and Γh. To motivate this, recall that for solutions to the free boundary

Euler equations, the Taylor sign condition implies that p and ph are non-degenerate defining

functions for Γt and Γt,h within a suitable collar neighborhood. Therefore, on the boundary

of Ω̃t = Ωt ∩ Ωt,h, p − ph should be proportional to the displacement function sh. The dy-

namics of p−ph turn out to be much easier to work with than those of sh, as terms involving

p − ph will appear naturally when we use the free boundary Euler equations to compare

solutions.

With the above motivation in mind and using the linearized equation as a guide, we de-

fine our distance functional as follows:

D((v,Γ), (vh,Γh)) := D(v, vh) :=
1

2

∫
Ω̃

|v − vh|2 dx+
1

2

∫
Γ̃

b|p− ph|2 dS, (2.4.2)

where the weight function b is defined by

b := a−11Γ̃∩Γ + a−1
h 1Γ̃∩Γh

.

As p − ph vanishes on Γ ∩ Γh, we may rewrite the distance functional in the slightly more

convenient form

D(v, vh) =
1

2

∫
Ω̃

|v − vh|2 dx+
1

2

∫
A
a−1|p− ph|2 dS +

1

2

∫
Ah

a−1
h |p− ph|2 dS,

where A := Γ̃ ∩ Γ− Γ ∩ Γh and Ah := Γ̃ ∩ Γh − Γ ∩ Γh.

Letting F denote the average of F along the flow φ between the free surfaces, the fun-

damental theorem of calculus implies that for x ∈ Γ̃,

ph(x)− p(x) =

 −∇ph ·Xsh(x) if x ∈ A,

−∇p ·Xsh(x) if x ∈ Ah.
(2.4.3)
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Therefore, thanks to the Taylor sign condition and assuming the regularity p, ph ∈ C1,ε, we

should have |p − ph| ≈ |sh| on Γ̃ within a tight enough collar neighborhood. The precise

manner in which we have this proportionality will be made clear shortly. Finally, note that,

for solutions to the free boundary Euler equations, a simple computation yields the following

equation for v − vh in Ω̃t: Dt(v − vh) +∇(p− ph) = (vh − v) · ∇vh,

∇ · (v − vh) = 0.
(2.4.4)

Remark 2.4.1. Although it is not particularly important for the difference estimates, we

note that the distance functional (2.4.2) makes sense for general (not necessarily dynamical)

states (v,Γ) and (vh,Γh). Indeed, given suitable states (v,Γ) and (vh,Γh), we can always

associate pressures p and ph by solving the standard elliptic equation associated to (2.1.1)

and (2.1.3). As we will see in Section 2.7, it is very important that our energy functional for

the Hk energy bounds be defined for general states (v,Γ) ∈ Hk.

Difference estimates

We are now ready to propagate difference bounds for two solutions to the free boundary

Euler equations.

Theorem 2.4.2 (Difference Bounds). Let 0 < ε, δ ≪ 1 and let Λ∗ = Λ(Γ∗, ε, δ) be a collar

neighborhood. Suppose that (v,Γt) and (vh,Γt,h) are solutions to the free boundary Euler

equations that evolve in the collar in a time interval [0, T ] and satisfy a,ah > c0 > 0. Then

we have the estimate
d

dt
D(v, vh) ≲A,Ah

(B +Bh)D(v, vh)

where

B := ∥v∥W 1,∞(Ωt) + ∥Γt∥C1, 12
+ ∥Dtp∥W 1,∞(Ωt), A := ∥v∥

C
1
2+ε(Ωt)

+ ∥Γt∥C1,ε ,

Bh and Ah are the analogous quantities corresponding to vh, ph, D
h
t ph and Γt,h and we have

implicitly assumed that our solutions have regularity B,Bh ∈ L1
T and A,Ah ∈ L∞

T .

Remark 2.4.3. It is worth remarking that all of the results in this section hold equally well

if the control parameter B is replaced by

Bε = ∥v∥C1,ε(Ωt) + ∥Γt∥C1, 12
,
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which depends solely on the regularity of v and Γt. This is because we will later prove an

elliptic estimate of the form

∥Dtp∥W 1,∞(Ωt) ≲A Bε.

See Lemma 2.7.9 and Remark 2.7.10 for details. We prefer, however, to work with the control

parameter B defined above as its L1
T norm is scale invariant.

Proof. For simplicity of notation, we drop the t subscript for the domains below. We also

use ≲A as a shorthand for ≲A,Ah
. To ensure that we can estimate expressions involving the

pressure in terms of the control parameters A and B above, we need the bounds

∥p∥C1,ε(Ω) ≲A 1, ∥p∥
C1, 12 (Ω)

≲A B, (2.4.5)

as well as the analogous bounds for ph. The proof that these bounds hold will be post-

poned until later when the requisite elliptic estimates are developed. See Lemma 2.7.5 and

Lemma 2.7.9 for details. Now, to proceed with the difference estimate, we recall the identity

d

dt
D(v, vh) =

1

2

d

dt

∫
Ω̃

|v − vh|2 dx+
1

2

d

dt

∫
A
a−1|p− ph|2 dS +

1

2

d

dt

∫
Ah

a−1
h |p− ph|2 dS.

(2.4.6)

To compute the first term, we would like to use Reynolds’ transport theorem, as in Proposi-

tion 2.2.3. However, here we do not have a good velocity field ṽ so that Ω̃ flows with velocity

ṽ. Constructing such a field seems to be at the very least impractical, so we will instead

allow for a correction term which is a boundary integral. For this purpose, suppose that D(t)

is a time-dependent domain for which we may define at almost every point of the boundary

a normal velocity vb for the boundary. Note that if D(t) were flowing with velocity v, then

vb = v · n∂D(t), where n∂D(t) is the outward unit normal. For more general velocity fields v

on D(t), we have the following proposition.

Proposition 2.4.4. Given a velocity field v defined on a time-dependent domain D(t) with

Lipschitz boundary flowing with normal velocity vb, we have

d

dt

∫
D(t)

f dx =

∫
D(t)

Dtf +∇ · vf dx+
∫
∂D(t)

f(vb − v · n∂D(t)) dS.

The proof is a straightforward application of the divergence theorem.

In our setting, we need to make a vector field choice on Ω̃t; this will simply be the velocity

v, though we could have equally chosen vh. We remark that in the corresponding argument
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in [72] the average of the two was used, in order to better symmetrize the problem. However,

the argument here is slightly more robust, and such a choice is not needed.

For this choice of v, we examine the boundary weight v · n∂D(t) − vb appearing in the

above formula. For this we use the disjoint boundary decomposition

Γ̃ = A ∪Ah ∪ (Γ ∩ Γh),

where the normal nΓ̃ is given a.e. by

nΓ̃ =

{
nΓ in A ∪ (Γ ∩ Γh),

nΓh
in Ah ∪ (Γ ∩ Γh),

with the two normals agreeing a.e. on Γ ∩ Γh. Correspondingly, for almost every point on Γ̃

we have |vb − v · nΓ̃| ≤ |v − vh|, as can be seen by working with the collar parameterization

ηΓ ∧ ηΓh
for Γ̃ and the kinematic boundary conditions for Γ and Γh.

We now use Proposition 2.4.4 and the incompressibility of v for each of the three terms

in (2.4.6). We begin by studying the first term, where we obtain

1

2

d

dt

∫
Ω̃

|v − vh|2 dx ≤ 1

2

∫
Ω̃

Dt|v − vh|2 dx+
1

2

∫
Γ̃

|v − vh|3 dS. (2.4.7)

We note that, unlike in the case of the linearized equation, here we obtain a nonzero boundary

term. However, this term has the redeeming feature that it is cubic in the difference v − vh.

To estimate it, we use a simple variant of the trace theorem. Indeed, as Γ,Γh ∈ Λ∗, we

may find a smooth vector field X defined on Rd with Ck bounds uniform in Λ∗ which is also

uniformly transverse to Γ̃. By the divergence theorem, we then have

1

2

∫
Γ̃

|v − vh|3 dS ≲
∫
Γ̃

X · nΓ̃|v − vh|3 dS ≲ (B +Bh)∥v − vh∥2L2(Ω̃)

≲ (B +Bh)D(v, vh).

(2.4.8)

Now, for the remaining term in (2.4.7), we use (2.4.4) and integrate by parts to obtain

1

2

∫
Ω̃

Dt|v − vh|2 dx =

∫
Ω̃

(v − vh)Dt(v − vh) dx

= −
∫
Γ̃

(p− ph)(v − vh) · nΓ̃ dS +

∫
Ω̃

(v − vh) · [(vh − v) · ∇vh] dx

≤ −
∫
Γ̃

(p− ph)(v − vh) · nΓ̃ dS + (B +Bh)D(v, vh).

(2.4.9)
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Using the decomposition Γ̃ = A∪Ah ∪ (Γ∩ Γh) and using that p− ph = 0 on Γ∩ Γh by the

dynamic boundary condition (2.1.3), we can write

−
∫
Γ̃

(p− ph)(v − vh) · nΓ̃ dS = −
∫
A
(p− ph)(v − vh) · nΓ dS −

∫
Ah

(p− ph)(v − vh) · nΓh
dS

=

∫
A
a−1(p− ph)(v − vh) · ∇p dS

+

∫
Ah

a−1
h (p− ph)(v − vh) · ∇ph dS.

Now, define

J :=

∫
A
a−1(p− ph)(v − vh) · ∇p dS +

1

2

d

dt

∫
A
a−1|p− ph|2 dS,

and

Jh :=

∫
Ah

a−1
h (p− ph)(v − vh) · ∇ph dS +

1

2

d

dt

∫
Ah

a−1
h |p− ph|2 dS.

Combining (2.4.8) and (2.4.9), we obtain

d

dt
D(v, vh) ≲ (B +Bh)D(v, vh) + J + Jh.

It remains to show that

J + Jh ≲A (B +Bh)D(v, vh).

We show the details for J . The treatment of Jh will be virtually identical. We begin by

using Proposition 2.2.3 to expand

1

2

d

dt

∫
A
a−1|p− ph|2 dS = −1

2

∫
A
a−2Dta|p− ph|2 dS − 1

2

∫
A
a−1|p− ph|2[nΓ · ∇v · nΓ] dS

+

∫
A
a−1(p− ph)Dt(p− ph) dS.

(2.4.10)

The validity of the identity (2.4.10) is justified by noting that |p−ph|2 vanishes to second

order on Γ ∩ Γh, so one can extend by zero to write the integral on the left-hand side as

an integral over Γ, apply standard identities there, and then return to an integral over A.

From (2.4.10) and adding the first term in the definition of J , we obtain (noting that by the

kinematic and dynamic boundary conditions, we have Dtp = 0 on A),

J ≲A −
∫
A
a−1(p− ph)D

h
t phdS +

∫
A
a−1(p− ph)(v − vh) · ∇(p− ph)dS +BD(v, vh).
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In the above, we used the standard identity (2.5.35) to control Dta. For the first term on

the right-hand side we use that Dh
t ph vanishes on Γh, (2.4.3), the fundamental theorem of

calculus, the Taylor sign condition and (2.4.5), to estimate

|Dh
t ph| ≲A ∥∇Dh

t ph∥L∞ |sh| ≈A ∥∇Dh
t ph∥L∞|p− ph| ≲A (B +Bh)|p− ph|.

Hence, ∫
A
a−1(p− ph)D

h
t phdS ≲A (B +Bh)D(v, vh).

It remains to estimate the cubic term, and show that∣∣∣∣∫
A
a−1(p− ph)(v − vh) · ∇(p− ph) dS

∣∣∣∣ ≲A (B +Bh)D(v, vh). (2.4.11)

We will need to perform a more careful analysis here, so that only the pointwise control terms

appear in the estimate. Note that if we had instead settled for L2 based control parameters,

this cubic term could be handled relatively easily.

We recall that A ⊆ Γ. Given a point x ∈ A, its distance to Γh is proportional to

|(p − ph)(x)|. We consider a locally finite Vitali type covering of the set A with countably

many balls Bj = B(xj, rj) of radius rj proportional to |(p − ph)(xj)|, so that in particular

we have Bj ⊆ Ωh. We denote by Dj the energy of the difference in the region Bj, i.e., the

integral in (2.4.2) restricted to Bj. Then∑
j

Dj ≲ D((v,Γ), (vh,Γh)).

Hence, by the uniform bound on a−1, it would suffice to show that∫
A∩Bj

|(p− ph)(v − vh) · ∇(p− ph)| dS ≲A (B +Bh)Dj. (2.4.12)

We will indeed show that this bound holds for the bulk of the expression on the left. However,

for the remaining part we will return to a global argument. For A we just use the uniform

Lipschitz bound in this analysis. We first note that in Ω̃ ∩Bj we have

|p− ph| ≈A rj,

which after integration yields a good bound for rj within Bj:∫
A∩Bj

|p− ph|2 dS ≈A r
d+1
j ≲A Dj. (2.4.13)
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Next we consider v − vh, for which we use the C
1
2 norm, which is part of our control norm

A, in order to estimate the surface integral by the ball integral. This yields∫
A∩Bj

|v − vh|2 dS ≲A r
−1
j

∫
Ω̃∩Bj

|v − vh|2 dx+ rdjA
2 ≲A r

−1
j Dj + rdjA

2 ≲A r
−1
j Dj. (2.4.14)

It remains to consider ∇(p− ph). Our starting point is the global bound

∥∇p∥
C

1
2 (Ω)

+ ∥∇ph∥C 1
2 (Ωh)

≲A B +Bh, (2.4.15)

which is noted in (2.4.5). This allows us to replace ∇(p− ph) with its average ∇(p− ph)j in

any smaller ball B̃j ⊆ Ω̃ ∩Bj of comparable size, because

∥∇(p− ph)−∇(p− ph)j∥L∞(Ω̃∩Bj)
≲A r

1
2
j (B +Bh).

Putting everything together we arrive at∫
A∩Bj

|(p− ph)(v − vh) · (∇(p− ph)−∇(p− ph)j)| dS ≲A (B +Bh)Dj,

which represents the bulk of (2.4.12).

It remains to estimate the contribution of the local average of ∇(p− ph). Here we view

p− ph as a solution to the following Laplace equation in Ω̃:{
∆(p− ph) = −tr(∇v)2 + tr(∇vh)2,
p− ph|Γ̃ = g̃ := p1Ah

− ph1A.

We split the problem for p − ph into an inhomogeneous one with homogeneous boundary

condition, and a homogeneous one with inhomogeneous boundary condition,

p− ph = (p− ph)inh + (p− ph)hom.

For the inhomogeneous problem we can write the source term in divergence form to

estimate

∥tr(∇v)2 − tr(∇vh)2∥H−1(Ω̃) ≲ (B +Bh)D
1
2 ,

which by a simple energy estimate gives a global L2 bound

∥∇(p− ph)inh∥L2(Ω̃) ≲A (B +Bh)D
1
2 .
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This in turn yields a bound for the corresponding averages by Hölder’s inequality,∑
j

rdj |∇(p− ph)inh,j|2 ≲A (B +Bh)
2D.

The contribution of this into (2.4.11) is then estimated using (2.4.13) and (2.4.14) as follows:

Jinh :=
∑
j

∫
A∩Bj

|p− ph||v − vh||∇(p− ph)inh,j| dS

≲A

∑
j

r
d+1
2

j ∥v − vh∥L2(A∩Bj)|∇(p− ph)inh,j|

≲A

∑
j

D
1
2
j r

d
2
j |∇(p− ph)inh,j|

≲A (B +Bh)D,

where in the last step we have used Cauchy-Schwarz with respect to j.

For the homogeneous term, on the other hand, we need to carefully examine the regularity

of the Dirichlet data g̃. On one hand, by the definition of the distance D we have the L2

bound

∥g̃∥2
L2(Γ̃)

≲A D. (2.4.16)

On the other hand, by (2.4.15), on each of the two regions Ah respectively A, we have

formally

∥g̃∥
C1, 12 (Ah)

+ ∥g̃∥
C1, 12 (A)

≲A B +Bh. (2.4.17)

This bound has to be carefully interpreted, which we do within the proof of Lemma 2.4.5

below.

A formal interpolation between (2.4.16) and (2.4.17) would yield a W 1,6(Γ̃) bound for g̃.

We make this bound rigorous in the following.

Lemma 2.4.5. The function g̃ above satisfies the bound

∥g̃∥W 1,6(Γ̃) ≲ (B +Bh)
2
3D

1
6 . (2.4.18)

Proof. We begin by noting that the two components g := p1Ah
and gh := −ph1A of g̃ are

nonzero on disjoint sets Ah respectively A, and vanish on the corresponding boundaries ∂Ah,

respectively ∂A. Hence, we can prove the bound (2.4.18) separately for the two components.
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We consider g, which lives on Ah ⊆ Γh. Here not only is Γh a Lipschitz surface, but it also

has a C1, 1
2 bound of Bh (which is not the case for Γ̃).

Using a standard partition of unity we can reduce the problem to the case when Γh is a

graph,

Γh = {xd = ϕ(x′)},

where

∥ϕ∥Lip ≲A 1, ∥ϕ∥
C1, 12

≲ Bh. (2.4.19)

We denote the Lipschitz projection of Ah by PAh ⊆ Rd−1. We can equivalently consider g

as a function on PAh, in which case the bound (2.4.18) becomes

∥∇g∥L6(PAh) ≲A (B +Bh)
2
3D

1
6 . (2.4.20)

We now summarize the information that we have on g as a function on PAh:

(i) (L2 control).

∥g∥2L2(PAh)
≲A D,

which comes from (2.4.16).

(ii) (Hölder control).

∥∇g∥
C

1
2 (PAh)

≲A B +Bh,

which is a consequence of (2.4.15), (2.4.19) and chain rule.

(iii) (Zero boundary data).

g = 0 on ∂PAh.

We will prove that these three properties imply the desired bound (2.4.20). The difficulty

here is that we do not know that ∇g = 0 on ∂PAh; else we could simply extend g by 0

outside PAh and this becomes a standard interpolation bound. Further, we do not a priori

control the regularity of the boundary ∂PAh.

Without any loss of generality we assume that g > 0 on PAh; else we split this set into

connected components where g has constant sign, modulo a set where ∇g = 0 a.e. To prove

the desired bound we will use a well-chosen Vitali covering of the set S = PAh \ {∇g = 0}
with balls. This choice is as follows: For each x ∈ S we consider a ball Bx = B(x, rx) with
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radius rx = c2(B + Bh)
−2|∇g(x)|2 where c > 0 is a small universal constant, chosen so that

|∇g| is nearly constant on Bx, i.e.,

|∇g(y)−∇g(x)| ≲ c|∇g(x)| ≪ |∇g(x)|, y ∈ Bx.

The union of the balls Bx with x ∈ S clearly covers S, so Vitali’s lemma allows us to extract

a countable disjoint subfamily of such balls Bj = Bxj so that

S ⊆
⋃

5Bj.

Since ∇g is almost constant on Bx and g(x) > 0, a key observation is that there must

exist a nontrivial sector Cx ⊆ Bx where

g > 0 in Cx, |Cx| ≈ |Bx|.

Since g = 0 on ∂PAh, it follows that we must have Cx ⊆ S; this is what allows us to bypass

the lack of geometric information on the set PAh.

On Cx, the function g is almost linear with slope approximately |∇g(x)|. Therefore, we
must have

∥g∥2L2(Cx)
≳ rd+1

x |∇g(x)|2.

We will use this bound to estimate from above the L6 norm of ∇g in each 5Bj as follows:

∥∇g∥6L6(5Bj)
≲ rd−1

xj
|∇g(xj)|6

≲ ∥g∥2L2(Cj)
r−2
xj
|∇g(xj)|4

≈ ∥g∥2L2(Cj)
(B +Bh)

4.

Now, we sum over j, using the disjointness of the balls Bj and thus of Cj. This gives∑
j

∥∇g∥6L6(5Bj)
≲ ∥g∥2L2(S)(B +Bh)

4 ≲A D(B +Bh)
4,

which concludes the proof of the lemma.

Now we use the bound in Lemma 2.4.5 to solve the homogeneous Dirichlet problem in Ω̃

and to obtain the estimate

∥∇(p− ph)
∗
hom∥L6(Γ̃) ≲ (B +Bh)

2
3D

1
6 ,
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where ∗ stands for the nontangential maximal function. This bound is due to Verchota [155],

but see also the further discussion by Jerison-Kenig [82, Theorem 5.6] as well as the case of

C1 boundaries considered earlier by Fabes-Jodeit-Rivière [42].

The exponent 6 is allowed above provided that the Lipschitz norm of the boundary is

sufficiently small. Precisely, the upper limit of the allowed exponents goes to infinity as

the corner size decreases to 0. The smallness of the intersection angle between Γ and Γh is

a consequence of the C1,ε common regularity bound together with the use of a sufficiently

refined collar region.

To use the nontangential maximal function bound, within the ball Bj = B(xj, rj) we

consider a smaller ball

B̃j = B(xj −
1

2
rjnj,

1

4
rj).

For y ∈ B̃j we have

|∇(p− ph)hom(y)| ≲ |∇(p− ph)
∗
hom(z)|, z ∈ Γ̃ ∩ 1

4
Bj.

Taking averages on the left and integrating on the right, we arrive at

rd−1
j |∇(p− ph)hom,j|6 ≲A ∥∇(p− ph)

∗
hom∥6L6(Γ̃∩ 1

4
Bj)
.

Since the balls Bj are disjoint, summation in j yields∑
j

rd−1
j |∇(p− ph)hom,j|6 ≲ (B +Bh)

4D. (2.4.21)

On the other hand, for v − vh we use the interpolation bound (2.4.8), which gives

∥v − vh∥L3(Γ̃) ≲ (B +Bh)
1
3D

1
3 . (2.4.22)

We are now ready to estimate the corresponding contribution to (2.4.11) using also

(2.4.13) and (2.4.14) as follows:

Jhom :=
∑
j

∫
A∩Bj

|p− ph||v − vh||∇(p− ph)hom,j| dS

≲A

∑
j

rj(r
2(d−1)

3
j ∥v − vh∥L3(A∩Bj))|∇(p− ph)hom,j|

≲A

∑
j

r
d+1
2

j ∥v − vh∥L3(A∩Bj)(r
d−1
6

j |∇(p− ph)hom,j|)

≲A (B +Bh)D.
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At the last step we have applied Hölder’s inequality in j with exponents 2, 3 and 6, using

(2.4.13), (2.4.22) and (2.4.21). This completes the proof of (2.4.12) and therefore the proof

of Theorem 2.4.2.

One consequence of the difference bounds is the following uniqueness result.

Theorem 2.4.6 (Uniqueness). Let ε > 0 and let Ω0 be a bounded domain with boundary

Γ0 ∈ Λ(Γ∗, ε, δ). Then for Γ0 ∈ C1, 1
2 and divergence free v0 ∈ W 1,∞(Ω0) satisfying the Taylor

sign condition, the free boundary Euler equations admit at most one solution (v,Γt) on a

time interval [0, T ] with Γt ∈ Λ(Γ∗, ε, δ) and

sup
0≤t≤T

∥v∥
C

1
2+ε
x (Ωt)

+

∫ T

0

∥v∥W 1,∞
x (Ωt)

+ ∥Dtp∥W 1,∞
x (Ωt)

+ ∥Γt∥
C

1, 12
x

dt <∞.

Proof. Suppose (v,Ωt) and (vh,Ωt,h) are a pair of solutions satisfying the conditions of the

theorem with the same initial data. From the differences estimates, we immediately obtain

v = vh on Ωt ∩ Ωt,h. Next, we argue that the domain Ωt coincides with Ωt,h. First, we note

that the intersection is non-empty if δ > 0 is small enough. We now show Ωt ⊆ Ωt,h. It

suffices to show Ωt ⊆ Ωt,h. If this is not true, then there is x ∈ Γt,h such that x ∈ Ωt. Such

a point must lie on ∂(Ωt ∩ Ωt,h). Therefore, from the estimate for the distance functional,

we have p(x) = 0. However, within a small enough collar neighborhood, the Taylor sign

condition tells us that the level set {p = 0} corresponds exactly to the free surface Γt. This

is a contradiction to x being an interior point of Ωt. Therefore Ωt ⊆ Ωt,h. The reverse

inclusion follows by an identical argument.

2.5 Balanced elliptic estimates

In this section, we prove a collection of refined elliptic estimates which will be crucial for

obtaining the sharp pointwise control norms in the higher energy bounds. These estimates

will turn out to be quite general and should be applicable to other free boundary problems.

In a sense, they can be seen as significant refinements of the so-called tame estimates which

have been fundamental in the analysis of many water waves problems (see the discussion

in [7, 95]), but are not nearly sufficient for our purposes. Indeed, as we will soon see, our

proofs of the higher energy bounds require estimates for various elliptic operators which

more precisely balance the contributions of the input function and the domain regularity,

simultaneously, in both pointwise and L2 based norms. This simultaneous balance cannot
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be achieved with the known tame estimates, which often only seem to balance the contribu-

tions in L2 based norms or involve domain dependent constants in pointwise norms which

are significantly off scale. The technical utility of our balanced estimates will become read-

ily apparent in Section 2.7, where they will be used to efficiently dispatch with expressions

involving relatively complicated iterated applications of the Dirichlet-to-Neumann operator

and various other elliptic operators.

In the following, we will always assume that Ω is a bounded domain with boundary

Γ ∈ Λ∗ := Λ(Γ∗, ε0, δ) for suitably small (but fixed) constants ε0, δ > 0. Most of the bounds

in this section do not make reference to a particular velocity function, and so, the implicit

constants in many of the estimates will only depend on the surface component of the control

parameter A; namely, AΓ := ∥Γ∥C1,ε0 . Hence, for this section, by the relation X ≲A Y , we

mean X ≤ C(AΓ)Y for some constant C depending exclusively on AΓ. The only exception

to this rule (which we will make note of explicitly) will be in Section 2.5, where we will

use the full control parameter A to establish estimates for commutators of various elliptic

operators with Dt. We will also harmlessly let A depend on the domain volume throughout,

as the volume of the domain will be conserved in the dynamic problem.

Throughout the section, by a slight abuse of notation, we will follow the convention that

a parameter ε may vary from line to line by a fixed scalar factor. Generally speaking, we

will take ε > 0 to be any positive constant with ε≪ ε0.

Extension operators in Λ∗ and product type estimates on Ω

To establish the desired elliptic estimates, it will be convenient to have an extension operator

which is bounded from Hs(Ω) → Hs(Rd) for s ≥ 0, and Ck,α(Ω) → Ck,α(Rd) for a suitable

range of k and α with bounds depending only on the implicit constant A. Among other

things, this will enable us to recover many of the standard product type estimates which are

well-known on Rd. To this end, let φ : Rd−1 → R be a Lipschitz function with Lipschitz

constant M . Let Ω = {(x, y) ∈ Rd : y > φ(x)}. Moreover, for 1 ≤ p ≤ ∞ and an integer

k ≥ 0, let W k,p(Ω) denote the usual Sobolev space consisting of distributions whose deriva-

tives up to order k belong to Lp(Ω). It is a classical result of Stein [142, Theorem 5’, p. 181]

that there exists a linear operator E mapping functions on Ω to functions on Rd with the

property that E : W k,p(Ω) → W k,p(Rd) is well-defined and continuous for all 1 ≤ p ≤ ∞ and

integers k. Moreover, the norm of E : W k,p(Ω) → W k,p(Rd) depends only on the dimension
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d, the order of differentiability k and the Lipschitz constant M . The operator E is called

Stein’s extension operator. As one can see directly from its definition [142, Equation (24),

p. 182], E also maps C1(Ω) → C1(Rd).

As explained in Section 3.3 of [142], a partition of unity argument allows one to construct

an extension operator E = EΩ on all Lipschitz domains Ω, with constant depending only on

d, k, p, the number and size of the balls needed to cover the boundary, and the Lipschitz

constant of the defining function on each ball. Since for a tight enough collar Λ∗ one can use

the same balls to cover all elements of Λ∗ with control of the Lipschitz constant on each ball,

this shows that Stein’s extension operator has norm bounds that are uniform for domains

with boundary in Λ∗.

In the above discussion, the definition of the W k,p norm was the usual one, defined by

requiring the first k weak-derivatives to be in Lp. However, as noted earlier, we also define

the Hs norm of a function f as the infimum of the Hs norms of all possible extensions of f

to Rd. Clearly, ∥ · ∥Wk,2 ≲ ∥ · ∥Hk with constant independent of the domain. However, by

the above, for domains with boundary in Λ∗, the reverse inequality also holds, with implicit

constant depending on AΓ.

From [108, Theorem B.8] we know that for any non-empty open subset Ω of Rd and any

s0, s1 ∈ R we have the identification

(Hs0(Ω), Hs1(Ω))θ,2 = Hs(Ω), where s = (1− θ)s0 + θs1 and 0 < θ < 1,

with equivalent norms uniform in the collar. Thus, by interpolation, we have the following

result.

Proposition 2.5.1. Let Ω be a bounded domain with boundary Γ ∈ Λ∗. Then for every

s ≥ 0 and 0 ≤ α ≤ 1 + ε0, Stein’s extension operator E satisfies

∥E∥Cα(Ω)→Cα(Rd), ∥E∥Hs(Ω)→Hs(Rd) ≲A 1

uniformly in Λ∗.

Proof. The Hs case follows from interpolation between integer powers. For Cα, we first

note from [108, Theorem A.1] (and higher order variants, c.f. [46, Lemma 6.37]) that there

are extension operators with the above Cα → Cα bound. That Stein’s operator has this
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property then follows by making use of such extensions and interpolating, similar to [103,

p. 11-12].

Remark 2.5.2. As mentioned in [82, Proposition 2.17], by an interpolation argument, one

can also prove that Stein’s extension operator maps the Besov space Bp,q
α (Ω) to Bp,q

α (Rd) for

all α > 0, 1 ≤ p, q ≤ ∞ and Lipschitz domains Ω. However, we will not require anything

this precise.

Littlewood-Paley decomposition and paraproducts on Ω

Using the Stein extension operator, many of the standard paraproduct estimates on Rd pass

over to Ω.

Littlewood-Paley decomposition

For a distribution u on Rd, we will make use of the standard Littlewood-Paley decomposition

u =
∑
k≥0

Pku,

where for k > 0, Pk corresponds to a Fourier multiplier with smooth symbol supported in the

dyadic frequency region |ξ| ≈ 2k and P0 corresponds to a multiplier localized to the unit ball.

The notation P<k, P≤k, P≥k and P>k will have the usual meaning. Using the Stein extension

operator, we may also consider Littlewood-Paley projections when u is defined only on Ω. In

this case, we abuse notation, and write Pku instead of PkEu, with corresponding definitions

for P<k, P≤k, etc. We will also often write uk, u<k, etc. as shorthand for the above operators

applied to u.

Paraproducts on Ω

The above decomposition allows us to make use of some of the standard tools of paradif-

ferential calculus (see e.g. [14] and [109]) on Rd and apply them to functions defined on Ω.

For bilinear expressions, we will make heavy use of the Littlewood-Paley trichotomy (now

defined for functions on Ω with suitable regularity),

f · g = Tfg + Tgf +Π(f, g),
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where the above three terms correspond to the respective “low-high”, “high-low” and “high-

high” frequency interactions between f and g. More specifically, Tfg is defined as

Tfg :=
∑
k

f<k−k0gk,

where k0 is some universal parameter independent of k. We will be able to take, e.g., k0 = 4

for most purposes.

Bilinear estimates on Ω

One important consequence of the bounds for E and the corresponding inequality on Rd is

the following algebra property for Hs(Ω), s ≥ 0,

∥fg∥Hs(Ω) ≲A ∥f∥Hs(Ω)∥g∥L∞(Ω) + ∥g∥Hs(Ω)∥f∥L∞(Ω). (2.5.1)

In our estimates for the elliptic problems below, the bilinear terms above will frequently

appear in the form ∂if∂jg where f is some function defined on Rd encoding the regularity

of the domain and the desired uniform bound for g is below C1. For this reason, in order to

avoid negative Hölder norms inside a domain, we will need the following paraproduct type

estimate, which we will use in the sequel.

Proposition 2.5.3 (Bilinear paraproduct type estimate on Ω). Let either i) s > 0 and

α1, α2, β ∈ [0, 1] or ii) s = 0, α1 = α2 = 1 and β ∈ [0, 1]. Then we have for any r ≥ 0,

∥∂if∂jg∥Hs(Ω) ≲A ∥g∥Hs+2−α1 (Ω)∥f∥Cα1 (Ω) + ∥f∥Hs+r+1(Ω) sup
k>0

2−k(r+α2−1)∥g1k∥Cα2 (Ω)

+ ∥f∥C1,2ε(Ω) sup
k>0

2k(s+β−ε)∥g2k∥H1−β(Ω),

where g = g1k + g2k is any sequence of partitions of g in Cα2(Ω) +H1−β(Ω).

Proof. By Proposition 2.5.1, it suffices to prove these estimates for f, g defined on Rd. We

prove the estimate for 0 < α1, α2 < 1 and s > 0 as the other cases are more easily dealt with.

We recall that for 0 < α < 1, the Cα norm on Rd can be characterized by the equivalent

Besov norm,

∥u∥Cα(Rd) ≈ ∥P≤0u∥L∞(Rd) + sup
j>0

2αj∥Pju∥L∞(Rd). (2.5.2)

We now decompose ∂if∂jg into paraproducts,

∂if∂jg = T∂if∂jg + T∂jg∂if +Π(∂if, ∂jg). (2.5.3)
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We then have the standard estimate

∥T∂if∂jg∥Hs(Rd) ≲ ∥f∥Cα1 (Rd)∥∂jg∥Hs+1−α1 (Rd),

which follows by shifting 1−α1 derivatives off of the low frequency factor and onto the high

frequency factor in each term. Using the hypothesis s > 0, the high-high paraproduct may

be estimated by the same term. For the remaining low-high interaction, we write

T∂jg∂if =
∑
k

P<k−4∂jgPk∂if =
∑
k

P<k−4∂j(g
1
k)Pk∂if +

∑
k

P<k−4∂j(g
2
k)Pk∂if.

Using standard Bernstein type inequalities and square summing, the first term on the right

can be easily controlled by

∥∂if∥Hs+r(Rd) sup
k>0

2−k(r+α2−1)∥g1k∥Cα2 (Rd),

while the latter can be controlled by

∥f∥C1,2ε(Rd) sup
k>0

2k(s+β−ε)∥g2k∥H1−β(Rd).

The following corollary of the above proposition will be used heavily in the higher energy

bounds to control product terms on Ω with suitable pointwise control norms.

Corollary 2.5.4. Let s and α1, α2 be as in Proposition 2.5.3. Assume that f ∈ Hs+2−α2(Ω)∩
Cα1(Ω) and g ∈ Hs+2−α1(Ω) ∩ Cα2(Ω). Then we have

∥∂if∂jg∥Hs(Ω) ≲A ∥g∥Hs+2−α1 (Ω)∥f∥Cα1 (Ω) + ∥f∥Hs+2−α2 (Ω)∥g∥Cα2 (Ω).

Proof. This follows immediately from Proposition 2.5.3 by taking g2j = 0 and r = 1−α2.

Generalized Moser type estimate

Next, we prove a Moser type estimate with the same flavor as the above bilinear estimate.

The main purpose of this estimate will be to suitably control (extensions of) compositions

of functions on Ω with diffeomorphisms of Rd. This will be important for obtaining more

refined elliptic estimates where we need to use such diffeomorphisms to flatten the boundary.
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Proposition 2.5.5 (Balanced Moser estimate). Let d ≥ 1 be an integer and let G : Rd → Rd

be a diffeomorphism with ∥DG∥Cε , ∥DG−1∥Cε ≲A 1. Let s ≥ 0, r ≥ 0 and α, β ∈ [0, 1]. Then

for every F ∈ Hs(Rd) and partition F = F 1
j + F 2

j ∈ Cα(Rd) +H1−β(Rd), we have

∥F (G)∥Hs(Rd) ≲A ∥F∥Hs(Rd) + ∥G− Id∥Hs+r sup
j>0

2−j(α+r−1)∥F 1
j ∥Cα(Rd)

+ sup
j>0

2j(s+β−1−ε)∥F 2
j ∥H1−β(Rd).

Remark 2.5.6. The same estimate holds for F ∈ Hs(Ω) by replacing F with its Stein

extension.

Proof. The case 0 ≤ s ≤ 1 is a consequence of the following standard fact.

Proposition 2.5.7 (Theorem 3.23 of [108]). Let 0 ≤ s ≤ 1 and let G : Rd → Rd be a

diffeomorphism with ∥DG∥L∞ ≲A 1 and ∥DG−1∥L∞ ≲A 1. Then for every F ∈ Hs(Rd), we

have

∥F (G)∥Hs(Rd) ≈A ∥F∥Hs(Rd).

Now, assume s > 1. We begin by performing a Littlewood-Paley decomposition,

∥F (G)∥2Hs(Rd) ≲j0 ∥F (G)∥2L2(Rd) +
∑
j>j0

22js∥Pj(F (G))∥2L2(Rd),

where j0 > 0 is some fixed constant depending only on A, to be chosen later. We have

2js∥Pj(F (G))∥L2(Rd) ≲ 2js∥Pj(F<j′(G))∥L2(Rd) + 2js∥Pj(F≥j′(G))∥L2(Rd),

where F<j′ := P<j′F , F≥j′ := F − F<j′ and j′ := j − j1 with j1 being some parameter

depending only on s which will also be chosen later. For the latter term, by a change of

variables and since s > 0, we have∑
j>j0

22js∥Pj(F≥j′(G))∥2L2(Rd) ≲A

∑
j>j0

∑
k≥j′

22(j−k)s22ks∥PkF∥2L2(Rd) ≲A ∥F∥2Hs(Rd).

On the other hand, using the fundamental theorem of calculus, we obtain

2js∥Pj(F<j′(G))∥L2(Rd) ≲ 2js sup
τ∈[0,1]

∥Pj (DF<j′(Gτ )P≥j′G) ∥L2(Rd)

+ 2js∥Pj (F<j′(P<j′G)) ∥L2(Rd),

(2.5.4)

where

Gτ = τP<j′G+ (1− τ)G.
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Now, as ∥DG∥Ċε , ∥DG−1∥Ċε ≲A 1, it follows that P<j′G and Gτ (for τ ∈ [0, 1]) are invertible

with ∥P<j′DG∥L∞ , ∥DGτ∥L∞ ≲A 1 as long as j0 is large enough (depending only on A

and the collar). Now, to control the first term on the right-hand side of (2.5.4), we split

F<j′ = (F 1
j )<j′ + (F 2

j )<j′ and estimate (using the estimate for G−1
τ ),

2js sup
τ∈[0,1]

∥Pj (DF<j′(Gτ )P≥j′G) ∥L2(Rd) ≲A 2−j(r+α−1)∥F 1
j ∥Cα(Rd)2

j(s+r)∥P≥j′G∥L2(Rd)

+ 2j(s−1+β−ε)∥F 2
j ∥H1−β(Rd).

(2.5.5)

Square summing (and possibly relabelling ε) gives(∑
j>j0

22js sup
τ∈[0,1]

∥Pj (DF<j′(Gτ )P≥j′G) ∥2L2(Rd)

) 1
2

≲A sup
j>0

2−j(r+α−1)∥F 1
j ∥Cα(Rd)∥G− Id∥Hs+r

+ sup
j>0

2j(s−1+β−ε)∥F 2
j ∥H1−β(Rd).

Next, we control the second term on the right-hand side of (2.5.4), which is a bit easier. Let

k be the largest integer strictly less than s so that 0 < s − k ≤ 1. If j1 := j − j′ is large

enough (depending only on k), we have by the chain rule and straightforward paraproduct

analysis,

2js∥PjF<j′(P<j′G)∥L2(Rd) ≲A 2j(s−k)∥P̃j(DkF<j′(P<j′G))∥L2(Rd),

where P̃j is a slightly fattened Littlewood-Paley projection. We then use the fundamental

theorem of calculus to obtain

2j(s−k)∥P̃j(DkF<j′(P<j′G))∥L2(Rd) ≲A 2j(s−k) sup
τ∈[0,1]

∥P̃j(Dk+1F<j′(Gτ )P≥j′G)∥L2(Rd)

+ 2j(s−k)∥P̃j(DkF<j′(G))∥L2(Rd).

For the first term, we have simply

2j(s−k) sup
τ∈[0,1]

∥P̃j(Dk+1F<j′(Gτ )P≥j′G)∥L2(Rd) ≲A 2j(s−k−1−ε)∥Dk+1F<j′∥L2(Rd)

≲ 2−jε∥F∥Hs(Rd).

For the second term, we have

2j(s−k)∥P̃j(DkF<j′(G))∥L2(Rd) ≲A 2j(s−k)∥DkF≥j′∥L2(Rd) + ∥P̃j((DkF )(G))∥Hs−k(Rd).

Since 0 < s− k ≤ 1, we obtain from Proposition 2.5.7,(∑
j>j0

22j(s−k)∥P̃j(DkF<j′(P<j′G))∥2L2(Rd)

) 1
2

≲A ∥F∥Hs(Rd),
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where we used that s− k ≤ 1 to control ∥(DkF )(G)∥Hs−k(Rd) and that s− k > 0 to control

the l2 sum of 2j(s−k)∥DkF≥j′∥L2(Rd). Combining everything together completes the proof.

We also note a much cruder variant of the above proposition where we measure G only in

pointwise norms and F in Sobolev based norms. This will only be needed in our construction

of regularization operators later on.

Proposition 2.5.8 (Crude Moser estimate). Under the assumptions of Proposition 2.5.5,

the following bound holds for every F ∈ Hs(Rd),

∥F (G)∥Hs(Rd) ≲A ∥F∥Hs(Rd) + ∥G− Id∥Cs+r+ε(Rd)∥F∥H1−r(Rd).

Proof. The proof follows almost identical reasoning to Proposition 2.5.5. The only difference

is that we do not partition F in (2.5.5) and instead estimate

∥(DF<j′)(Gτ )∥L2(Rd) ≲A ∥DF<j′∥L2(Rd) ≲ 2jr∥F∥H1−r(Rd).

We then invoke Bernstein’s inequality to obtain

2j(r+s)∥P≥jG∥L∞(Rd) ≲ 2−jε∥G− Id∥Cs+r+ε ,

and conclude by summing in j.

Local coordinate parameterizations and Sobolev norms in Λ∗

With the above estimates in hand, we can begin the process of proving refined versions of the

various elliptic, trace and product type estimates on Γ that will be important for establishing

our higher energy estimates. Our goal in this subsection is to construct a family of coordinate

neighborhoods for Γ∗ which will act as a “universal” set of coordinate neighborhoods which

we can use to flatten the boundary of nearby hypersurfaces Γ ∈ Λ∗. We will also use these

local coordinates to define Sobolev type norms on Γ which are suitable for proving uniform

estimates later in this section. To achieve this, we slightly modify the construction from

[140, Appendix A] (but note the difference in our definitions of Λ∗).

Local coordinates and partition of unity

As in [140, Appendix A], since Γ∗ is compact, for any σ > 0 we can choose xi ∈ Rd and

r, ri ∈ (0, 1
2
], i = 1, . . . ,m, such that we have the following two properties:
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(i) B(Γ∗, r) ⊆ ∪mi=1Ri(ri), where B(S, ε) denotes the ε neighborhood of S and Ri(·) :=

R̃i(·) × Ii(·) ⊆ Rd is a rotated cylinder with perpendicular vertical segment centered

at xi with the given equal radius and length.

(ii) For each i, z = (z̃, zd) being the natural Euclidean coordinates on Ri, there exists a

function f∗i : R̃i(2ri) → Ii such that

∥f∗i∥C0 < σri, ∥Df∗i∥C0 < σ and Ω∗ ∩Ri(2ri) = {zd > f∗i(z̃)}. (2.5.6)

When δ > 0 is small enough, for every Γ ∈ Λ∗ with corresponding bounded domain Ω, (i)

holds with Γ∗ replaced by Γ. Moreover, there exist functions fi : R̃i(2ri) → Ii satisfying (ii)

with Ω∗ replaced by Ω such that we can control the Sobolev and Hölder type norms of fi by

the corresponding norms of Γ. Specifically, we have

∥fi∥Hs ≲A 1 + ∥Γ∥Hs , ∥fi∥Ck,α ≲A 1 + ∥Γ∥Ck,α

for s ≥ 0, integer k ≥ 0 and α ∈ [0, 1). Indeed, by performing a computation in local

coordinates, the above Sobolev bound follows from the Moser estimate in Proposition 2.5.5

and the pointwise bound can be verified directly from the chain rule and interpolation. Us-

ing these coordinate representations, we intend to construct local coordinate maps on each

R̃i(2ri) for Ω which flatten Γ and have uniform estimates in Λ∗. In some of the estimates in

this section, by a slight abuse of notation, we write ∥Γ∥ when we really mean 1 + ∥Γ∥ in or-

der to declutter the notation. This will not affect any of the analysis for the dynamic problem.

On each R̃i(2ri), let ϕi = γifi, where γi(z̃) = γ
(

|z̃|
ri

)
and γ : [0,∞) → [0, 1] is a smooth

cutoff supported on [0, 3
2
] and equal to 1 on [0, 5

4
]. We can extend ϕi to a function on Rd

which gains half a degree of regularity in Hs norms and is bounded in suitable pointwise

norms. Indeed, let z̃ ∈ Rd−1 and s ≥ 1
2
. We define an extension Φi of ϕi by

Φi(z) =

∫
Rd−1

ϕ̂i(ξ
′)e−(1+|ξ′|2)z2de2πiξ

′·z̃dξ′ for z = (z̃, zd) ∈ Rd.

We first observe that for each integer k ≥ 0 and α ∈ [0, 1), ∥Φi∥Ck,α(Rd) ≲k,α ∥ϕi∥Ck,α(Rd−1).

One also has the same bounds for W k,∞ for each k ≥ 0. To see this, we observe that Φi can

be rewritten as the convolution

Φi(z) = cde
−z2d

∫
Rd−1

ϕi(z̃ + zdy)e
−|y|2dy,
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where cd is a dimensional constant. In this form, the above bounds are easily checked. We

also have ∥Φi∥Hs+1
2 (Rd)

≈s ∥ϕi∥Hs(Rd−1) for every s ≥ 0, which follows from inspecting the

Fourier transform of Φi, in a similar fashion as [108, Lemma 3.36].

From the above, we see that if σ > 0 from (2.5.6) is small enough, then the map

Hi(z̃, zd) := (z̃, zd + Φi(z̃, zd))

is a diffeomorphism from Rd → Rd with ∥Hi − Id∥Ck,α ≲A ∥Γ∥Ck,α and ∥Hi − Id∥
Hs+1

2
≲A

∥Γ∥Hs for s ≥ 0, integer k ≥ 0 and α ∈ [0, 1). Moreover, for the inverse function Gi :=

H−1
i , the same bounds hold for Gi − Id and its d′th component gi satisfies the bounds

|∂zdgi| + |(∂zdgi)−1| ≲A 1. Finally, if σ > 0 is small enough and Λ∗ is a tight enough collar

neighborhood we have, in the C1 topology,

∥Hi − Id∥C1 + ∥Gi − Id∥C1 ≲A ρ,

where ρ > 0 is some positive constant which can be made as small as we like (depending on

σ and Λ∗). We then have for some uniform δ∗ > 0,(
R̃i

(
5

4
ri

)
× Ii

(
5

4
δ∗ri

))
∩ Ω =

(
R̃i

(
5

4
ri

)
× Ii

(
5

4
δ∗ri

))
∩ {gi > 0}.

Partition of unity. Here, we construct a partition of unity for Ω with bounds uniform in

Λ∗. We follow essentially the procedure from [140, Appendix A]. Let γ be a smooth cutoff

defined on [0,∞) satisfying 0 ≤ γ ≤ 1 with γ supported in [0, 5
4
) and equal to 1 on [0, 9

8
].

Moreover, let ζ be a smooth function defined on [0,∞) taking values in [1
3
,∞) with ζ = 1

3

on [0, 1
3
] and ζ(x) = x for x ≥ 2

3
. Define

γ̃∗i(z) := γ(
|z̃|
ri
)γ(

|zd|
δ∗ri

), η = ζ ◦
∑
i

(γ̃∗i ◦Gi).

We then define a partition of unity via

γ∗i :=
γ̃∗i(Gi)

η
, γ∗0 := (1−

∑
i

γ∗i)1Ω. (2.5.7)

We see that
∑

i≥0 γ∗i = 1 on Ω and 0 ≤ γ∗i ≤ 1 for each i ≥ 0. Moreover, by the Moser and

Sobolev product estimates, we have

∥γ∗i∥Hs+1
2
≲A ∥Γ∥Hs

for s ≥ 0.
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Sobolev spaces on hypersurfaces in Λ∗

We can use the above partition of unity to define Ck,α and Hs spaces on hypersurfaces

Γ ∈ Λ∗. Indeed, if Γ is C1 and in Hs, we may define what it means to be in Hr(Γ) for

0 ≤ r ≤ s through the inner product,

⟨f, g⟩Hr(Γ) :=
∑
i≥1

⟨ϕifi, ϕigi⟩Hr(Rd−1),

where ϕi := γ∗i ◦Hi(z̃, 0) (note that this is not the same ϕi as in the previous subsection),

fi := f ◦Hi(z̃, 0) and gi := g ◦Hi(z̃, 0). If Γ is Ck,α we may also define

∥f∥Ck,α(Γ) := sup
i≥1

∥ϕifi∥Ck,α(Rd−1).

Finally, for a function v defined on Ω, we write vi = γ∗iv and ui = vi(Hi).

Using the above and the full generality afforded by Proposition 2.5.5, we prove a refined

product type estimate on the boundary Γ. Precisely, we have the following.

Proposition 2.5.9 (Product estimates on the boundary). Let Ω be a bounded domain with

boundary Γ ∈ Λ∗. If f, g are functions on Γ and g = g1j + g2j is any sequence of partitions,

then for s ≥ 0 and r ≥ 1 we have

∥fg∥Hs(Γ) ≲A ∥f∥L∞(Γ)∥g∥Hs(Γ) + (∥f∥Hs+r−1(Γ) + ∥f∥L∞(Γ)∥Γ∥Hs+r) sup
j>0

2−j(r−1)∥g1j∥L∞(Γ)

+ (1 + ∥f∥C2ε(Γ)) sup
j>0

2j(s−ε)∥g2j∥L2(Γ).

Remark 2.5.10. If we take r = 1 and g1j = g, we recover something resembling the standard

algebra property,

∥fg∥Hs(Γ) ≲A ∥f∥L∞(Γ)∥g∥L∞(Γ)∥Γ∥Hs+1 + ∥f∥Hs(Γ)∥g∥L∞(Γ) + ∥g∥Hs(Γ)∥f∥L∞(Γ), (2.5.8)

but with the twist being the additional explicit presence of the Hs+1 norm of the surface on

the right-hand side. We also remark that the proof below will allow for the first term on the

right of (2.5.8) to be replaced by (∥f∥W 1,∞(Γ)∥g∥L∞(Γ) + ∥f∥L∞(Γ)∥g∥W 1,∞(Γ))∥Γ∥Hs , which is

perhaps more natural, but we will never actually need this.

Proof. Let (γ∗i)i be the partition of unity for Ω defined in (2.5.7). As before, we write

ϕi(z̃) := γ∗i(Hi(z̃, 0)), which is smooth with domain independent bounds since Gi and Hi
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are inverse. Similarly, we write fi = f(Hi(z̃, 0)) and gi = g(Hi(z̃, 0)), which are functions

defined on the support of ϕi. By definition, it suffices to control ∥ϕifigi∥Hs(Rd−1) for each

i ≥ 1. To begin with, let j′ = j − 4 and let Pj and P<j′ denote Littlewood-Paley projections

on Rd−1. Moreover, define ϕ̃i to be a smooth compactly supported function equal to 1 on the

support of γ∗i with support properties chosen so that ϕ̃i is supported in the region where fi

is well-defined. Then a simple paraproduct estimate using the Littlewood-Paley trichotomy

gives

∥ϕifigi∥Hs(Rd−1) ≲A ∥f∥L∞(Γ)∥ϕigi∥Hs(Rd−1) +

(∑
j>0

22js∥P<j′(ϕigi)Pj(fiϕ̃i)∥2L2(Rd−1)

) 1
2

.

For the latter term in the above, we estimate(∑
j>0

22js∥P<j′(ϕigi)Pj(fiϕ̃i)∥2L2(Rd−1)

) 1
2

≲A ∥fiϕ̃i∥Hs+r−1(Rd−1) sup
j>0

2−j(r−1)∥g1j∥L∞(Γ)

+ (1 + ∥f∥C2ε(Γ)) sup
j>0

2j(s−ε)∥g2j∥L2(Γ).

We are then reduced to showing

∥fiϕ̃i∥Hs+r−1(Rd−1) ≲A ∥f∥Hs+r−1(Γ) + ∥f∥L∞(Γ)∥Γ∥Hs+r .

For this, we note that

∥fiϕ̃i∥Hs+r−1(Rd−1) ≤
∑
j≥1

∥ϕ̃iγ∗j(Hi(z̃, 0))fi∥Hs+r−1(Rd−1).

Let us write φij := Gj ◦Hi. Then we have

∥ϕ̃iγ∗j(Hi(z̃, 0))fi∥Hs+r−1(Rd−1) = ∥(ϕjfj)(φij(z̃, 0))ϕ̃i∥Hs+r−1(Rd−1).

We note that φij is a diffeomorphism having the same bounds as Gj and Hi. By using the

extension Φ from earlier, we may assume that ϕjfj is defined on Rd with ∥ϕjfj∥Hs+r− 1
2 (Rd)

≲

∥ϕjfj∥Hs+r−1(Rd−1) and ∥ϕjfj∥L∞(Rd) ≲ ∥ϕjfj∥L∞(Rd−1). Therefore, by the trace estimate on

Rd−1, the fact that φij is a diffeomorphism and the balanced Moser estimate, we have

∥ϕ̃i(ϕjfj)(φij(z̃, 0))∥Hs+r−1(Rd−1) ≲A ∥(ϕjfj) ◦ φij∥Hs+r− 1
2 (Rd)

≲A ∥ϕjfj∥Hs+r−1(Rd−1) + ∥Γ∥Hs+r∥f∥L∞(Γ).

Since, by definition, we have

∥ϕjfj∥Hs+r−1(Rd−1) ≤ ∥f∥Hs+r−1(Γ),

the proof is complete.
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Trace estimates

Now, we prove a refined version of the trace theorem for Γ.

Proposition 2.5.11 (Balanced trace estimate). Let Ω be a bounded domain with boundary

Γ ∈ Λ∗. For every s > 1
2
, r ≥ 0, α, β ∈ [0, 1] and every sequence of partitions v = v1j + v2j ,

we have

∥v|Γ∥Hs− 1
2 (Γ)

≲A ∥v∥Hs(Ω) + ∥Γ∥
Hs+r− 1

2
sup
j>0

2−j(r+α−1)∥v1j∥Cα(Ω) + sup
j>0

2j(s−1+β−ε)∥v2j∥H1−β(Ω).

Proof. For i ≥ 1, define ṽi = γ∗iEv where E is the Stein extension operator for Ω. It suffices

to prove the estimate with the left-hand side replaced by ∥ṽi(Hi(z̃, 0))∥Hs− 1
2 (Rd−1)

. Using the

trace theorem on Rd−1, we have

∥ṽi(Hi(z̃, 0))∥Hs− 1
2 (Rd−1)

≲ ∥ũi∥Hs(Rd),

where ũi := ṽi ◦ Hi. We then use Proposition 2.5.5 and the operator bounds for E in

Proposition 2.5.1 to conclude.

An extension operator depending continuously on the domain

Another use of the above local coordinates is to construct a family of extension operators

which depend continuously in a suitable sense on the domain. This will be important for

establishing our continuous dependence result later on. Potentially, something akin to the

Stein extension operator could work here, but we opt for the following simpler construction

where the dependence on the domain is more transparent.

Proposition 2.5.12. Fix a collar neighborhood Λ∗ and let s > d
2
+ 1. For each bounded

domain Ω with Hs boundary Γ ∈ Λ∗ there exists an extension operator EΩ : Hs(Ω) →
Hs(Rd) such that for all v ∈ Hs(Ω),

∥EΩv∥Hs(Rd) + ∥Γ∥Hs ≈A,∥v∥
C

1
2 (Ω)

∥(v,Γ)∥Hs , ∥EΩv∥Hs(Rd) ≲A ∥Γ∥
Hs− 1

2
∥v∥Hs(Ω), (2.5.9)

where the dependence on ∥v∥
C

1
2 (Ω)

is polynomial. Moreover, if Ωn is a sequence of domains

with Γn → Γ in Hs, then for every v ∈ Hs(Rd), there holds

∥EΩnv|Ωn − EΩv|Ω∥Hs(Rd) → 0. (2.5.10)

Remark 2.5.13. One can loosely think of (2.5.10) as a strong operator topology convergence

for this family of extensions.
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Proof. Given a family of domains Ωn and Ω with boundaries Γn,Γ ∈ Λ∗, denote by γn∗i and

γ∗i the corresponding partitions of unity, so that

v =
∑
i

γn∗iv on Ωn and v =
∑
i

γ∗iv on Ω.

Define uni = (γn∗iv) ◦ Hn
i on Rd

+. Let k be the largest integer less than or equal to s, and

define the half-space extension ũni (z̃, zd) =
∑k+1

j=1 cju
n
i (z̃,− zd

j
) if zd < 0,

ũni (z̃, zd) = uni (z̃, zd) if zd ≥ 0,

where c1, . . . , ck+1 are gotten as in [46, Lemma 6.37] by solving an appropriate Vandermonde

system. It is standard to verify that we have ũni ∈ Hs(Rd).

We define the Ωn extension of v by

ṽn =
∑
i

ũni ◦Gn
i ,

and similarly let ṽ by the Ω extension of v. To verify the continuous dependence property,

we want to verify that if Γn → Γ in Hs, then ṽn → ṽ in Hs(Rd). For this, it suffices to prove

that ũni ◦Gn
i → ũi ◦Gi in H

s(Rd) for each i. We note that

∥ũni ◦Gn
i − ũi ◦Gi∥Hs(Rd) ≤ ∥(ũni − ũi) ◦Gn

i ∥Hs(Rd) + ∥ũi ◦Gn
i − ũi ◦Gi∥Hs(Rd). (2.5.11)

The first term on the right-hand side of (2.5.11) can be shown to go to zero by using stan-

dard Moser estimates. The latter term goes to zero by arguing similarly to the proof that

translation is continuous in Lp spaces (using a simple density argument to replace ũi by a

smooth function).

Finally, the bounds (2.5.9) follow from the definition of the extension and Proposi-

tion 2.5.5.

Pointwise elliptic estimates

Here we establish variants of the C2,α and C1,α estimates for the Dirichlet problem which

adequately track the dependence on the domain regularity. In our analysis later, we will
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mostly use the C1,α estimates with α = 1
2
or α = ε. However, the C2,α estimates will be

relevant for proving bounds for our regularization operators, which are defined in Section 2.6.

As will become apparent later, to obtain the desired pointwise elliptic estimates, it is

crucial to use a domain flattening map whose Jacobian has determinant 1. This will be

especially necessary for the C1,α estimate, as we must preserve the divergence form of the

equation. For this reason, instead of the map Hi, we will use the more familiar domain

flattening map

Fi(z) = (z̃, zd + ϕi(z̃)), (2.5.12)

whose Jacobian has determinant 1. The tradeoff when using the flattening Fi is that it does

not exhibit a 1
2
gain in regularity for the Hs norm on the interior compared to the boundary,

but this will not matter for this section because all domain dependent coefficients will be

placed in L∞ based norms. We let Ψi := F−1
i , and begin with the C2,α estimates.

Proposition 2.5.14 (C2,α estimates for the inhomogeneous Dirichlet problem). Let 0 < α <

1 and let Ω be a bounded domain with boundary Γ ∈ Λ∗ having C2,α regularity. Consider

the boundary value problem  ∆v = g in Ω,

v = ψ on Γ.

Then v satisfies the estimate

∥v∥C2,α(Ω) ≲A ∥Γ∥C2,α∥v∥W 1,∞(Ω) + ∥g∥Cα(Ω) + ∥ψ∥C2,α(Γ).

Proof. We write vi = γ∗iv, hi = ∆vi, fi = hi ◦ Fi and vi = ui ◦ Ψi. Omitting some of the

subscripts for notational convenience, we see that u := ui satisfies the equation ∆u = ∂k((δ
jk − ajk)∂ju) + f,

u|zd=0 = (γ∗iψ)(Hi(z̃, 0)),
(2.5.13)

where ajk = (Ψj
xl
Ψk
xl
)(Fi) with repeated indices summed over. Note that to compute the

boundary term in (2.5.13) we used that Fi(z̃, 0) = Hi(z̃, 0). By the well-known Schauder

estimates for the half-space, we obtain

∥u∥C2,α ≲A ∥(δjk − ajk)∂ju∥C1,α + ∥f∥Cα + ∥(γ∗iψ)(Hi(z̃, 0))∥C2,α . (2.5.14)

Using the Besov characterization (2.5.2) and the paradifferential expansion (2.5.3), it is

straightforward to estimate

∥(δjk − ajk)∂ju∥C1,α ≲ ∥δjk − ajk∥Cε∥u∥C2,α + ∥Γ∥C2,α∥v∥W 1,∞(Ω). (2.5.15)
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As aij is close to the identity in Cε, this simplifies the estimate (2.5.14) to

∥u∥C2,α ≲A ∥Γ∥C2,α∥v∥W 1,∞(Ω) + ∥f∥Cα + ∥(γ∗iψ)(Hi(z̃, 0))∥C2,α . (2.5.16)

Clearly, we have ∥f∥Cα ≲A ∥h∥Cα(Ω). On the other hand, we have

∥u(Ψi)∥Ċ2,α ≲A ∥(DΨi)
∗(D2u)(Ψi)DΨi∥Ċα + ∥(Du)(Ψi)D

2Ψi∥Ċα . (2.5.17)

We can estimate both terms above by the right-hand side of (2.5.16). We show how to do

this for the first term, as the second term is similar. For this, we may assume that u is

defined on all of Rd by using a suitable extension operator from the half-space to Rd. Then

we write as usual u<j to mean P<ju and u≥j := u − u<j. By the Besov characterization of

Cα, we need to estimate

sup
j>0

2jα∥Pj((DΨi)
∗(D2u)(Ψi)DΨi)∥L∞ .

By the standard Littlewood-Paley trichotomy, we first obtain,

2jα∥Pj((DΨi)
∗(D2u)(Ψi)DΨi)∥L∞ ≲A ∥u∥C2,α + 2jα∥D2u∥L∞∥P̃jB(DΨi, DΨi)∥L∞ ,

where B is a suitable bilinear form. For the latter term, we split u = u<j+u≥j and estimate

using Bernstein’s inequality,

2jα∥D2u∥L∞∥P̃jB(DΨi, DΨi)∥L∞ ≲A ∥v∥W 1,∞(Ω)2
j(1+α)∥P̃jB(DΨi, DΨi)∥L∞ + ∥u∥C2,α

≲A ∥Γ∥C2,α∥v∥W 1,∞(Ω) + ∥u∥C2,α .

The other term in (2.5.17) is similarly handled. Combining the above, we obtain

∥vi∥C2,α(Ω) ≲A ∥Γ∥C2,α∥v∥W 1,∞(Ω) + ∥h∥Cα(Ω) + ∥(γ∗iψ)(Hi(z̃, 0))∥C2,α .

Expanding

h = ∆(γ∗iv) = ∆γ∗iv + 2∇γ∗i · ∇v + γ∗i∆v

we obtain

∥h∥Cα(Ω) ≲A ∥Γ∥C2,α∥v∥W 1,∞(Ω) + ∥∇γ∗i · ∇v∥Cα(Ω) + ∥g∥Cα(Ω).

The second term on the right-hand side can be estimated crudely by

∥∇γ∗i · ∇v∥Cα(Ω) ≲A ∥v∥C1,α(Ω) + ∥Γ∥C2,α∥v∥W 1,∞(Ω).

Finally, by estimating the term ∥v∥C1,α(Ω) ≲ δ0∥v∥C2,α(Ω) + C(δ0)∥v∥C0(Ω) for some δ0 suffi-

ciently small and absorbing the first term into the left-hand side of the estimate, we conclude

the proof.



CHAPTER 2. THE FREE BOUNDARY EULER EQUATIONS 70

By very similar reasoning and the corresponding estimate in the half-space (see Theorem

8.33 in [46]) we also have a C1,α variant if the source term g is replaced by ∇ · g. More

precisely, we have the following.

Proposition 2.5.15 (C1,α estimates for the Dirichlet problem). Let Ω be a bounded C1,α

domain with 0 < α < 1 and with boundary Γ ∈ Λ∗. Consider the boundary value problem ∆v = ∇ · g1 + g2 in Ω,

v = ψ on ∂Ω.

Then v satisfies the estimate

∥v∥C1,α(Ω) ≲A ∥Γ∥C1,α(∥v∥W 1,∞(Ω) + ∥g1∥L∞(Ω)) + ∥g1∥Cα(Ω) + ∥g2∥L∞(Ω) + ∥ψ∥C1,α(Γ).

Interpolating and using the straightforward estimate

∥v∥L∞(Ω) ≲A ∥g1∥L∞(Ω) + ∥g2∥L∞(Ω) + ∥ψ∥L∞(Γ),

we deduce also

∥v∥C1,ε(Ω) ≲A ∥g1∥Cε(Ω) + ∥g2∥L∞(Ω) + ∥ψ∥C1,ε(Γ) (2.5.18)

and

∥v∥C1,α(Ω) ≲A ∥Γ∥C1,α(∥g1∥Cε(Ω) + ∥g2∥L∞(Ω) + ∥ψ∥C1,ε(Γ)) + ∥g1∥Cα(Ω) + ∥g2∥L∞(Ω)

+ ∥ψ∥C1,α(Γ).

Proof. Much of the proof is similar to the C2,α estimate. We only outline the slight changes.

First, we note that

∆vi = ∂j(∂jγ∗iv) + ∂jγ∗i∂jv + γ∗i∇ · g1 + γ∗ig2

= ∂j(∂jγ∗iv) +∇ · (γ∗ig1) + ∂jγ∗i∂jv −∇γ∗i · g1 + γ∗ig2 =: ∇ · h1 + h2.

Hence, localizing with γ∗i preserves the divergence source term to leading order. More

precisely, h2 will be suitable for estimating in L∞ in the sense that ∥h2∥L∞ ≲A ∥v∥W 1,∞(Ω) +

∥g1∥L∞(Ω) + ∥g2∥L∞(Ω). The next step is to perform the domain flattening procedure. The

most important point here is that since the Jacobian determinant of Fi is 1, the corresponding

equation for u (using the notation from the proof of Proposition 2.5.14) becomes ∂k(a
jk∂ju) = ∇ · h̃1 + h̃2 in Ω,

u|zd=0 = (γ∗iψ)(Hi(z̃, 0)) on ∂Ω,
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where

h̃1 := (h1 ·DΨi)(Fi), h̃2 := h2(Fi).

In other words, the divergence structure of the equation is preserved. From this point, the

proof follows the same line of reasoning as the C2,α estimates by writing an equation for ∆u.

The difference is that we use the C1,α norm and the corresponding estimate for the Laplace

equation in the half-space when the equation has the above divergence form.

When g1 and g2 are zero in the above proposition, we can interpolate using the maximum

principle for H and the C1,ε bound above to obtain Cα bounds for the harmonic extension

with constant depending only on AΓ.

Corollary 2.5.16. Let 0 ≤ α < 1. The following low regularity bound forH holds uniformly

for domains Ω with boundary Γ ∈ Λ∗,

∥Hg∥Cα(Ω) ≲A ∥g∥Cα(Γ).

Proof. By the above and the maximum principle, we have C1,ε(Γ) → C1,ε(Ω) and C0(Γ) →
C0(Ω) bounds for H that are uniform in Λ∗. By [103, Example 5.15] we also know that

(C0(Rn), C1,ε(Rn))θ,∞ = Cα(Rn) for an appropriate choice of θ. Therefore, we just have to

transfer the interpolation properties on Rn for n = d and n = d− 1 to Ω and Γ, respectively,

with constants uniform in the collar. For Ω, we argue as in Proposition 2.5.1, and on Γ we

simply unravel the definition of our function spaces via the partition of unity.

Remark 2.5.17. Of course, we note that Corollary 2.5.16 avoids C1 and Lipschitz regularity,

as these do not fall into the interpolation scale.

L2 based balanced elliptic estimates

In this subsection, we will prove Hs type estimates for various elliptic problems. In the

following analysis, we will always be using the coordinate maps Hi and Gi (as opposed to Fi

and Ψi from the pointwise estimates) to flatten the boundary since we will now need the 1
2

gain of regularity on Ω in Hs based norms given by this flattening.

The Dirichlet problem

We begin our analysis by proving estimates for the inhomogeneous Dirichlet problem ∆v = g in Ω,

v = ψ on Γ.
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We first recall two baseline estimates which will be used heavily in the derivation of the

higher regularity bounds below. The first is when ψ = 0, in which case v satisfies the H1

estimate

∥v∥H1(Ω) ≲A ∥g∥H−1(Ω). (2.5.19)

On the other hand, for 1
2
< s ≤ 1 and g = 0, we have

∥v∥Hs(Ω) ≲A ∥ψ∥
Hs− 1

2 (Γ)
. (2.5.20)

The bound (2.5.19) is completely standard. The bound (2.5.20) was established by Jerison

and Kenig in [82], and even holds, in an appropriate sense, at the endpoint s = 1
2
. For our

purposes, we will only need the range 1
2
< s ≤ 1, but we do need to quantify the depen-

dence of the implicit constant in [82] on the domain. As noted in [158], the implicit domain

dependent constant is, as expected, solely dependent on the Lipschitz character of Ω, so is

controlled uniformly in the collar. Formally, [158] only quantifies the domain dependence for

the inhomogeneous problem g ̸= 0, ψ = 0, but the analogous homogeneous estimate follows

immediately from this and the existence of an extension operator E : Hs− 1
2 (Γ) → Hs(Ω) for

1
2
< s ≤ 1 with norm uniform in Λ∗. In this low regularity range of s, such an operator can

be constructed by using the partition of unity for Ω and the construction in [140]. We omit

the details.

In a small number of places in the higher energy bounds, the following elliptic estimates

which hold on C1,ε0 (but not quite Lipschitz) domains will be convenient for simplifying the

analysis.

Proposition 2.5.18. For every 0 < s < 1
2
+ ε0, there holds

∥∆−1g∥Hs+1(Ω) ≲A ∥g∥Hs−1(Ω), ∥Hψ∥Hs+1(Ω) ≲A ∥ψ∥
Hs+1

2 (Γ)
.

Proposition 2.5.18 is well-known to specialists; see, e.g., [114]. We remark that bounds of

this type hold in the range s < 1
2
when the domain is Lipschitz; the excess regularity given

by a C1,ε0 domain is required to extend the range to s < 1
2
+ ε0.

Next, we move to the higher regularity estimates for the Dirichlet problem.

Proposition 2.5.19 (Higher regularity bounds for the inhomogeneous Dirichlet problem).

Let Ω be a bounded domain with boundary Γ ∈ Λ∗. Suppose that v solves the Dirichlet
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problem  ∆v = g in Ω,

v = ψ on ∂Ω,

and let s ≥ 2. Then for r ≥ 0, α ∈ [0, 1], β ∈ [0, 1] and any sequence of partitions v := v1j+v
2
j ,

we have

∥v∥Hs(Ω) ≲A ∥g∥Hs−2(Ω) + ∥ψ∥
Hs− 1

2 (Γ)
+ ∥Γ∥

Hs+r− 1
2
sup
j>0

2−j(α−1+r)∥v1j∥Cα(Ω)

+ sup
j>0

2j(s−1+β−ε)∥v2j∥H1−β(Ω).

Proof. Using the partition of unity, it suffices to estimate vi := γ∗iv for each i ≥ 0. Since

the case i = 0 is essentially an interior regularity estimate, we focus on the case i ≥ 1. We

define

h := ∆vi = gγ∗i + v∆γ∗i + 2∇v · ∇γ∗i.

Using the map Hi = G−1
i , we can write a variable coefficient equation for u := vi ◦Hi, −∆u = (aij − δij)∂i∂ju+ bj∂ju− f,

u|{zd=0} = (γ∗iψ)(Hi(z̃, 0)).

Here (dropping the i index from the partition and now using it as a dummy index), we wrote

alm := (Gl
xk
Gm
xk
) ◦H (where k is summed over), bj := (∆Gj) ◦H and f = h ◦H. As a first

step, we prove the following estimate for u:

∥u∥Hs ≲A ∥f∥Hs−2 + ∥ψ∥
Hs− 1

2 (Γ)
+ ∥Γ∥

Hs+r− 1
2
sup
j>0

2−j(α−1+r)∥v1j∥Cα(Ω)

+ sup
j>0

2j(s−1+β−ε)∥v2j∥H1−β(Ω).
(2.5.21)

For this, we use the standard elliptic regularity for the half-space to obtain

∥u∥Hs ≲A ∥u∥L2 + ∥f∥Hs−2 + ∥bi∂iu∥Hs−2 + ∥(aij − δij)∂i∂ju∥Hs−2

+ ∥(γ∗iψ)(Hi(z̃, 0))∥Hs− 1
2 (Rd−1)

.
(2.5.22)

By definition, the last term on the right-hand side is controlled by ∥ψ∥
Hs− 1

2 (Γ)
. Moreover,

by a change of variables and the baseline estimates (2.5.19) and (2.5.20), we can control,

crudely,

∥u∥L2 ≲A ∥vi∥L2(Ω) ≲A ∥h∥L2(Ω) + ∥ψ∥
H

1
2 (Γ)

≲A ∥f∥L2 + ∥ψ∥
H

1
2 (Γ)

≲A ∥f∥Hs−2 + ∥ψ∥
Hs− 1

2 (Γ)
.

(2.5.23)
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For the purpose of estimating the third and fourth terms on the right-hand side, we may

assume that u ∈ Hs(Rd) with compact support instead of just u ∈ Hs(Rd
+) by using any

suitable extension for the half-space. We then recall that in a suitably refined collar, we have

∥aij − δij∥L∞ + ∥DG− I∥L∞ ≪A 1.

Next, we define a partition of u as follows: First write vi = γ∗iv
1
j+γ∗iv

2
j and then u = vi◦Hi =

(γ∗iv
1
j ) ◦Hi + (γ∗iv

2
j ) ◦Hi =: u1j + u2j . To prove (2.5.21), it suffices now by interpolation and

the above estimates to prove the estimate

∥bi∂iu∥Hs−2+∥(aij−δij)∂i∂ju∥Hs−2 ≲A ∥u∥Hs−ε+∥DG−I∥L∞∥u∥Hs+RHS(2.5.21). (2.5.24)

We show the details for bi∂iu since it is the more difficult of the two terms to deal with (as

it involves two derivatives applied to the domain flattening map) and because the estimate

for (aij − δij)∂j∂iu follows from a similar analysis. Our first aim is to establish the bound

∥bi∂iu∥Hs−2 ≲A ∥(∇u)(G) ·∆G∥Hs−2 +RHS(2.5.24), (2.5.25)

which, to leading order, is essentially like doing an Hs−2 “change of variables”. This bound

follows immediately from Proposition 2.5.7 for 2 ≤ s ≤ 3, so we restrict to s ≥ 3. To simplify

notation a bit, we write w := bi∂iu. We begin by applying Proposition 2.5.5 to obtain

∥w∥Hs−2 ≲A ∥(∇u)(G) ·∆G∥Hs−2 + ∥Γ∥
Hs+r− 1

2
sup
j>0

2−j(1+r)∥w1
j∥L∞ + sup

j>0
2j(s−2−ε)∥w2

j∥L2 ,

(2.5.26)

where w = w1
j + w2

j is a well-chosen partition which needs to be picked so that we can

estimate the latter two terms above by RHS(2.5.24). We take

w1
j := (∆P<jG · (∇P<ju1j)(G))(H),

w2
j := (∆P<jG · (∇P<ju2j)(G) + ∆P<jG · (∇P≥ju)(G) + ∆P≥jG · (∇u)(G))(H).

It is then easily verified using the above and (2.5.26) that we have

∥w∥Hs−2 ≲A ∥(∇u)(G) ·∆G∥Hs−2 + sup
j>0

2j(s−2−ε)∥∆P≥jG · (∇u)(G)∥L2 +RHS(2.5.24).

To estimate the latter term on the right, we use that s− 2− ε > 0 to estimate

2j(s−2−ε)∥∆P≥jG · (∇u)(G)∥L2 ≤ sup
l≥0

2l(s−2−ε)∥∆PlG · (∇u)(G)∥L2 .

Then splitting u = P<lu
1
l + (P<lu

2
l + P≥lu), a change of variables and a simple application

of the Bernstein inequalities allows us to control the above term by the right-hand side of
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(2.5.24). This establishes (2.5.25) for s ≥ 3. Finally, for each s ≥ 2, it remains to estimate

∥(∇u)(G)∆G∥Hs−2 by the right-hand side of (2.5.24). From a simple paradifferential analysis

as in Proposition 2.5.3, we have

∥(∇u)(G) ·∆G∥Hs−2 ≲A ∥(∇u)(G)∥Hs−1−ε + ∥T(∇u)(G)∆G∥Hs−2

≲A ∥(∇u)(G)∥Hs−1−ε +RHS(2.5.24),

where, above, to estimate the latter term in the first line, we estimated each summand

P<j−4(∇u(G))Pj∆G in the paradifferential expansion of T(∇u)(G)∆G using the partition u =

P<ju
1
j +

(
P<ju

2
j + P≥ju

)
and Bernstein’s inequality. Then, using Proposition 2.5.5 and this

same partition, we have easily

∥(∇u)(G)∥Hs−1−ε ≲A RHS(2.5.24).

This establishes the bound (2.5.24) for bi∂iu. The bound for (aij − δij)∂i∂ju follows sim-

ilar reasoning, but is easier because it involves only one derivative applied to the domain

flattening map, and therefore the initial change of variables performed above is not needed.

This concludes the estimate (2.5.21). Our next step is replace u on the left-hand side of

(2.5.21) with vi and replace f on the right-hand side with g. Recall first that vi = u ◦ Gi

and f = h ◦Hi. We may assume that vi and u are defined on Rd using Stein’s extension or

a suitable half-space extension in the case of u. Therefore, using the partition u = u1j + u2j
as defined earlier and Proposition 2.5.5 we obtain

∥vi∥Hs(Ω) ≲A ∥u∥Hs + ∥Γ∥
Hs+r− 1

2
sup
j>0

2−j(α−1+r)∥v1j∥Cα(Ω) + sup
j>0

2j(s+β−1−ε)∥v2j∥H1−β(Ω),

where we used that ∥G− Id∥Hs+r ≲A ∥Γ∥
Hs+r− 1

2
.

To conclude we now need only show that

∥f∥Hs−2 ≲A ∥g∥Hs−2(Ω) + ∥Γ∥
Hs+r− 1

2
sup
j>0

2−j(α−1+r)∥v1j∥Cα(Ω) + sup
j>0

2j(s+β−1−ε)∥v2j∥H1−β(Ω)

+ sup
i

∥vi∥Hs−ε(Ω).

(2.5.27)

Expanding out h = ∆(vγ∗i) and using again a paradifferential expansion similar to Proposi-

tion 2.5.3, the identity g := ∆v and the splitting v = v1j + v2j we observe first that

∥h∥Hs−2(Ω) ≲A ∥g∥Hs−2(Ω) + ∥Γ∥
Hs+r− 1

2
sup
j>0

2−j(α−1+r)∥v1j∥Cα(Ω)

+ sup
j>0

2j(s+β−1−ε)∥v2j∥H1−β(Ω) + sup
i

∥vi∥Hs−ε(Ω).
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Therefore, we need to only show (2.5.27) with g replaced by h. For this, we first extend

h to a function h̃ := E∆(γ∗iv) on Rd using Stein’s extension. Then, using the partition

h̃ = h1j + h2j with h1j = E∆P<j(v1jγ∗i) and h2j = E∆P<j(v2jγ∗i) + E∆P≥j(vγ∗i) together with

Proposition 2.5.5, we obtain (2.5.27) and conclude the proof.

We also note a much cruder variant of the above estimate which will be useful for con-

structing regularization operators later on. As with the corresponding Moser bound in

Proposition 2.5.8, the proposition below could be optimized considerably, but such opti-

mizations will not be needed in this chapter.

Proposition 2.5.20 (Cruder variant of the Dirichlet estimates). Let Γ, v, ψ, g and s ≥ 2

be as in Proposition 2.5.19, and assume that ψ = 0. Then for every δ > 0, we have the

estimate

∥v∥Hs(Ω) ≲A,δ ∥g∥Hs−2(Ω) + ∥Γ∥Cs+δ∥v∥H1(Ω).

Proof. We only give a sketch of the proof since it is essentially a much simpler version of

Proposition 2.5.19. One starts by using the cruder flattening (2.5.12) as in the pointwise el-

liptic estimates and writing the corresponding equation for u (using the notation in (2.5.13)).

This flattening is a bit more convenient for this estimate because the source terms in (2.5.13)

are simpler. Moreover, we will only need to measure Γ in pointwise norms, and therefore

will not need the 1
2
gain of regularity from the flattening in Proposition 2.5.19. As in the

proof of Proposition 2.5.19, we then obtain the preliminary bound

∥u∥Hs ≲A ∥f∥Hs−2 + ∥(δjk − ajk)∂ju∥Hs−1 .

Using simple paraproduct type estimates and a change of variables, it is straightforward to

then estimate

∥u∥Hs ≲A,δ ∥f∥Hs−2 + ∥Γ∥Cs+δ∥v∥H1(Ω). (2.5.28)

Then, to conclude, one estimates using Proposition 2.5.8 with r = 0 and r = 2,

∥vi∥Hs ≲A,δ ∥u∥Hs + ∥Γ∥Cs+δ∥v∥H1(Ω), ∥f∥Hs−2 ≲A ∥h∥Hs−2(Ω) + ∥Γ∥Cs+δ∥v∥H1(Ω),

and then performs a simple paraproduct analysis to finally estimate

∥h∥Hs−2(Ω) ≲A ∥g∥Hs−2(Ω) + ∥Γ∥Cs+δ∥v∥H1(Ω) + ∥v∥Hs−ε(Ω).

Combining the above and interpolating finishes the proof.
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Harmonic extension bounds

By taking g = 0 in Proposition 2.5.19, we obtain the following corollary for the harmonic

extension operator H.

Proposition 2.5.21 (Harmonic extension bounds). Let Ω be a bounded domain with bound-

ary Γ ∈ Λ∗. Then the following bound holds for the harmonic extension operator H when

s ≥ 2, r ≥ 0, β ∈ [0, 1
2
) and α ∈ [0, 1),

∥Hψ∥Hs(Ω) ≲A ∥ψ∥
Hs− 1

2 (Γ)
+ ∥Γ∥

Hs+r− 1
2
sup
j>0

2−j(α−1+r)∥ψ1
j∥Cα(Γ)

+ sup
j>0

2j(s−1+β−ε)∥ψ2
j∥H 1

2−β(Γ)
.

Here, ψ = ψ1
j + ψ2

j is any sequence of partitions.

Proof. First, Proposition 2.5.19 yields the estimate

∥Hψ∥Hs(Ω) ≲A ∥ψ∥
Hs− 1

2 (Γ)
+ ∥Γ∥

Hs+r− 1
2
sup
j>0

2−j(α−1+r)∥ϕ1
j∥Cα(Ω)

+ sup
j>0

2j(s−1−ε)∥ϕ2
j∥H1(Ω),

where ϕ1
j = P<jHψ1

j and ϕ2
j = P<jHψ2

j + P≥jHψ. From the Cα bounds for H in Corol-

lary 2.5.16 (which hold only for α ∈ [0, 1)), we have ∥ϕ1
j∥Cα(Ω) ≲ ∥ψ1

j∥Cα(Γ). On the other

hand, from (2.5.20), we obtain

sup
j>0

2j(s−1−ε)∥ϕ2
j∥H1(Ω) ≲A ∥Hψ∥Hs−ε(Ω) + sup

j>0
2j(s−1+β−ε)∥ψ2

j∥H 1
2−β(Γ)

.

The proof then concludes by interpolation and again (2.5.20).

Curvature estimate

With the above local coordinates, we can control the surface regularity in terms of the mean

curvature. The following estimate is a slight refinement of Lemma 4.7 as well as Propositions

A.2 and A.3 in [140].

Proposition 2.5.22 (Curvature estimate). Let s ≥ 2. The following estimates for ∥Γ∥Hs

and the normal nΓ hold:

∥Γ∥Hs + ∥nΓ∥Hs−1(Γ) ≲A 1 + ∥κ∥Hs−2(Γ).
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Proof. We only sketch the details as the proof is similar to [140]. As in their proof, let

{fi ∈ Hs(R̃i(2ri))} be the local coordinate functions associated to Γ defined earlier. Let

γ : [0,∞) → [0, 1] be a smooth cutoff function supported on [0, 3
2
] with γ = 1 on [0, 5

4
]. On

each R̃i(2ri), we let

γi(z̃) = γ(
|z̃|
ri
), κi(z̃) = γi(z̃)κ(z̃, fi(z̃)), gi = γifi.

Using the mean curvature formula

κ(z̃, f(z̃)) = −∂j(
∂jf√

1 + |∇f |2
) = − ∆f

(1 + |∇f |2) 1
2

+
∂jf∂kf∂jkf

(1 + |∇f |2) 3
2

,

we obtain the following elliptic equation for gi:

−∆gi = − ∂j1fi∂j2fi
(1 + |∇fi|2)

∂j1j2gi + (1 + |∇fi|2)
1
2κi −∆γifi − 2Dγi ·Dfi

+
∂j1fi∂j2fi
1 + |∇fi|2

(∂j1j2γifi + ∂j1γi∂j2fi + ∂j2γi∂j1fi).

As ∥Dfi∥L∞ ≪ 1 the first term on the right-hand side can be viewed perturbatively. A

paradifferential type analysis similar to the estimate for u in Proposition 2.5.19 together

with standard Moser and product type estimates then gives

∥gi∥Hs ≲A δ∥gi∥Hs + ∥fi∥Hs−ε + ∥κ∥Hs−2(Γ)

for some δ > 0 small enough (depending on Λ∗). We then obtain

∥gi∥Hs ≲A ∥fi∥Hs−ε + ∥κ∥Hs−2(Γ),

and so, we obtain,

sup
i

∥fi∥Hs ≲A 1 + ∥κ∥Hs−2(Γ),

which completes the proof.

Estimates for the Dirichlet-to-Neumann operator

Here, we use the above estimates to prove refined bounds for the Dirichlet-to-Neumann

operator which is defined by N := nΓ · (∇H)|Γ. We begin with the following baseline

ellipticity estimate.

Lemma 2.5.23. The Dirichlet-to-Neumann map on Γ satisfies

∥ψ∥H1(Γ) ≲A ∥Nψ∥L2(Γ) + ∥ψ∥L2(Γ).
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Proof. Let v = Hψ. We begin by proving the standard estimate∫
Γ

|∇v|2dS ≲A ∥Nψ∥2L2(Γ) + ∥ψ∥L2(Γ)∥ψ∥H1(Γ). (2.5.29)

Let X be a smooth vector field on Rd which is uniformly transversal to all hypersurfaces in

Λ∗. That is, X · nΓ ≳A 1 and |DX| ≲A 1. Integration by parts then gives∫
Γ

|∇v|2 dS ≲A

∫
Γ

nΓ ·X|∇v|2 dS

≲A ∥∇v∥2L2(Ω) + 2

∫
Ω

Xj∂j∇v · ∇v dx

≲A ∥∇v∥2L2(Ω) + 2

∫
Γ

(X · ∇v)Nψ dS.

For the first term, we have from theH
1
2 → H1 harmonic extension bound and straightforward

interpolation,

∥v∥2H1(Ω) ≲A ∥ψ∥2
H

1
2 (Γ)

≲A ∥ψ∥L2(Γ)∥ψ∥H1(Γ).

Combining this with the Cauchy Schwarz inequality for the second term, we obtain (2.5.29).

Using the partition of unity (γ∗i)i, it straightforward to then estimate

∥ψ∥H1(Γ) ≲A ∥ψ∥L2(Γ) + ∥∇⊤v∥L2(Γ) ≲A ∥ψ∥L2(Γ) + ∥∇v∥L2(Γ),

where ∇⊤ denotes the projection of ∇ onto the tangent space of Γ. Combining this with

(2.5.29) and Cauchy Schwarz concludes the proof.

We will also need the reverse inequality.

Lemma 2.5.24. The Dirichlet-to-Neumann map on Γ satisfies

∥Nψ∥L2(Γ) ≲A ∥ψ∥H1(Γ).

Proof. Using the same notation as in the above lemma and essentially the same argument,

we have the estimate∫
Γ

(X · nΓ)|∇⊤ψ|2 dS +

∫
Γ

(X · nΓ)|Nψ|2 dS =

∫
Γ

(X · nΓ)|∇v|2 dS

≥ −C∥ψ∥2H1(Γ) + 2

∫
Γ

(X · ∇v)Nψ dS

for some constant C depending only on A. Writing X⊤ := X − (X · nΓ)nΓ, we obtain∫
Γ

(X · nΓ)|Nψ|2 dS ≤ C∥ψ∥2H1(Γ) +

∫
Γ

(X · nΓ)|∇⊤ψ|2 dS − 2

∫
Γ

X⊤ · ∇vNψ dS,

which by Cauchy Schwarz completes the proof.
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Next, we prove higher regularity versions of these bounds. The first bound below amounts

essentially to elliptic regularity estimates for the Neumann boundary value problem.

Proposition 2.5.25 (Ellipticity for the Dirichlet-to-Neumann operator I). Let s ≥ 3
2
, α ∈

[0, 1) and β ∈ [0, 1
2
). Then we have

∥ψ∥Hs(Γ) ≲A ∥ψ∥L2(Γ) + ∥Nψ∥Hs−1(Γ) + ∥Γ∥Hs+r sup
j>0

2−j(r+α−1)∥ψ1
j∥Cα(Γ)

+ sup
j>0

2j(s+β−
1
2
−ε)∥ψ2

j∥H 1
2−β(Γ)

.
(2.5.30)

Proof. The proof of this is very similar to the Dirichlet problem, so we only sketch the

details. Indeed, write v := Hψ. By Proposition 2.5.11, (2.5.20) and the Cα → Cα bound

for H, it suffices to control v in Hs+ 1
2 (Ω) by the right-hand side of (2.5.30). As with the

Dirichlet problem, the procedure is to write the Laplace equation for u = vi ◦ Hi and to

reduce matters to the standard estimate for the Neumann problem on the half-space (which

is available since s > 1). The only added technicality is that there are extra source terms

coming from the Neumann data (in contrast to the source terms which do not appear for the

Dirichlet problem with zero boundary data). By using Proposition 2.5.11 and an analysis

similar to Proposition 2.5.19, it is straightforward to obtain the preliminary estimate

∥ψ∥Hs(Γ) ≲A ∥v∥H1(Ω) + ∥Nψ∥Hs−1(Γ) + ∥Γ∥Hs+r sup
j>0

2−j(r+α−1)∥v1j∥Cα(Ω)

+ sup
j>0

2j(s+β−
1
2
−ε)∥v2j∥H1−β(Ω),

where v := v1j + v2j is any partition of v. The first term ∥v∥H1(Ω) is harmless and can be

controlled by ∥ψ∥L2(Γ)+∥Nψ∥L2(Γ) using the H
1
2 → H1 bound for H and Lemma 2.5.23. We

then take v1j = Hψ1
j and v2j = Hψ2

j and use again the Cα → Cα bounds for H and (2.5.20)

to conclude.

We will also need the following iterated version of the ellipticity bound above.

Proposition 2.5.26 (Ellipticity for the Dirichlet-to-Neumann operator II). Let s ≥ 1
2
and

let k ≥ 1 be an integer. Then using the same notation as the previous proposition, we have

the bound

∥ψ∥Hs+k(Γ) ≲A ∥ψ∥L2(Γ) + ∥N kψ∥Hs(Γ) + ∥Γ∥Hs+k+r sup
j>0

2−j(α−1+r)∥ψ1
j∥Cα(Γ)

+ sup
j>0

2j(s+k−
1
2
+β−ε)∥ψ2

j∥H 1
2−β(Γ)

.
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Proof. Lemma 2.5.23 and Proposition 2.5.25 give us this bound for k = 1. For k ≥ 2, we

may assume inductively that the corresponding estimate holds for all 1 ≤ m ≤ k − 1. We

begin by applying Proposition 2.5.25 to obtain

∥ψ∥Hs+k(Γ) ≲A ∥ψ∥L2(Γ) + ∥Nψ∥Hs+k−1(Γ) + ∥Γ∥Hs+k+r sup
j>0

2−j(α−1+r)∥ψ1
j∥Cα(Γ)

+ sup
j>0

2j(s+k−
1
2
+β−ε)∥ψ2

j∥H 1
2−β(Γ)

.
(2.5.31)

Using the inductive hypothesis, we have

∥Nψ∥Hs+k−1(Γ) ≲A ∥Nψ∥L2(Γ) + ∥N kψ∥Hs(Γ) + ∥Γ∥Hs+k+r sup
j>0

2−jr∥ϕ1
j∥L∞(Γ)

+ sup
j>0

2j(s+k−1−2ε)∥ϕ2
j∥Hε(Γ),

where Nψ := ϕ1
j + ϕ2

j is any partition of Nψ. By Lemma 2.5.24, the first term on the right

can be controlled by ∥ψ∥H1(Γ) which can be dispensed with by interpolation (between L2 and

H1+ε to ensure the domain dependent contributions in the estimate are harmless). Therefore,

to conclude, we need to choose ϕ1
j and ϕ

2
j so that the latter two terms on the right-hand side

of the above are controlled by the right-hand side of (2.5.31). Using v, v1j and v2j from the

previous proposition, we can take ϕ1
j = ∇nP<jv

1
j and ϕ2

j = ∇nP<jv
2
j +∇nP≥jv. The proof

then concludes in a similar way to Proposition 2.5.25. We omit the details.

For our energy estimates, we will also need good bounds for the following div-curl system.

Proposition 2.5.27 (div-curl estimate with Neumann type data). Let v ∈ Hs(Ω) be a

vector field defined on Ω and let s > 3
2
, α, β ∈ [0, 1]. Let v := v1j + v2j be any partition of

v. Moreover, let Bv denote either the Neumann trace of v, nΓ · ∇v or the boundary value

∇⊤v · nΓ. Then if v solves the div-curl system,
∇ · v = f,

∇× v = ω,

Bv = g,

then v satisfies the estimate,

∥v∥Hs(Ω) ≲A ∥f∥Hs−1(Ω) + ∥ω∥Hs−1(Ω) + ∥g∥
Hs− 3

2 (Γ)
+ ∥v∥L2(Ω)

+ ∥Γ∥
Hs+r− 1

2
sup
j>0

2−j(r+α−1)∥v1j∥Cα(Ω) + sup
j>0

2j(s−1+β−ε)∥v2j∥H1−β(Ω).
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Proof. The proof is very similar to the Dirichlet and Neumann problems in that one flattens

the boundary and reduces to the corresponding estimate on the half-space with source terms

depending on essentially f , ω, g and the domain regularity. We omit the details of the

domain flattening as it is similar to Proposition 2.5.19. However, for the sake of clarity, it

is instructive to explain the div-curl estimate in the case when Ω is the half-space {zd < 0}
(particularly in the case of the latter boundary condition involving ∇⊤v ·nΓ). We show that

it is in essence a statement about elliptic regularity for the Neumann problem. In such a

setting, nΓ takes the form ed. We compute for each (Euclidean) component vj of a vector

field v on Ω,

∆vj = ∂iωij + ∂jf.

Therefore, in the case of boundary data given by Bv = nΓ · ∇v, the div-curl estimate is

simply given by elliptic regularity for the Neumann problem. To understand the case of the

other boundary value ∇⊤v · nΓ, we note that the full Neumann data for v is determined by

this boundary value and the curl and divergence of v. If j ̸= d, this is seen from the identity

∂dvj = ∂jvd + ωdj.

So, by the trace theorem and elliptic regularity for the Neumann problem, we have the

desired control of vj for j ̸= d. If j = d, we have

∂dvd = f −
d−1∑
i=1

∂ivi,

which by the trace theorem and the estimate for vi with i ̸= d gives us the estimate for

vd.

We importantly do not claim that the above div-curl system is well-posed. In fact, the

problem is generally over-determined (as, for instance, the curl and divergence fix ∆v, which

forbids certain choices of Neumann data). Fortunately, we will only need the above estimate

in our analysis later when we prove energy estimates and to a lesser extent in our construction

of regular solutions. We will not need any existence type statement for the above system,

however.

Next, to complement the ellipticity estimates for N , we will also need the reverse esti-

mates which control powers of N applied to a function in terms of the corresponding Sobolev

norms of that function. As a preliminary step, we state the following proposition.
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Proposition 2.5.28 (Normal derivative trace bound). Let s > 0, r ≥ 0 and α, β ∈ [0, 1].

The normal trace operator ∇n := nΓ · (∇)|Γ satisfies the bound

∥∇nv∥Hs(Γ) ≲A ∥v∥
Hs+3

2 (Ω)
+ ∥Γ∥Hs+r+1 sup

j>0
2−j(r−1+α)∥v1j∥Cα(Ω)

+ sup
j>0

2j(s+β+
1
2
−ε)∥v2j∥H1−β(Ω).

Proof. Using the partition ∇v = w1
j + w2

j where w1
j := ∇P<jv1j and w2

j = ∇P<jv2j +∇P≥jv

together with the inequalities ∥nΓ∥Hs+r(Γ) ≲A ∥Γ∥Hs+r+1 and ∥nΓ∥Cε(Γ) ≲A 1, we obtain from

Proposition 2.5.9 and Proposition 2.5.11 (after possibly relabelling ε),

∥∇nv∥Hs(Γ) ≲A ∥(∇v)|Γ∥Hs(Γ) + ∥Γ∥Hs+r+1 sup
j>0

2−jr∥w1
j∥L∞(Ω) + sup

j>0
2j(s−2ε)∥w2

j|Γ∥L2(Γ)

≲A ∥v∥
Hs+3

2 (Ω)
+ ∥Γ∥Hs+r+1 sup

j>0
2−jr∥w1

j∥L∞(Ω) + sup
j>0

2j(s−2ε)∥w2
j∥H 1

2+ε(Ω)
.

By estimating

∥w1
j∥L∞(Ω) ≲A 2j(1−α)∥v1j∥Cα(Ω)

and

2j(s−2ε)∥w2
j∥H 1

2+ε(Ω)
≲A ∥v∥

Hs+3
2 (Ω)

+ 2j(s+
1
2
+β−ε)∥v2j∥H1−β(Ω),

we complete the proof.

We can use Proposition 2.5.28 and the balanced bounds for H to prove a refined version

of the Hs+1(Γ) → Hs(Γ) bound for N .

Proposition 2.5.29 (Dirichlet-to-Neumann operator bound I). Let s ≥ 1
2
, r ≥ 0, α ∈ [0, 1)

and β ∈ [0, 1
2
). Then

∥Nψ∥Hs(Γ) ≲A ∥ψ∥Hs+1(Γ) + ∥Γ∥Hs+1+r sup
j>0

2−j(r−1+α)∥ψ1
j∥Cα(Γ)

+ sup
j>0

2j(s+
1
2
+β−ε)∥ψ2

j∥H 1
2−β(Γ)

for any sequence of partitions ψ = ψ1
j + ψ2

j .

Proof. The proof begins by writing N = ∇nH and applying Proposition 2.5.28 to obtain

∥Nψ∥Hs(Γ) ≲A ∥Hψ∥
Hs+3

2 (Ω)
+ ∥Γ∥Hs+1+r sup

j>0
2−j(r−1+α)∥Hψ1

j∥Cα(Ω)

+ sup
j>0

2j(s+
1
2
+β−ε)∥Hψ2

j∥H1−β(Ω).

Using the Cα → Cα bounds forH, (2.5.20) and Proposition 2.5.21, we conclude the proof.
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Similarly to the ellipticity estimate for N , we will need a higher order version of the

above estimate as well.

Proposition 2.5.30 (Dirichlet-to-Neumann operator bound II). Let m ≥ 1 be an integer,

let s ≥ 1
2
and let r ≥ 0, α ∈ [0, 1) and β ∈ [0, 1

2
). Then we have the bound

∥Nmψ∥Hs(Γ) ≲A ∥ψ∥Hs+m(Γ) + ∥Γ∥Hs+r+m sup
j>0

2−j(r+α−1)∥ψ1
j∥Cα(Γ)

+ sup
j>0

2j(s−
1
2
+m+β−ε)∥ψ2

j∥H 1
2−β(Γ)

and the closely related bound when s ≥ 3
2
,

∥HNmψ∥
Hs+1

2 (Ω)
≲A ∥ψ∥Hs+m(Γ) + ∥Γ∥Hs+r+m sup

j>0
2−j(r+α−1)∥ψ1

j∥Cα(Γ)

+ sup
j>0

2j(s−
1
2
+m+β−ε)∥ψ2

j∥H 1
2−β(Γ)

(2.5.32)

for any partition ψ = ψ1
j + ψ2

j .

Proof. We begin with the first bound. The previous proposition handles the case m = 1.

Suppose m > 1 and let us suppose inductively that the bound holds for all integers greater

than or equal to 1 and strictly less than m. Then we have from the inductive hypothesis,

∥Nmψ∥Hs(Γ) ≲A ∥Nψ∥Hs+m−1(Γ) + ∥Γ∥Hs+m+r sup
j>0

2−jr∥ϕ1
j∥L∞(Γ)

+ sup
j>0

2j(s−1+m−ε)∥ϕ2
j∥Hε(Γ),

(2.5.33)

where Nψ := ϕ1
j + ϕ2

j is the same partition of Nψ as in the proof of Proposition 2.5.26.

Applying the inductive hypothesis again to the first term on the right and arguing the

same way as in Proposition 2.5.26 to control the latter two terms in favour of ψ, ψ1
j and

ψ2
j concludes the proof of the first estimate. To obtain the latter estimate, we proceed in

a similar way as above. For the case m = 1, we can use Proposition 2.5.21 to control

∥HNψ∥
Hs+1

2 (Ω)
by the right-hand side of (2.5.33). Then one concludes the bound for all

m ≥ 1 by induction as above.

Next, we note a bound for the operator ∇⊤ which follows from similar reasoning to the

above.
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Proposition 2.5.31. Let s ≥ 1
2
, r ≥ 0, α ∈ [0, 1) and β ∈ [0, 1

2
). Then

∥∇⊤ψ∥Hs(Γ) ≲A ∥ψ∥Hs+1(Γ) + ∥Γ∥Hs+1+r sup
j>0

2−j(r−1+α)∥ψ1
j∥Cα(Γ)

+ sup
j>0

2j(s+
1
2
+β−ε)∥ψ2

j∥H 1
2−β(Γ)

(2.5.34)

for any sequence of partitions ψ = ψ1
j + ψ2

j .

Proof. By writing

∇⊤ψ = ∇Hψ − nΓNψ,

the proof follows essentially the same line of reasoning as the proofs of Proposition 2.5.28

and Proposition 2.5.29. We omit the details.

Finally, we note a bound for Nm∇n which will be needed frequently in the higher energy

bounds.

Corollary 2.5.32. Let α, β ∈ [0, 1], s ≥ 1
2
and r ≥ 0. We have

∥Nm∇nv∥Hs(Γ) ≲A ∥v∥
Hs+m+3

2 (Ω)
+ ∥Γ∥Hs+1+m+r sup

j>0
2−j(r+α−1)∥v1j∥Cα(Ω)

+ sup
j>0

2j(s+β+
1
2
+m−ε)∥v2j∥H1−β(Ω)

where v = v1j + v2j is any sequence of partitions of v.

Proof. We omit most of the details. The proof proceeds by first using Proposition 2.5.30

with the partition ∇nv = nΓ ·w1
j|Γ+nΓ ·w2

j|Γ in L∞(Γ)+Hε(Γ) where w1
j and w

2
j are as in the

proof of Proposition 2.5.28 and then using Proposition 2.5.28 to estimate ∇nv in Hs+m.

Moving surface identities

In this section, we suppose that Ωt is a one parameter family of domains with boundaries

Γt ∈ Λ∗ which flow with a velocity vector field v that is not necessarily divergence free.

Our purpose is to collect various identities and commutator estimates involving the material

derivative Dt := ∂t + v · ∇ and functions on Γt. We begin by recalling several algebraic

identities, many of which were proven in [140].

(i) (Material derivative of the normal).

DtnΓt = − ((∇v)∗(nΓt))
⊤ . (2.5.35)
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(ii) (Leibniz rule for N ).

N (fg) = fN g + gN f − 2∇n∆
−1(∇Hf · ∇Hg). (2.5.36)

(iii) (Commutator with ∇).

[Dt,∇]g = −(∇v)∗(∇g). (2.5.37)

(iv) (Commutator with ∆−1).

[Dt,∆
−1]g = ∆−1

(
2∇v · ∇2∆−1g +∆v · ∇∆−1g

)
. (2.5.38)

(v) (Commutator with H).

S0f := [Dt,H]f = ∆−1(2∇v · ∇2Hf +∇Hf ·∆v). (2.5.39)

(vi) (Commutator with N ).

S1f := [Dt,N ]f = DtnΓt · ∇Hf − nΓt · ((∇v)∗(∇Hf)) + nΓt · ∇([Dt,H]f). (2.5.40)

We also have the general Leibniz type formula,

d

dt

∫
Γt

fdS =

∫
Γt

Dtf + f(D · v⊤ − κv⊥) dS, (2.5.41)

where D is the covariant derivative.

Balanced commutator estimates

Using the above identities, we now establish refined estimates for commutators involving

Dt and the Dirichlet-to-Neumann operator. If we assume that v is divergence free, it is a

straightforward calculation to verify that S0ψ can be rewritten in the form

S0ψ = ∆−1∇ · B(∇v,∇Hψ), (2.5.42)

where B is an Rd-valued bilinear form. Using (2.5.40), we can write the commutator [Dt,N ]

as follows:

S1ψ := [Dt,N ]ψ = ∇nS0ψ −∇Hψ · (∇nv)−∇⊤ψ · ∇v · nΓt .

In the higher energy bounds, we will need an estimate for higher order commutators Sk,

given by

Skψ := [Dt,N k]ψ =
∑

l+m=k−1

N l[Dt,N ]Nmψ, (2.5.43)
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where l,m are non-negative integers and k ∈ N. From now on, let us write A = ∥v∥
C

1
2+ε(Ω)

+

∥Γ∥C1,ε . For s ≥ 1
2
, we have the following refined estimates for Sk when v is divergence free,

which will be useful for estimating SkDta and Ska, respectively, in the higher energy bounds.

Proposition 2.5.33. Suppose that the flow velocity v is divergence free and let s ≥ 1
2
,

k ≥ 1. Then we have the following bounds for Sk.

(i) (Variant 1). For any sequence of partitions ψ = ψ1
j + ψ2

j , there holds

∥Skψ∥Hs(Γ) ≲A∥v∥W 1,∞(Ω)∥ψ∥Hs+k(Γ) + ∥v∥
Hs+3

2+k(Ω)
∥ψ∥L∞(Γ) + ∥Γ∥

Hs+3
2+k∥ψ∥L∞(Γ)

+∥v∥W 1,∞(Ω)∥Γ∥Hs+k+3
2
sup
j>0

2−
j
2∥ψ1

j∥L∞(Γ)

+ ∥v∥W 1,∞(Ω) sup
j>0

2j(s+k−ε)∥ψ2
j∥Hε(Γ).

(ii) (Variant 2).

∥Skψ∥Hs(Γ) ≲A∥v∥W 1,∞(Ω)∥ψ∥Hs+k(Γ) + ∥Γ∥Hs+k+1(∥ψ∥
C

1
2 (Γ)

+ ∥v∥W 1,∞(Ω)∥ψ∥L∞(Γ))

+∥v∥Hs+k+1(Ω)∥ψ∥C 1
2 (Γ)

.

Proof. We will focus on the first estimate as the second one is similar. From (2.5.43), we

need to prove the estimate in (i) with the left-hand side replaced with N l[Dt,N ]Nmψ where

l +m = k − 1. We will focus first on the term N l(∇nS0Nmψ) which is the most difficult

to deal with. Let us write G := B(∇v,∇HNmψ) for notational convenience. We begin by

applying Corollary 2.5.32 and then Proposition 2.5.19 to obtain (using the identity (2.5.42)),

∥N l(∇nS0Nmψ)∥Hs(Γ) ≲A ∥G∥
Hs+l+1

2 (Ω)
+ ∥Γ∥

Hs+3
2+k sup

j>0
2−j(m+ 3

2
)∥∆−1∇ ·G1

j∥W 1,∞(Ω)

+ sup
j>0

2j(s+l+
1
2
−ε)∥∆−1∇ ·G2

j∥H1(Ω),

where G = G1
j + G2

j is a partition of G defined by taking G1
j = B(∇P<jv,∇P<jHNm

<jψ),

where N<j := ∇nP<jH. Using the C1,ε estimate for ∆−1 and the maximum principle for H,

it is straightforward to control

2−j(m+ 3
2
)∥∆−1∇ ·G1

j∥W 1,∞(Ω) ≲A ∥v∥
C

1
2+ε(Ω)

∥ψ∥L∞(Γ) ≲A ∥ψ∥L∞(Γ).

Moreover, using the H−1 → H1
0 estimate for ∆−1, we can control the other term by

2j(s+l+
1
2
−ε)∥∆−1∇ ·G2

j∥H1(Ω) ≲A 2j(s+l+
1
2
−ε)∥v∥W 1,∞(Ω)∥∇P<jHNm

<jψ −∇HNmψ∥L2(Ω)

+∥v∥
Hs+3

2+k(Ω)
∥ψ∥L∞(Γ).
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Finally, it is straightforward (albeit somewhat technical) to verify that the terms on the right-

hand side above can be controlled by the right-hand side of (i) using the Hε → H
1
2
+ε bound

(2.5.20), Proposition 2.5.30, Proposition 2.5.9 with g2j = g (and the fact that ∥nΓ∥Cε(Γ) ≲A 1)

as well as the H
1
2
+ε → Hε trace estimates. Now, we turn to estimating ∥G∥

Hs+l+1
2 (Ω)

. By

performing a paradifferential expansion as in Proposition 2.5.3, it is easy to see that

∥G∥
Hs+1+1

2 (Ω)
≲A ∥v∥W 1,∞(Ω)∥HNmψ∥

Hs+l+3
2 (Ω)

+ ∥T∇HNmψ∇v∥Hs+l+1
2 (Ω)

.

Using Proposition 2.5.21 and Proposition 2.5.30, the first term on the right can be controlled

by the right-hand side of (i). For the latter term, we need to control the l2 sum of

2j(s+l+
1
2
)∥Pj∇vP<j−4∇HNmψ∥L2(Ω).

For this, we estimate

2j(s+l+
1
2
)∥Pj∇vP<j−4∇HNmψ∥L2(Ω) ≲A 2j(s+k+

1
2
)∥Pj∇v∥L2(Ω)∥ψ∥L∞(Γ)

+ 2j(s+l+
1
2
)∥v∥W 1,∞(Ω)∥P<j−4∇H(Nm −Nm

<j)ψ∥L2(Ω).

The first term on the right when summed in l2 is controlled by the right-hand side of (i).

The same is true for the latter term after making use of (2.5.20) and Proposition 2.5.30.

This concludes the full estimate for N l(∇nS0Nmψ). The other terms in N l[Dt,N ]Nmψ are

dealt with similarly.

2.6 Regularization operators

Let Ω∗ be a smooth, bounded domain with boundary Γ∗. In the following, we let Ω be a

bounded domain with boundary Γ ∈ Λ(Γ∗, ε, δ) where ε > 0 and δ > 0 are small positive

constants. As usual, we will abbreviate the above set of hypersurfaces by Λ∗ and consider the

volume of the associated domains as part of our implicit constants. We recall from (2.3.2)

that we have the diffeomorphism from Γ∗ to Γ given by

ΦΓ(x) = x+ ηΓ(x)ν(x)

which parameterizes Γ as a graph over Γ∗. When constructing solutions to the free boundary

Euler equations (and also when proving refined energy estimates), it will be important to have

a good regularization operator at each dyadic scale which preserves divergence free functions.

More precisely, beyond the obvious regularization properties (to be outlined below in more

detail), our operators will need to have the following properties.
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(i) (Extension property). There is a δ0 > 0 such that the following holds: If Ωj is a domain

containing Ω with boundary Γj ∈ Λ∗ such that ∥dist(x,Ω)∥L∞(Ωj) < δ02
−j then there

is an associated regularization Ψ≤jv at the dyadic scale 2j, defined on Ωj.

(ii) (Regularization is divergence free). Given Ωj as above, the regularization Ψ≤jv satisfies

∇ ·Ψ≤jv = 0 on Ωj. Here, v is a divergence free function on Ω.

Remark 2.6.1. The first point will be convenient later for comparing velocities defined

on different domains, which are sufficiently close. The second point is important as our

regularization operators will not necessarily commute with derivatives (but will commute

with derivatives up to lower order terms).

A more precise description of the above regularization operators is given by the following

proposition.

Proposition 2.6.2. Fix α0, let v, Ω and Ωj be as above and let A = ∥Γ∥C1,ε . Then there

exists a regularization operator Ψ≤j which is bounded from Hs
div(Ω) → Hs

div(Ωj) for every

s ≥ 0 with the following properties.

(i) (Regularization bounds).

∥Ψ≤jv∥Hs+α(Ωj) ≲A 2jα∥v∥Hs(Ω), 0 ≤ α.

(ii) (Difference bounds).

∥(Ψ≤j+1 −Ψ≤j)v∥Hs−α(Ωj+1) ≲A 2−jα∥v∥Hs(Ω), 0 ≤ α ≤ min{s, α0}.

(iii) (Error bounds).

∥(I −Ψ≤j)v∥Hs−α(Ω) ≲A 2−jα∥v∥Hs(Ω), 0 ≤ α ≤ min{s, α0}.

Proof. We begin with a preliminary step of constructing a regularization operator Φ≤j with

the above three properties which maps Hs(Ω) to Hs(Ω̃j) where Ω̃j is a neighborhood of Ωj,

but does not necessarily preserve divergence free functions. To do this, we aim to construct

a suitable kernel Kj such that

Φ≤jv(x) =

∫
Ω

Kj(x, y)v(y) dy.
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Here, the kernel Kj(x, y) is of the form

Kj(x, y) =
n∑
k=0

Kj
k(x, y)χk(x),

where (χk)
n
k=0 is a partition of unity of a neighborhood of Ω, obtained by selecting an open

cover {Uk}nk=0 so that there are vectors (ek)
n
k=1 all of the same length with ek outward

oriented and uniformly transversal to Γ ∩ Uk. The remaining set U0 is then chosen to cover

the portion of Ω away from the boundary. Let e0 = 0 and take ek with k ∈ {1, . . . , n} as

above. Such a smooth partition of unity can be constructed with bounds depending only

on the properties of Λ∗. To construct Kj we consider a smooth bump function ϕk with the

following properties:

(i) The support of ϕk satisfies suppϕk ⊆ B(ek, δ1), δ1 ≪ 1.

(ii) The average of ϕk is 1, i.e.,
∫
Rd ϕk(z) dz = 1.

(iii) ϕk has zero moments up to some sufficiently large order N , i.e.,
∫
Rd z

αϕk(z)dz = 0,

1 ≤ |α| ≤ N.

Then, for each j > 0, we consider a regularizing kernel

Kj
0,k(z) := 2jdϕk(2

jz).

We then define Kj
k(x, y) := Kj

0,k(x − y) for y ∈ Ω. Note that for fixed x ∈ Uk, K
j
k(x, y)

is non-zero only if 2j(x − y) ∈ B(ek, δ1), i.e., y is within distance 2−jδ1 of x − 2−jek. This

is what will allow us to view our kernel Kj not only for x ∈ Ω but also for x in a O(2−j)

enlargement of Ω. With this in mind, one can check that the family of kernels Kj satisfy

the following:

(i) Kj : Ω̃j × Ω → R, where Ω̃j := {x ∈ Rd : d(x,Ω) ≤ c2−j} with a small universal

constant c.

(ii) |∂αx∂βyKj(x, y)| ≲ 2j(d+|α|+|β|), for multi-indices α, β.

(iii)
∫
Ω
Kj(x, y) dy = 1.

(iv)
∫
Ω
Kj(x, y)(x− y)α dy = 0, 1 ≤ |α| ≤ N.
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From the definition of Kj, we see that Φ≤jv is defined on a neighborhood of Ωj if δ0 from

property (i) above is small enough. It is then a straightforward matter to verify that Φ≤j

satisfies the regularization, difference and error bounds in Proposition 2.6.2 when s and α

are integers (the latter two bounds requiring the moment conditions, with N = N(α0)). The

general bound follows by interpolation.

It remains to construct the regularization operator Ψ≤j which preserves divergence free

functions. We first note that without loss of generality we may assume that Γj ∈ Λ∗ with

the regularization bound

∥Γj∥Ck,β ≲A,k,β 2j(β+k−1−ε) (2.6.1)

for each integer k ≥ 1 and real number 0 ≤ β < 1. Indeed, for large enough j, by working

in local coordinates and using standard mollification techniques we can use the uniform C1,ε

regularity of ηΓ to construct a surface Γ̃j ∈ Λ∗ with the bounds (2.6.1) such that Γ̃j is within

distance ≲A 2−j(1+ε) of Γ. For some small c > 0, we can then define a surface Γj via the

parameterization ηΓj
:= ηΓ̃j

+ c2−j. This defines a domain whose boundary has the required

regularization bound and which, if δ0 is small enough, contains all domains within a δ02
−j

neighborhood of Ω. Therefore, it suffices to construct Ψ≤j in the case when Γj satisfies

(2.6.1). We make this assumption for the remainder of the construction.

Next, we correct Φ≤jv by a gradient potential. We define for v ∈ Hs
div(Ω),

Ψ≤jv := Φ≤jv −∇∆−1
Ωj
(∇ · Φ≤jv),

where ∆−1
Ωj

is the solution operator for the Dirichlet problem with zero boundary data asso-

ciated to the domain Ωj.

To prove the regularization bounds for Ψ≤j, we note that because v is divergence free,

we have

∇ · Φ≤jv(x) =
n∑
k=0

∫
ϕk(y)∇χk(x) · (v(x− 2−jy)− v(x)) dy. (2.6.2)

In other words, no derivatives fall on v or the kernel when taking the divergence. From the

above formula, one can easily verify the following bounds for ∇ · Φ≤jv for every s1, s2 ≥ 0:

∥∇ · Φ≤jv∥Hs1 (Ωj) ≲A 2−js2∥v∥Hs1+s2 (Ω).
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To establish the regularization property of Ψ≤j, we use this and (2.6.1) together with the

balanced Dirichlet estimate Proposition 2.5.20 to obtain

∥∇∆−1
Ωj
(∇ · Φ≤jv)∥Hs+α(Ωj) ≲A 2jα∥v∥Hs(Ω).

Therefore, the regularization bound ∥Ψ≤jv∥Hs+α(Ωj) ≲A 2jα∥v∥Hs(Ω) follows immediately.

The bounds for Ψ≤j+1v −Ψ≤jv and I −Ψ≤jv are analogous.

Finally, we note the pointwise analogues of the above estimates.

Proposition 2.6.3. Given the assumptions of Proposition 2.6.2, the regularization operator

Ψ≤j satisfies the following pointwise bounds for 0 ≤ α < 2:

∥Ψ≤jv∥Cα(Ωj) ≲A 2jβ∥v∥Cα−β(Ω),

for 0 ≤ β ≤ α, and

∥(I −Ψ≤j)v∥Cα(Ω) + ∥(Ψ≤j+1 −Ψ≤j)v∥Cα(Ωj+1) ≲A 2−jβ∥v∥Cα+β(Ω),

for β ≥ 0.

Proof. The corresponding bounds for Φ≤j are straightforward to directly verify. To estimate

the gradient correction, we again may assume without loss of generality the bound (2.6.1)

and then use the pointwise estimates from Proposition 2.5.14 and Proposition 2.5.15.

Frequency envelopes

Let Γ ∈ Λ∗ and let s > d
2
+ 1. Suppose that v ∈ Hs(Ω) and suppose that Γ ∈ Hs

is parameterized in collar coordinates by x 7→ x + ηΓ(x)ν(x). At this point, we define

A := ∥Γ∥C1,ε + ∥v∥
C

1
2 (Ω)

. Using the extension operator from Proposition 2.5.12, we have the

following Littlewood-Paley decomposition for a function v defined on Ω:

v =
∑
j≥0

Pjv,

where by abuse of notation Pjv is interpreted to mean PjEΩv where EΩ is as in Proposi-

tion 2.5.12 and P0 is to be interpreted as P≤0. We also have a corresponding Littlewood-Paley

type decomposition for functions on Γ∗. Indeed, denote by ⟨D⟩∗ := (I−∆Γ∗)
1
2 . For functions

on Γ∗, we then write for j > 0, Pj := φ(2−j⟨D⟩∗)− φ(2−j+1⟨D⟩∗) and P0 := φ(⟨D⟩∗) where
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φ : R → R with φ = 1 on the unit ball and with support in B2(0). We then have from

Proposition 2.5.12 the almost orthogonality

∥(v,Γ)∥2Hs ≈A

∑
j≥0

22js
(
∥Pjv∥2L2(Rd) + ∥PjηΓ∥2L2(Γ∗)

)
.

The above equivalence will allow us to define Hs frequency envelopes for states (v,Γ) ∈ Hs

with the l2 decay required to establish our continuous dependence result as well as the

continuity of solutions with values in Hs later on.

Remark 2.6.4. To define the Littlewood-Paley decomposition above, we use the exten-

sion EΩ from Proposition 2.5.12 (as opposed to, e.g., the Stein extension) because of its

transparent continuous dependence on the domain. This will be important for establishing

continuous dependence of solutions to the free boundary Euler equations with respect to the

data when we have to compare frequency envelopes for different initial data.

Definition 2.6.5 (Frequency envelopes). Let s > d
2
+ 1, Γ ∈ Λ∗ and (v,Γ) ∈ Hs. An Hs

frequency envelope for the pair (v,Γ) is a positive sequence cj such that for each j ≥ 0,

∥Pjv∥Hs(Rd) + ∥PjηΓ∥Hs(Γ∗) ≲A cj∥(v,Γ)∥Hs , ∥cj∥l2 ≲A 1.

We say that the sequence (cj)j is admissible if c0 ≈A 1 and it is slowly varying,

cj ≤ 2δ|j−k|ck, j, k ≥ 0, 0 < δ ≪ 1.

We can always define an admissible frequency envelope by the formula

cj = 2−δj + (1 + ∥(v,Γ)∥Hs)−1max
k

2−δ|j−k|
(
∥Pkv∥Hs(Rd) + ∥PkηΓ∥Hs(Γ∗)

)
. (2.6.3)

Unless otherwise stated, we will take this as our formula for cj. The following proposition

will be useful in our construction of rough solutions later on as well as for proving continuity

of the data-to-solution map.

Proposition 2.6.6. Let Γ ∈ Λ∗ and let s > d
2
+ 1. Suppose that (v,Γ) ∈ Hs and let (cj)j

be its associated admissible frequency envelope. Then there exists a family of regularized

domains Ωj with boundaries Γj ∈ Λ∗ and Γj ∈ Hs along with associated divergence free

regularizations vj := Ψ≤jv defined on a 2−j enlargement of Ωj ∪ Ω such that the following

holds.

(i) (Good pointwise approximation).

(vj,Γj) → (v,Γ) in C1 × C1, 1
2 as j → ∞.
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(ii) (Uniform bound).

∥(vj,Γj)∥Hs ≲A ∥(v,Γ)∥Hs .

(iii) (Higher regularity).

∥(vj,Γj)∥Hs+α ≲A 2jαcj∥(v,Γ)∥Hs , α > 1.

(iv) (Low frequency difference bounds). On a 2−j enlarged neighborhood of Ωj ∪ Ωj+1,

there holds

∥(vj, ηΓj
)− (vj+1, ηΓj+1

)∥L2×L2 ≲A 2−jscj∥(v,Γ)∥Hs .

Proof. We define Γj by the graph parameterization ηΓj
= P≤jηΓ (using the projections de-

fined above). By Sobolev embedding, we have |ηΓj
− ηΓ| ≲ 2−

3
2
j, and so the existence of the

required divergence free regularization vj := Ψ≤jv comes from Proposition 2.6.2.

Next, we turn to verifying the above four properties. We focus on the bounds for vj as

the bounds for Γj are similar (and simpler). Properties (i) and (ii) are clear from Sobolev

embedding and Proposition 2.6.2. Next, we turn to property (iii). We begin by establishing

this property for Φ≤jv and then we will upgrade to the full divergence free regularization

vj = Ψ≤jv. We write wl as shorthand for Plw and begin by splitting

∥Φ≤jv∥Hs+α ≤
∑
l≤j

∥Φ≤jv
l∥Hs+α +

∑
l>j

∥Φ≤jv
l∥Hs+α .

For l ≤ j, we estimate

∥Φ≤jv
l∥Hs+α ≲A ∥vl∥Hs+α ≲A 2lαcl∥(v,Γ)∥Hs ≲A 2jαcj2

(α−δ)(l−j)∥(v,Γ)∥Hs .

For l > j, we estimate

∥Φ≤jv
l∥Hs+α ≲A 2j(α+s)∥vl∥L2 ≲A 2jαcj2

(j−l)(s−δ)∥(v,Γ)∥Hs .

Summing up each contribution gives

∥Φ≤jv∥Hs+α ≲A 2jαcj∥(v,Γ)∥Hs .

To obtain the corresponding bound for Ψ≤j, we simply note that by Proposition 2.5.20,

∥∇∆−1∇ · Φ≤jv∥Hs+α ≲A ∥Φ≤jv∥Hs+α + 2j(s+α−ε)∥∇ · Φ≤jv∥L2 .
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By (2.6.2), we have 2j(s+α)∥∇ · Φ≤jv∥L2 ≲A 2jα∥v∥Hs . Therefore, if we choose δ in the

definition of cj so that 2−jε ≤ cj, we have

∥Ψ≤jv∥Hs+α ≲A 2jαcj∥(v,Γ)∥Hs .

This establishes property (iii) for Ψ≤jv. The proof of property (iv) is similar except now one

can use the difference and error bounds in Proposition 2.6.2. We omit the details.

2.7 Higher energy bounds

Let k > d
2
+ 1 be an integer. Our aim in this section is to establish control of the Hk norm

of (v,Γ) in terms of the initial data where the growth of these norms is dictated by the

pointwise control parameters A and B below. To accomplish this, we will first construct a

coercive energy functional (v,Γ) 7→ Ek(v,Γ) associated to each integer k > d
2
+ 1 and then

we will prove energy estimates for Ek(v,Γ) to obtain estimates for ∥(v,Γ)∥Hk when (v,Γ)

is a solution to the free boundary Euler equations. More precisely, we prove the following

theorem.

Theorem 2.7.1. Let s ∈ R with s > d
2
+ 1 and let k > d

2
+ 1 be an integer. Fix a collar

neighborhood Λ(Γ∗, ε, δ) with δ > 0 sufficiently small. Then for Γ restricted to Λ∗ there

exists an energy functional (v,Γ) 7→ Ek(v,Γ) such that

(i) (Energy coercivity).

Ek(v,Γ) ≈A 1 + ∥(v,Γ)∥2Hk . (2.7.1)

(ii) (Energy propagation). If, in addition to the above, (v,Γ) = (v(t),Γt) is a solution to

the free boundary Euler equations, then Ek(t) := Ek(v(t),Γt) satisfies

d

dt
Ek ≲A B log(1 + ∥(v,Γ)∥Hs)Ek.

Here, A := 1 + |Ω|+ ∥v∥
C

1
2+ε(Ω)

+ ∥Γ∥C1,ε and B := 1 + ∥v∥W 1,∞(Ω) + ∥Γ∥
C1, 12

.

By Grönwall’s inequality, this gives the single and double exponential bounds

∥(v(t),Γt)∥2Hk ≲A exp

(∫ t

0

CAB(s) log(1 + ∥(v,Γ)∥Hs)ds

)
(1 + ∥(v0,Γ0)∥2Hk).

∥(v(t),Γt)∥2Hk ≲A exp

(
log(CA(1 + ∥(v0,Γ0)∥2Hk)) exp

∫ t

0

CAB(s) ds

)
for all integers k > d

2
+ 1.
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Remark 2.7.2. It is important to note that the first part of Theorem 2.7.1 does not make

any reference to the dynamical problem.

Constructing the energy functional

Before establishing the above theorem, we motivate our choice of energy. At this point,

the discussion will be heuristic only. There are two quantities to control; namely, the Hk

norms of v and Γ. However, these are coupled via the nonlinear evolution, so they must be

measured in tandem. We achieve this by working instead with well-chosen good variables,

which are selected as follows:

i) The vorticity ω. If v is a divergence free vector field on Ω, then in Euclidean coordinates,

we have the following relation for ∆vi:

∆vi = −∂jωij,

where ω denotes the curl of v. Therefore, v is controlled by ω and a suitable boundary

value. However, it turns out to be simpler to view v as the solution to a div-curl

system, again with a boundary condition whose choice will be addressed shortly.

ii) The Taylor coefficient a. This variable is used to describe the regularity of the bound-

ary. Precisely, as we will see later, we have the approximate relation

Na ≈ aκ

where κ represents the mean curvature of Γ. Thus, as long as the Taylor sign condition

remains satisfied, the Hk norm of Γ should be comparable at leading order to the Hk−1

norm of a.

iii) The material derivative of the Taylor coefficient, Dta. At leading order this provides

information about v via the approximate paradifferential relation

Dta ≈ NTnv,

for a suitable representation of the paraproduct above. This will provide the needed

boundary condition for the div-curl system for v.

Thus, at the principal level we have the correspondence

v ↔ (ω,Dta), Γ ↔ a,
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which will be the basis for our coercivity property. For the first part, it is better to think of

v as solving a div-curl system. One might try to think of a rotational/irrotational decompo-

sition v = vrot + vir, where the two components solve div-curl systems as follows:
curl vrot = ω,

∇ · vrot = 0,

vrot · nΓ = 0 on Γ,


curl vir = 0,

∇ · vir = 0,

vir · nΓ = v · nΓ on Γ.

Unfortunately, such a decomposition is not well-suited for our present problem, essentially

due to the fact that in our setting nΓ has less regularity than v on the free boundary;

namely, Hk−1 versus Hk− 1
2 . Hence, we cannot use such a decomposition directly, though

a paradifferential form of it will appear later in our existence proof. Instead, we will by-

pass this difficulty by associating the Dta variable with ∇⊤v · nΓ, the normal component of

the tangential derivatives on the boundary, which will then play the role of the boundary

condition in the div-curl system for v. This, in turn, yields the v part of the coercivity bound.

Now we turn our attention to the dynamical side, which ultimately determines the choice

of the good variables. There we separate the good variables differently, into the vorticity

ω ∈ Hk−1(Ω) on one hand, which will provide the interior component of the energy, and the

pair (a,Dta) in H
k−1(Γ) × Hk− 3

2 (Γ), which carries the boundary component of the energy.

For the vorticity, this is immediately clear from the equation

Dtωij = −ωik∂jvk + ωjk∂ivk, (2.7.2)

which results from taking curl of (2.1.1). Based on the transport structure of the vorticity,

it is natural to include the quantity ∥ω∥2
Hk−1(Ω)

as a component of the energy. On the other

hand, it turns out that ∥(a,Dta)∥2
Hk−1(Γ)×Hk− 3

2 (Γ)
can be controlled by the linearized energy

Elin(wk, sk), where sk and wk solve the linearized equation to leading order with wk = ∇HN k−2Dta,

sk = N k−1a.

The derivation for this is a bit more involved than for the vorticity and will be handled later.

With the above discussion in mind, we define our energy as follows:

Ek(v,Γ) := 1 + ∥v∥2L2(Ω) + ∥ω∥2Hk−1(Ω) + Elin(wk, sk). (2.7.3)
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In the sequel, we will sometimes refer to ∥ω∥2
Hk−1(Ω)

as the rotational part of the energy,

denoted by Ek
r (v,Γ), and Elin(wk, sk) as the irrotational part of the energy, denoted by

Ek
i (v,Γ).

Remark 2.7.3. This definition of the energy has to be interpreted in a suitable way when v

and Γ do not solve the free boundary Euler equations. Indeed, it is important that, a priori,

the definition of the energy functional does not depend on the dynamics of the problem.

Therefore, for a bounded connected domain Ω with (v,Γ) ∈ Hk, we define p through the

boundary condition p|Γ = 0 and the Laplace equation

∆p = −tr(∇v)2.

The Taylor sign term is then defined via

a := −nΓ · ∇p|Γ.

Moreover, we define Dtp through the Dirichlet boundary condition Dtp|Γ = 0 and ∆Dtp

given by

∆Dtp = 4tr(∇2p · ∇v) + 2tr((∇v)3) + ∆v · ∇p =: F. (2.7.4)

In other words, Dtp = ∆−1F . This is the definition of Dtp which is compatible with the

dynamical problem. We then define Dt∇p by

Dt∇p := −∇v · ∇p+∇Dtp

and then Dta by

Dta := −nΓ ·Dt∇p|Γ.

With these definitions, the energy functional (2.7.3) is well-defined, irrespective of whether

the state (v,Γ) evolves dynamically.

Remark 2.7.4. We note that the energy functional (2.7.3) is essentially the same as that

from [134]. The main difference, so far, is in the derivation of this energy. Indeed, our

approach was to identify Alinhac style good unknowns, whereas [134] first derives a wave-

type equation for a and then applies powers of the Dirichlet-to-Neumann operator to this

equation, as if it were a vector field. However, as can be immediately inferred from the low

regularity of our control norms, the way we treat the energy is very different from [134].
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Coercivity of the energy functional

We begin by establishing the coercivity part of Theorem 2.7.1. That is, we want to show

that

Ek(v,Γ) ≈A 1 + ∥(v,Γ)∥2Hk .

We begin by collecting some preliminary estimates for the various quantities that will appear

in our analysis.

L∞ estimates for coercivity

Here we will establish some L∞ based estimates for p and Dtp in terms of the control

parameter A. The A control parameter involves only the physical variables v and Γ. The

variables p andDtp are related to these variables through solving a suitable Laplace equation.

We will therefore need to make use of the Schauder type estimates in Proposition 2.5.15 to

control these terms (in suitable pointwise norms) by A. For this, we have the following

lemma.

Lemma 2.7.5. Given the assumptions of Theorem 2.7.1, the following pointwise estimates

for p and Dtp hold.

(i) (C1,ε estimate for p).

∥p∥C1,ε(Ω) ≲A 1.

(ii) (Partition bound for Dtp). There exists a sequence of partitions Dtp =: F 1
j + F 2

j such

that

∥F 1
j ∥W 1,∞(Ω) ≲A 2j(

1
2
−ε), ∥F 2

j ∥H1(Ω) ≲A 2−j(k−1−ε)(∥v∥Hk−ε(Ω) + ∥p∥
Hk+1

2−ε(Ω)
).

One can loosely think of the partition of Dtp in the second part of Lemma 2.7.5 as a

splitting of Dtp into low and high frequency parts at a dyadic scale 2j. The high frequency

part will typically be best estimated in L2 based norms, and the low frequency part in L∞

based norms. In particular, one can think of the estimate for F 1
j as an estimate for the “low

frequency part” of Dtp in C
1
2
+ε. This will serve as a substitute for what would be a C

1
2
+ε

estimate for the inhomogenenous Dirichlet problem, which is not available to us (except for

harmonic functions). The usefulness of this will be made more transparent later.

Proof. We begin with some notation. For any integer l > 0, we write Φl := Φ≤l+1 − Φ≤l

and Ψl := Ψ≤l+1 −Ψ≤l. We also write Φ0 and Ψ0 to mean Φ≤0 and Ψ≤0, respectively. For a
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vector or scalar valued function f defined on Ω, we write f l and f≤l as shorthand for Φlf and

Φ≤lf , respectively. If in addition, f is a divergence free vector field, we instead use f l and

f≤l to mean Ψlf and Ψ≤lf , respectively. This will ensure that the divergence free structure

of f is preserved. We abuse notation and write f lg≤l to mean

f lg≤l :=
∑
l≥0

∑
0≤m≤l

f lgm − 1

2

∑
l≥0

f lgl.

This definition ensures (with the convention that Φ0 = Φ≤0 and Ψ0 = Ψ≤0) that we have

the decomposition

fg = f lg≤l + f≤lgl, (2.7.5)

which can be thought of as a kind of crude bilinear paraproduct decomposition where f lg≤l

selects the portion of fg where f is at higher or comparable frequency compared to g.

Likewise, we can define trilinear expressions of the form f lg≤lh≤l in such a way that we have

fgh = f lg≤lh≤l + f≤lglh≤l + f≤lg≤lhl, and similarly for quadrilinear expressions. Now, we

begin with the first part of the lemma. Expanding using (2.7.5) we see that

p = −∆−1tr(∇v)2 = −2∆−1∂j(v
l
i∂iv

≤l
j ). (2.7.6)

Importantly, because vl is divergence free, we were able to write tr(∇v)2 as the divergence

of a bilinear expression in v and ∇v, where the high frequency factor is undifferentiated.

This will allow us to make use of the lower regularity C1,α estimates in Proposition 2.5.15

and simultaneously allow us to rebalance derivatives in the bilinear expression for v. This

theme of writing multilinear expressions in divergence form with the highest frequency factor

undifferentiated will appear several times in the sequel in more complicated forms. In this

case, we have from Proposition 2.5.15,

∥p∥C1,ε(Ω) ≲A ∥vli∂iv
≤l
j ∥Cε(Ω) ≲A ∥v∥2

C
1
2+ε(Ω)

≲A 1.

Next, we turn to the estimate for Dtp, which is the more difficult part. From (2.7.4), we can

write in Euclidean coordinates,

Dtp = 4∆−1(∂i∂jp∂ivj) + 2∆−1(∂jvk∂kvi∂ivj) + ∆−1(∂i∂ivj∂jp). (2.7.7)

In order to make full use of Proposition 2.5.15, we will again need to write Dtp in the form

∆−1∇ · f for some vector field f in a way which allows us to also rebalance derivatives, as
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we did in the estimate for p. We start by estimating the first term in (2.7.7). We first write

∂i∂jp∂ivj = ∇ · (∂ip∂iv) and use the partition

∆−1∇ · (∂ip∂iv) = T 1
j + T 2

j ,

where T 1
j = ∆−1∇ · (∂ip∂iΦ<jv). From Proposition 2.5.15 and the C1,ε estimate for p above,

we have

∥T 1
j ∥W 1,∞(Ω) ≲A ∥∇p∥Cε(Ω)∥∇Φ<jv∥L∞(Ω) + ∥∇p∥L∞(Ω)∥∇Φ<jv∥Cε(Ω) ≲A 2j(

1
2
−ε).

We also see from (2.5.19),

∥T 2
j ∥H1(Ω) ≲A 2−j(k−1−ε)∥∇p∥L∞(Ω)∥v∥Hk−ε(Ω) ≲A 2−j(k−1−ε)∥v∥Hk−ε(Ω).

Next, we turn to the second term in (2.7.7). We start by performing a trilinear frequency

decomposition. Using the symmetry of the indices, we have

∂jvk∂kvi∂ivj = 3∂jv
l
k∂kv

≤l
i ∂iv

≤l
j . (2.7.8)

To best balance derivatives, we would like to write this in the form ∇ · T (vl,∇v≤l,∇v≤l)
where T is an appropriate trilinear expression. To do this, we can use the symmetry of the

expression and the fact that v is divergence free to write

∂jv
l
k∂kv

≤l
i ∂iv

≤l
j = ∂j(v

l
k∂kv

≤l
i ∂iv

≤l
j )− vlk∂k∂jv

≤l
i ∂iv

≤l
j

= ∂j(v
l
k∂kv

≤l
i ∂iv

≤l
j )− 1

2
vlk∂k(∂jv

≤l
i ∂iv

≤l
j )

= ∂j(v
l
k∂kv

≤l
i ∂iv

≤l
j )− 1

2
∂k(v

l
k∂jv

≤l
i ∂iv

≤l
j ).

(2.7.9)

We partition the last line above into Q1
j +Q2

j where

Q1
j := ∂m(v

l
k∂kΦ<jv

≤l
i ∂iv

≤l
m )− 1

2
∂k(v

l
k∂mΦ<jv

≤l
i ∂iv

≤l
m ).

We then obtain in a straightforward way using Proposition 2.5.15 and summing in l,

∥∆−1Q1
j∥W 1,∞(Ω) ≲A 2j(

1
2
−ε)∥v∥3

C
1
2+ε(Ω)

≲A 2j(
1
2
−ε),

and from the H−1 → H1 estimate for the Dirichlet problem and Proposition 2.6.2,

∥∆−1Q2
j∥H1(Ω) ≲A 2−j(k−1−ε)∥v∥Hk−ε(Ω).
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Finally, the last term in (2.7.7) can be handled by writing

∂i∂ivj∂jp = ∂i(∂ivj∂jp)− ∂ivj∂i∂jp

and partitioning each term similarly to the first term in (2.7.7). Collecting all of the above

partitions together completes the proof of the lemma.

The following simple consequence of the above lemma will be useful for estimating Dta

in pointwise norms.

Corollary 2.7.6. Given the assumptions of Lemma 2.7.5, there exists a sequence of parti-

tions Dt∇p = G1
j +G2

j such that

∥G1
j∥L∞(Ω) ≲A 2j(

1
2
−ε)

∥G2
j∥H 1

2+ε(Ω)
≲A 2−j(k−

3
2
−2ε)(∥v∥Hk−ε(Ω) + ∥p∥

Hk+1
2−ε(Ω)

+ ∥Dt∇p∥Hk−1−ε(Ω)).

Proof. This follows from Lemma 2.7.5 by taking

G1
j = Φ<j(−∇Φ<jv · ∇p+∇F 1

j ), G2
j = Φ<j(−∇Φ≥jv · ∇p) + Φ<j∇F 2

j + Φ≥jDt∇p.

L2 based estimates for a and Dta

Our next step will be to control (a,Dta) in Hk−1(Γ) × Hk− 3
2 (Γ) by the energy plus some

lower order terms. Let us define for the rest of this section the lower order quantity

Λk−ε := ∥Γ∥Hk−ε + ∥v∥Hk−ε(Ω) + ∥p∥
Hk+1

2−ε(Ω)
+ ∥Dt∇p∥Hk−1−ε(Ω),

where ε > 0 is any small, but fixed, positive constant.

Lemma 2.7.7. We have

∥a∥Hk−1(Γ) + ∥Dta∥Hk− 3
2 (Γ)

≲A (Ek)
1
2 + Λk−ε.

Proof. To control a in Hk−1(Γ), we use the ellipticity estimate for the Dirichlet-to-Neumann

operator from Proposition 2.5.26 to obtain

∥a∥Hk−1(Γ) ≲A ∥a∥L2(Γ) + ∥N k−1a∥L2(Γ) + ∥Γ∥Hk−ε∥a∥Cε(Γ) ≲A (Ek)
1
2 + Λk−ε.
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To estimate Dta in H
k− 3

2 (Γ), we consider the partition Dt∇p := G1
j+G

2
j from Corollary 2.7.6

and estimate using Proposition 2.5.26,

∥Dta∥Hk− 3
2 (Γ)

≲A ∥N k−2Dta∥H 1
2 (Γ)

+ ∥Γ∥Hk−ε sup
j>0

2−j(
1
2
−ε)∥nΓ ·G1

j∥L∞(Γ)

+ sup
j>0

2j(k−2ε− 3
2
)∥nΓ ·G2

j∥Hε(Γ) + Λk−ε.

From the trace theorem,

∥N k−2Dta∥H 1
2 (Γ)

≲A ∥HN k−2Dta∥H1(Ω).

Since k ≥ 3 and ∫
Γ

N k−2Dta dS =

∫
Γ

nΓ · ∇HN k−3Dta dS = 0,

we conclude by a Poincare type inequality that

∥HN k−2Dta∥H1(Ω) ≲A ∥∇HN k−2Dta∥L2(Ω) ≲A (Ek)
1
2 .

From Corollary 2.7.6, we have

sup
j>0

2−j(
1
2
−ε)∥nΓ ·G1

j∥L∞(Γ) ≲A 1.

On the other hand, from the trace theorem and Corollary 2.7.6,

2j(k−
3
2
−2ε)∥nΓ ·G2

j∥Hε(Γ) ≲A Λk−ε,

which completes the proof.

With our preliminary estimates in hand, let us proceed with the proof of the first (and

harder) half of the coercivity estimate; namely,

∥(v,Γ)∥Hk ≲A (Ek)
1
2 .

Let us begin by proving the estimate

∥p∥
Hk+1

2 (Ω)
+ ∥Γ∥Hk ≲A (Ek)

1
2 + Λk−ε. (2.7.10)

We start by recalling from Proposition 2.5.22 that we have

∥Γ∥Hk + ∥nΓ∥Hk−1(Γ) ≲A 1 + ∥κ∥Hk−2(Γ),
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where κ is the mean curvature of Γ. Therefore, to establish (2.7.10), it suffices to establish

the same estimate except with ∥p∥
Hk+1

2 (Ω)
+ ∥κ∥Hk−2(Γ) on the left-hand side. To do this, we

begin by relating the curvature to the pressure via the formula

κ = a−1∆p− a−1D2p(nΓ, nΓ). (2.7.11)

Here, we used the fact that ∆Γp = 0 on Γ. We now estimate each term on the right-hand side

of (2.7.11). For the first term, we use the Laplace equation for p and the bilinear frequency

decomposition for ∆p = −tr(∇v)2 as in Lemma 2.7.5 together with Proposition 2.5.9 to

obtain

∥a−1∆p∥Hk−2(Γ) ≲A ∥tr(∇v)2∥Hk−2(Γ)

+ (∥a−1∥Hk−1−ε(Γ) + ∥Γ∥Hk−ε) sup
j>0

2−j(1−ε)∥Φ<j∂k(v
l
i∂iv

≤l
k )∥L∞(Ω)

+ sup
j>0

2j(k−2−ε)∥Φ≥jtr(∇v)2∥L2(Γ).

Using the trace theorem, the product estimates Proposition 2.5.9 and Corollary 2.5.4, the

latter two terms can be controlled by CAΛk−ε where CA is a constant depending polynomially

on A only. On the other hand, ∥tr(∇v)2∥Hk−2(Γ) can be controlled using the balanced trace

estimate Proposition 2.5.11 as well as Corollary 2.5.4 as follows:

∥tr(∇v)2∥Hk−2(Γ) ≲A ∥tr(∇v)2∥
Hk− 3

2 (Ω)
+ ∥Γ∥Hk−ε sup

j>0
2−j(1−ε)∥Φ<j∂k(v

l
i∂iv

≤l
k )∥L∞(Ω)

+ sup
j>0

2j(k−
3
2
−ε)∥Φ≥jtr(∇v)2∥L2(Ω)

≲A Λk−ε.

To estimate a−1D2p(nΓ, nΓ) in Hk−2(Γ), we proceed similarly by starting with Proposi-

tion 2.5.9 and Lemma 2.7.5 to obtain

∥a−1D2p(nΓ, nΓ)∥Hk−2(Γ) ≲A ∥D2p(nΓ, nΓ)∥Hk−2(Γ) + sup
j>0

2j(k−2−ε)∥Φ≥jD
2p∥L2(Γ)

+ (∥a−1∥Hk−1−ε(Γ) + ∥Γ∥Hk−ε) sup
j>0

2−j(1−ε)∥Φ<jD
2p∥L∞(Ω).

Similarly to the previous estimate, the latter two terms are controlled by CAΛk−ε. For the

term involving D2p(nΓ, nΓ), we use Proposition 2.5.9 again, combined with the estimates

∥nΓ∥Hk−1−ε(Γ) ≲A ∥Γ∥Hk−ε and ∥nΓ∥Cε(Γ) ≲A 1 to obtain (similarly to the above estimate but

with a−1 replaced by nΓ)

∥D2p(nΓ, nΓ)∥Hk−2(Γ) ≲A ∥D2p∥Hk−2(Γ) + Λk−ε.
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Proposition 2.5.11 and the same partition of D2p above then yields

∥D2p∥Hk−2(Γ) ≲A ∥∇p∥
Hk− 1

2 (Ω)
+ Λk−ε.

To complete the proof of (2.7.10), we now only need to control ∇p in Hk− 1
2 . For this, we use

the div-curl estimate Proposition 2.5.27 for ∇p as well as Corollary 2.5.4, Proposition 2.5.9

and Proposition 2.5.31 to obtain

∥∇p∥
Hk− 1

2 (Ω)
≲A ∥∇p∥L2(Ω) + ∥∇⊤a∥Hk−2(Γ) + ∥tr(∇v)2∥

Hk− 3
2 (Ω)

+ ∥Γ∥Hk−ε∥∇p∥Cε(Ω)

≲A (Ek)
1
2 + ∥a∥Hk−1(Γ) + Λk−ε

≲A (Ek)
1
2 + Λk−ε,

(2.7.12)

where we used Lemma 2.7.7 to go from the second to third line. From this, we finally obtain

the estimate (2.7.10). To close the coercivity estimate, it remains to control v in Hk(Ω) and

Dt∇p in Hk−1(Ω) by the energy. We first reduce to the estimate

∥v∥Hk(Ω) ≲A (Ek)
1
2 + ∥Dt∇p∥Hk−1(Ω) + Λk−ε.

For this, we start by relating the boundary term ∇⊤v · nΓ to Dt∇p. Indeed, we have

Dt∇p = ∇Dtp−∇v · ∇p.

Since ∇p = −anΓ and Dtp = 0 on Γ, we obtain

∇⊤v · nΓ = a−1(Dt∇p)⊤,

and so, since v is divergence free, we have from the div-curl estimate in Proposition 2.5.27,

∥v∥Hk(Ω) ≲A ∥v∥L2(Ω) + ∥ω∥Hk−1(Ω) + ∥a−1(Dt∇p)⊤∥Hk− 3
2 (Γ)

+ ∥Γ∥Hk−ε∥v∥
C

1
2+ε(Ω)

≲A ∥a−1(Dt∇p)⊤∥Hk− 3
2 (Γ)

+ (Ek)
1
2 + Λk−ε.

(2.7.13)

To estimate the first term on the right-hand side of (2.7.13), we use the decomposition

Dt∇p = G1
j +G2

j from Corollary 2.7.6. By the balanced product and trace estimates Propo-

sition 2.5.9 and Proposition 2.5.11 and a similar analysis to the estimate for ∥κ∥Hk−2(Γ), we

obtain

∥a−1(Dt∇p)⊤∥Hk− 3
2 (Γ)

≲A ∥Dt∇p∥Hk−1(Ω)

+ (∥a−1∥Hk−1−ε(Γ) + ∥Γ∥Hk−ε) sup
j>0

2−j(
1
2
−ε)∥G1

j∥L∞(Ω)

+ sup
j>0

2j(k−
3
2
−2ε)∥G2

j∥H 1
2+ε(Ω)

≲A ∥Dt∇p∥Hk−1(Ω) + Λk−ε.
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Finally, we need to show that

∥Dt∇p∥Hk−1(Ω) ≲A (Ek)
1
2 + Λk−ε.

For this, we will use the div-curl decomposition for Dt∇p. The divergence and curl are given

by  ∇ ·Dt∇p = 3tr(∇2p · ∇v) + 2tr(∇v)3 in Ω,

∇×Dt∇p = ∇2p · ∇v − (∇v)∗ · ∇2p in Ω.

Hence, using the div-curl estimate and the partition Dt∇p = G1
j + G2

j from Corollary 2.7.6

in conjunction with Corollary 2.5.4, we obtain

∥Dt∇p∥Hk−1(Ω) ≲A ∥p∥
Hk+1

2 (Ω)
∥v∥

C
1
2 (Ω)

+ ∥p∥C1,ε(Ω)∥v∥Hk−ε(Ω) + ∥tr(∇v)3∥Hk−2(Ω)

+ ∥Γ∥Hk−ε sup
j>0

2−j(
1
2
−ε)∥G1

j∥L∞(Ω) + sup
j>0

2j(k−
3
2
−2ε)∥G2

j∥H 1
2+ε(Ω)

+ Λk−ε

+ ∥∇⊤(Dt∇p) · nΓ∥Hk− 5
2 (Γ)

.

Estimating G1
j and G

2
j as before and then using (2.7.12) gives

∥Dt∇p∥Hk−1(Ω) ≲A (Ek)
1
2 + ∥∇⊤(Dt∇p) · nΓ∥Hk− 5

2 (Γ)
+ ∥v∥Hk−ε(Ω) + ∥Γ∥Hk−ε

+ ∥tr(∇v)3∥Hk−2(Ω) + Λk−ε.

Using a trilinear frequency decomposition as in Lemma 2.7.5, we obtain easily

∥tr(∇v)3∥Hk−2(Ω) ≲A ∥v∥2
C

1
2+ε(Ω)

∥v∥Hk−ε(Ω) ≲A Λk−ε.

It remains to estimate the boundary term. We compute

∇⊤(Dt∇p) · nΓ = −∇⊤Dta−Dt∇p · ∇⊤nΓ. (2.7.14)

By Proposition 2.5.9, Proposition 2.5.31 and using the decomposition Dt∇p = G1
j +G2

j , the

terms in (2.7.14) are controlled in a similar fashion to the above terms by

∥∇⊤(Dt∇p) · nΓ∥Hk− 5
2 (Γ)

≲A ∥Dta∥Hk− 3
2 (Γ)

+ Λk−ε ≲A (Ek)
1
2 + Λk−ε,

where we used Lemma 2.7.7 in the last inequality. Combining everything together, we have

∥Dt∇p∥Hk−1(Ω) + ∥Γ∥Hk + ∥v∥Hk(Ω) + ∥p∥
Hk+1

2 (Ω)
≲A (Ek)

1
2 + Λk−ε.

Using the definition of Λk−ε and interpolating gives

∥Dt∇p∥Hk−1(Ω)+∥Γ∥Hk+∥v∥Hk(Ω)+∥p∥
Hk+1

2 (Ω)
≲A (Ek)

1
2+∥v∥L2(Ω)+∥p∥H1(Ω)+∥Dt∇p∥L2(Ω).
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We can use the H1 estimate for the Laplace equation for p to estimate

∥p∥H1(Ω) ≲A ∥v∥H1(Ω).

Moreover, by writing Dt∇p = ∇Dtp−∇v · ∇p, writing Dtp in the form ∆−1∇ · f as in the

proof of Lemma 2.7.5 and using the H−1 → H1 estimate for ∆−1, we have

∥Dt∇p∥L2(Ω) ≲A ∥v∥H1(Ω).

Therefore, by interpolation we have

∥Dt∇p∥Hk−1(Ω) + ∥Γ∥Hk + ∥v∥Hk(Ω) + ∥p∥
Hk+1

2 (Ω)
≲A (Ek)

1
2 . (2.7.15)

This finally establishes the desired estimate

∥(v,Γ)∥Hk ≲A (Ek)
1
2 .

Next, we show the easier part of the coercivity bound; namely,

(Ek)
1
2 ≲A 1 + ∥(v,Γ)∥Hk .

Clearly, the only nontrivial part is to control the irrotational energy. More precisely, we have

to show that

∥∇HN k−2Dta∥L2(Ω) + ∥a
1
2N k−1a∥L2(Γ) ≲A 1 + ∥(v,Γ)∥Hk . (2.7.16)

To establish this, we will need the following L2 based estimates for p and Dtp.

Lemma 2.7.8. The following estimate holds:

∥p∥
Hk+1

2 (Ω)
+ ∥Dtp∥Hk(Ω) ≲A ∥(v,Γ)∥Hk .

Proof. First, from the balanced Dirichlet estimate in Proposition 2.5.19, as well as Corol-

lary 2.5.4 and Lemma 2.7.5, we have

∥p∥
Hk+1

2 (Ω)
≲A ∥tr(∇v)2∥

Hk− 3
2 (Ω)

+ ∥Γ∥Hk∥p∥W 1,∞(Ω) ≲A ∥(v,Γ)∥Hk .

To estimate Dtp, recall that we can write Dtp in the form ∆−1∇ · f . Indeed, similarly to

Lemma 2.7.5, we can start by writing

Dtp = ∆−1∂i(∂ivj∂jp) + 3∆−1∂i(∂jp∂jvi) + 2∆−1tr(∇v)3 =: F1 + F2 + F3. (2.7.17)
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We now will use Proposition 2.5.19 to estimate each term. We begin with F1. We use the

partition F1 = H1
j +H2

j where H1
j := ∆−1∂i(∂iΦ≤jvk∂kp) and Proposition 2.5.19 to obtain,

∥F1∥Hk(Ω) ≲A ∥∇p · ∇v∥Hk−1(Ω) + ∥Γ∥Hk sup
j>0

2−
j
2∥H1

j ∥W 1,∞(Ω) + sup
j>0

2j(k−1)∥H2
j ∥H1(Ω).

Using Corollary 2.5.4 and the Hk+ 1
2 estimate for p above, we obtain

∥∇p · ∇v∥Hk−1(Ω) ≲A ∥v∥
C

1
2+ε(Ω)

∥p∥
Hk+1

2 (Ω)
+ ∥p∥C1,ε(Ω)∥v∥Hk(Ω) ≲A ∥(v,Γ)∥Hk .

We also have from Proposition 2.5.15 and the properties of Φ≤j,

sup
j>0

2−
j
2∥H1

j ∥W 1,∞(Ω) ≲A ∥p∥C1,ε(Ω)∥v∥C 1
2+ε(Ω)

≲A 1,

and from the H−1 → H1 estimate for ∆−1 and Lemma 2.7.5, we have

sup
j>0

2j(k−1)∥H2
j ∥H1(Ω) ≲A sup

j>0
2j(k−1)∥∇p∥L∞(Ω)∥∇Φ>jv∥L2(Ω) ≲A ∥v∥Hk(Ω).

Hence,

∥F1∥Hk(Ω) ≲A ∥(v,Γ)∥Hk . (2.7.18)

By a very similar analysis, we obtain the same bound (2.7.18) for F2. To estimate F3, one

uses the decomposition of tr(∇v)3 from (2.7.8) and (2.7.9) and then partitions one of the

factors ∇v≤l = ∇Φ<jv
≤l +∇Φ≥jv

≤l. After that, an estimate similar to F1 yields the bound

(2.7.18) for the term F3. Therefore,

∥Dtp∥Hk(Ω) ≲A ∥(v,Γ)∥Hk ,

as desired.

Now, returning to the proof of (2.7.16), for the term ∥a 1
2N k−1a∥L2(Γ), we have from

Lemma 2.5.24 and Proposition 2.5.30,

∥a
1
2N k−1a∥L2(Γ) ≲A ∥a∥Hk−1(Γ) + ∥a∥L∞(Γ)∥Γ∥Hk ≲A ∥a∥Hk−1(Γ) + ∥Γ∥Hk .

Then from Proposition 2.5.9, Proposition 2.5.11 and Lemma 2.7.8, we have

∥a∥Hk−1(Γ) ≲A ∥p∥
Hk+1

2 (Ω)
+ ∥Γ∥Hk ≲A ∥(v,Γ)∥Hk .

To control the other part of the energy, we first note that by (2.5.20) we have

∥∇HN k−2Dta∥L2(Ω) ≲A ∥N k−2Dta∥H 1
2 (Γ)

.
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Then we apply Proposition 2.5.30, Proposition 2.5.11 and Proposition 2.5.9, in that order,

to obtain

∥N k−2Dta∥H 1
2 (Γ)

≲A ∥Dt∇p∥Hk−1(Ω) + ∥Γ∥Hk sup
j>0

2−
j
2∥G1

j∥L∞(Ω) + sup
j>0

2j(k−
3
2
−2ε)∥G2

j∥H 1
2+ε(Ω)

≲A ∥Dt∇p∥Hk−1(Ω) + ∥Γ∥Hk ,

where Dt∇p = G1
j + G2

j is the partition from Corollary 2.7.6. We then write Dt∇p =

−∇v · ∇p+∇Dtp and use Corollary 2.5.4 and Lemma 2.7.8 to obtain

∥Dt∇p∥Hk−1(Ω) ≲A ∥(v,Γ)∥Hk .

This completes the proof of (2.7.16) and thus the proof of part (i) of Theorem 2.7.1. Next,

we turn to part (ii), which is the energy propagation bound.

L∞ estimates for propagation

Now, we turn to the energy propagation bounds. As in the coercivity estimate, we will need

certain L∞ based estimates for p and Dtp, but in norms that have essentially 1
2
more degrees

of regularity compared to Lemma 2.7.5.

Lemma 2.7.9. Given the assumptions of Theorem 2.7.1, the following pointwise estimates

for p and Dtp hold.

(i) (C1, 1
2 estimate for p).

∥p∥
C1, 12 (Ω)

≲A B.

(ii) (W 1,∞ estimate for Dtp). Let s ∈ R with s > d
2
+ 1. Then

∥Dtp∥W 1,∞(Ω) ≲A log(1 + ∥(v,Γ)∥Hs)B.

Proof. We begin with the C1, 1
2 estimate. We have from Proposition 2.5.15, using the decom-

position from (2.7.6) and a similar analysis to the C1,ε estimate for p,

∥p∥
C1, 12 (Ω)

≲A ∥Γ∥
C1, 12

(∥p∥C1,ε(Ω) + ∥vli∂iv
≤l
j ∥Cε(Ω)) + ∥vli∂iv

≤l
j ∥

C
1
2 (Ω)

≲A ∥Γ∥
C1, 12

+ ∥v∥W 1,∞(Ω)

≲A B.
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Now, we turn to the more difficult W 1,∞ estimate for Dtp. Again, we first recall from (2.7.7)

that we have

Dtp = 4∆−1(∂i∂jp∂ivj) + 2∆−1(∂jvk∂kvi∂ivj) + ∆−1(∂i∂ivj∂jp). (2.7.19)

Using a very similar analysis to Lemma 2.7.5 (except without the partition of Dtp), we can

estimate the second term in (2.7.19) in W 1,∞ by

∥∆−1(∂jvk∂kvi∂ivj)∥W 1,∞(Ω) ≲A B.

For the first term in (2.7.19) we have the decomposition

∆−1(∂i∂jp∂ivj) = ∆−1(∂i∂jp
l∂iv

≤l
j ) + ∆−1(∂i∂jp

≤l∂iv
l
j). (2.7.20)

The first term in (2.7.20) can be estimated similarly using Proposition 2.5.15 by

∥∆−1(∂i∂jp
l∂iv

≤l
j )∥W 1,∞(Ω) = ∥∆−1∂j(∂ip

l∂iv
≤l
j )∥W 1,∞(Ω) ≲A ∥p∥C1,ε(Ω)∥v∥W 1,∞(Ω) ≲A B.

(2.7.21)

For the latter term in (2.7.20), we write

∆−1(∂i∂jp
≤l∂iv

l
j) = ∆−1∂i(∂i∂jp

≤lvlj)−∆−1∂j(∂i∂ip
≤lvlj) (2.7.22)

and use the fact that the pressure term is at low frequency compared to v and a similar

analysis to the above to estimate

∥∆−1(∂i∂jp
≤l∂iv

l
j)∥W 1,∞(Ω) ≲A B. (2.7.23)

We now focus on the last term in (2.7.19) which will be responsible for the logarithmic loss

in the estimate. We begin by writing

∂i∂ivj∂jp = ∂i∂iv
l
j∂jp

≤l + ∂i∂iv
≤l
j ∂jp

l. (2.7.24)

For the second term on the right-hand side of (2.7.24), we write

∂i∂iv
≤l
j ∂jp

l = ∂j(∂i∂iv
≤l
j p

l).

Again, similarly to the above, we have

∥∆−1∂j(∂i∂iv
≤l
j p

l)∥W 1,∞(Ω) ≲A B. (2.7.25)
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Now, for the first term on the right of (2.7.24) we have,

∂i∂iv
l
j∂jp

≤l = ∆(vlj∂jp
≤l) + ∂j(v

l
j∂i∂ip

≤l)− 2∂i(v
l
j∂j∂ip

≤l). (2.7.26)

The latter two terms in (2.7.26) are estimated similarly to (2.7.25). We focus our attention

on the first term, which corresponds to estimating ∆−1∆(vlj∂jp
≤l) in W 1,∞. We begin by

writing

∆−1∆(vlj∂jp
≤l) = vlj∂jp

≤l −H(vlj∂jp
≤l). (2.7.27)

For the first term in (2.7.27) we note that

∇(vlj∂jp
≤l) = vlj∂j∇p≤l +∇vlj∂jp≤l.

From the C1,ε bound for p from Lemma 2.7.5, we clearly have ∥vlj∂j∇p≤l∥L∞(Ω) ≲A B. On

the other hand, we have the same estimate for ∇vlj∂jp≤l because

∇vlj∂jp≤l = ∇vj∂jp−∇v≤lj ∂jpl.

This yields the estimate ∥vlj∂jp≤l∥W 1,∞(Ω) ≲A B. It remains to estimate H(vlj∂jp
≤l), which

is where we incur the logarithmic loss. By the maximum principle, it suffices to estimate

∥∇H(vlj∂jp
≤l)∥L∞(Ω). We begin by showing that for each m ≥ 0

∥Φm∇H(vlj∂jp
≤l)∥L∞(Ω) ≲A B, (2.7.28)

with implicit constant independent of m. Indeed, we have

∥Φm∇H(vlj∂jp
≤l)∥L∞(Ω) ≲ ∥Φm∇HΦ≤m(v

l
j∂jp

≤l)∥L∞(Ω) + ∥Φm∇HΦ>m(v
l
j∂jp

≤l)∥L∞(Ω).

For the first term, we have from the regularization properties of Φm and the C1,ε estimate

from Proposition 2.5.15,

∥Φm∇HΦ≤m(v
l
j∂jp

≤l)∥L∞(Ω) ≲ 2−εm∥HΦ≤m(v
l
j∂jp

≤l)∥C1,ε(Ω) ≲A 2−εm∥Φ≤m(v
l
j∂jp

≤l)∥C1,ε(Ω)

≲A ∥vlj∂jp≤l∥W 1,∞(Ω).

Therefore, similarly to the estimate for ∇(vlj∂jp
≤l), we have

∥Φm∇HΦ≤m(v
l
j∂jp

≤l)∥L∞(Ω) ≲A B.

For the other term, we have from the regularization properties of Φ≤m and Φ≥m and the

maximum principle,

∥Φm∇HΦ>m(v
l
j∂jp

≤l)∥L∞(Ω) ≲A 2m∥HΦ>m(v
l
j∂jp

≤l)∥L∞(Ω) ≤ 2m∥Φ>m(v
l
j∂jp

≤l)∥L∞(Ω)

≲A ∥vlj∂jp≤l∥W 1,∞(Ω).
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Combining everything gives (2.7.28). Now, to prove the full estimate, we fix an integer

m0 > 0 to be chosen later and estimate using (2.7.28),

∥∇H(vlj∂jp
≤l)∥L∞(Ω) ≲A m0B + ∥Φ≥m0∇H(vlj∂jp

≤l)∥L∞(Ω). (2.7.29)

For the latter term, since s > d
2
+ 1, we obtain by Sobolev embedding, the regularization

properties of Φ≥m0 and the elliptic estimate for H, the estimate

∥Φ≥m0∇H(vlj∂jp
≤l)∥L∞(Ω) ≲A 2−m0δ0∥H(vlj∂jp

≤l)∥Hs−ε(Ω) ≲A 2−m0δ0∥(v,Γ)∥rHs ,

where r ≥ 1 is some integer and δ0 > 0 is a constant depending on k. Taking m0 ≈
rδ−1

0 log(1 + ∥(v,Γ)∥Hs) and combining everything above with (2.7.29) then yields

∥∇H(vlj∂jp
≤l)∥L∞(Ω) ≲A B log(1 + ∥(v,Γ)∥Hs).

This completes the proof of the lemma.

Remark 2.7.10. It is perhaps worth remarking that by using Proposition 2.5.15 and the

maximum principle to estimate ∥∇H(vlj∂jp
≤l)∥L∞(Ω) in the above proof in Cε, we can also

easily obtain the bound

∥Dtp∥W 1,∞(Ω) ≲A ∥v∥C1,ε(Ω).

Of course, we do not want this in our energy estimates as it would force us to forfeit the

scale invariant control parameter B.

Proof of energy propagation

Now, we turn to the second part of Theorem 2.7.1. Using (2.7.2) and the coercivity bound

(2.7.1) it is straightforward to verify the following energy estimate for the rotational compo-

nent of the energy:
d

dt
Ek
r (v(t),Γt) ≲A BE

k(v(t),Γt).

The main bulk of the work will be in establishing a propagation bound for the irrotational

part of the energy. Namely, we want to show that

d

dt
Ek
i (v(t),Γt) ≲A B log(1 + ∥(v,Γ)∥Hs)Ek(v(t),Γt).

To do this, we start by deriving a wave-type equation for a. The general procedure for

deriving this equation is similar to [134]. However, we need to more precisely identify the
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source terms in order to obtain estimates with the required pointwise control parameters A

and B.

We begin our derivation with the simple commutator identity

Dt∇p = −∇v · ∇p+∇Dtp.

Applying Dt and performing some elementary algebraic manipulations gives

D2
t∇p = −∇Dtv · ∇p+Dt∇Dtp+∇v · (∇v · ∇p)−∇v ·Dt∇p

=
1

2
∇|∇p|2 +∇D2

t p+ 2∇v · (∇v · ∇p)− 2∇v · ∇Dtp,

where in the last line, we used the Euler equations to write −∇Dtv · ∇p = 1
2
∇|∇p|2. As

∆p = −tr(∇v)2 is lower order, it is natural to further split ∇|∇p|2 as

1

2
∇|∇p|2 = 1

2
∇H|∇p|2 + 1

2
∇∆−1∆|∇p|2.

From this, we obtain the equation

D2
t∇p−

1

2
∇H|∇p|2 = 1

2
∇∆−1∆|∇p|2+∇D2

t p+2∇v · (∇v ·∇p)−2∇v ·∇Dtp =: g. (2.7.30)

It will be seen later that g can be thought of as a perturbative source term. In an effort to

convert (2.7.30) into an equation for Dta, we take the normal component of the trace on Γt

to obtain

D2
t∇p · nΓt −

1

2
N (a2) = g · nΓt , (2.7.31)

where we used the dynamic boundary condition p|Γt = 0 to write |∇p|Γt|2 = a2. Since Dt is

tangent to Γt, we have

D2
t a = −D2

t∇p · nΓt −Dt∇p ·DtnΓt = −D2
t∇p · nΓt + a|DtnΓt |2. (2.7.32)

Note that for the latter equality in (2.7.32), we wrote Dt∇p = −Dt(anΓt) and used that

DtnΓt is tangent to Γt. Combining (2.7.31) and (2.7.32), we obtain the equation

D2
t a+

1

2
N (a2) = −g · nΓt + a|DtnΓt |2,

which can be further reduced using the Leibniz type formula for N from (2.5.36) to the

equation

D2
t a+ aNa = f, (2.7.33)
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where

f := −g · nΓt + a|DtnΓt |2 + nΓt · ∇∆−1(|∇Ha|2).

To propagate (a,Dta) in Hk−1(Γt) × Hk− 3
2 (Γt), one natural idea, in view of the ellipticity

of N , would be to use the spectral theorem to apply N k− 3
2 to the above equation, and then

read off the associated energy for the leading order wave-like equation. This is essentially the

approach used in [134]. However, there is a much better choice for our purposes, which comes

from instead applying ∇HN k−2 to the above equation. The benefit to this is twofold. The

most important advantage is that we only have to work with integer powers of N , which will

allow us to make use of the balanced elliptic estimates from the previous sections. Secondly,

this choice allows us to reinterpret the desired estimate for (a,Dta) in H
k−1(Γt)×Hk− 3

2 (Γt)

as an L2 type estimate for the linearized equation (2.2.8) with perturbative source terms.

Indeed, by defining the variables

w := ∇HN k−2Dta,

s := N k−1a,

q := H(aN k−1a),

we may interpret (w, s, q) to leading order as a solution to the linearized system (2.2.8). To

verify this, note that we clearly have ∇ · w = 0. Moreover, we observe that q|Γt = as and

that w|Γt · nΓt = N k−1Dta. Hence,

Dts− w|Γt · nΓt = [Dt,N k−1]a =: R.

We also note that in Ωt, by using the equation (2.7.33) for a and the Leibniz formula for N ,

Dtw +∇q = Q,

where

Q := −∇v · w +∇[Dt,H](N k−2Dta) +∇H[Dt,N k−2]Dta+∇HN k−2f −∇H[N k−2, a]Na.

(2.7.34)

To summarize the above in a compact form, we can write
Dtw +∇q = Q in Ωt,

∇ · w = 0 in Ωt,

Dts− w · nΓt = R on Γt,

q = as on Γt.
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The linearized energy estimate from Proposition 2.2.2 combined with Cauchy-Schwarz and

Lemma 2.7.9 immediately gives the preliminary bound

d

dt
Ek
i ≲A B log(1 + ∥(v,Γ)∥Hs)Ek + (∥R∥L2(Γt) + ∥Q∥L2(Ωt))(E

k)
1
2 .

It remains to control the source terms Q and R. This will be where the bulk of the work is

situated. Our goal is to show that

∥Q∥L2(Ωt) + ∥R∥L2(Γt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .

We begin with the estimate for Q. We proceed term by term. Clearly, we have

∥∇v · w∥L2(Ωt) ≲ B(Ek)
1
2 .

To handle the second term in the definition ofQ, we begin by recalling the simple commutator

identity from (2.5.42),

[Dt,H]ψ = ∆−1∇ · B(∇v,∇Hψ),

where B is an Rd-valued bilinear form. We then estimate using the H−1 → H1 bound for

∆−1 to obtain

∥∇[Dt,H](N k−2Dta)∥L2(Ωt) ≲A B∥∇HN k−2Dta∥L2(Ωt) ≲A B(Ek)
1
2 .

For the third term in (2.7.34), we use the H
1
2 (Γt) → H1(Ωt) bound for H to obtain

∥∇H([Dt,N k−2]Dta)∥L2(Ωt) ≲A ∥[Dt,N k−2]Dta∥H 1
2 (Γt)

.

Then, from the commutator estimate Proposition 2.5.33 we obtain

∥[Dt,N k−2]Dta∥H 1
2 (Γt)

≲A ∥v∥Hk(Ωt)∥Dta∥L∞(Γt)

+ ∥v∥W 1,∞(Ωt)∥Dta∥Hk− 3
2 (Γt)

+ ∥Dta∥L∞(Γt)∥Γ∥Hk

+ ∥v∥W 1,∞(Ωt)∥Γ∥Hk(Ωt) sup
j>0

2−
j
2∥G1

j · nΓt∥L∞(Γt)

+ ∥v∥W 1,∞(Ωt) sup
j>0

2j(k−
3
2
−2ε)∥G2

j · nΓt∥Hε(Γt),

where G1
j and G2

j are as in Corollary 2.7.6. Using Lemma 2.7.9, the energy coercivity,

Lemma 2.7.7 and (2.7.15), we have

∥[Dt,N k−2]Dta∥H 1
2 (Γt)

≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .
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Next, we turn to the estimate for ∇HN k−2f , which involves the most work. We recall that

f := −g · nΓt + a|DtnΓt|2 +∇n∆
−1(|∇Ha|2),

where g is defined as in (2.7.30). Using the identities DtnΓt = −((Dv)∗nΓt)
⊤ = −(Dv)∗nΓt +

nΓt(nΓt · (Dv)∗nΓt) and |∇Ha|2 = 1
2
∆|Ha|2, we may reorganize f into the expression

f =
1

2
∇n∆

−1∆(Ha)2 − 1

2
∇n∆

−1∆|∇p|2 −∇nD
2
t p+M1 +M2, (2.7.35)

where M1 is a multilinear expression in nΓt , ∇p, ∇v with exactly two factors of ∇v (e.g.,

from (2.5.35), the term a|DtnΓt |2), and M2 is a multilinear expression in ∇p, ∇v, ∇Dtp

and nΓt with a single factor of each of ∇Dtp and ∇v (e.g., the term nΓt · ∇Dtp · ∇v). We

will abuse notation slightly and refer to terms of the first type as M1(∇v,∇v) and terms

of the second type as M2(∇Dtp,∇v). Next, we estimate each term in ∇HN k−2f , with the

expression (2.7.35) for f substituted in.

From Corollary 2.5.32, we have

∥∇HN k−2∇n∆
−1∆(Ha)2∥L2(Ωt) ≲A ∥N k−2∇n∆

−1∆(Ha)2∥
H

1
2 (Γt)

≲A ∥Γt∥Hk∥∆−1∆(Ha)2∥
C

1
2 (Ωt)

+ ∥∆−1∆(Ha)2∥Hk(Ωt).

By writing ∆−1∆(Ha)2 = (Ha)2 − H(Ha)2 and using the C
1
2 estimate for H from Corol-

lary 2.5.16 twice together with the maximum principle, we have

∥∆−1∆(Ha)2∥
C

1
2 (Ωt)

≲A ∥Ha∥L∞(Ωt)∥Ha∥C 1
2 (Ωt)

≲A ∥a∥
C

1
2 (Γt)

≲A B.

From Proposition 2.5.19, we obtain also

∥∆−1∆(Ha)2∥Hk(Ωt) ≲A B∥Γt∥Hk + ∥∆(Ha)2∥Hk−2(Ωt).

Then using that ∆(Ha)2 = 2|∇Ha|2, we obtain from Corollary 2.5.4,

∥∆(Ha)2∥Hk−2(Ωt) ≲ ∥Ha∥
C

1
2 (Ωt)

∥Ha∥
Hk− 1

2 (Ωt)
≲A B∥Ha∥

Hk− 1
2 (Ωt)

.

Then from Proposition 2.5.21, Lemma 2.7.7 and the energy coercivity bound (2.7.15), we

obtain

∥Ha∥
Hk− 1

2 (Ωt)
≲A ∥a∥Hk−1(Γt) + ∥Γ∥Hk∥a∥L∞(Ωt) ≲A (Ek)

1
2 .
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Therefore,

∥∆(Ha)2∥Hk−2(Ωt) ≲A B(Ek)
1
2 .

Next, we turn to the term ∇n∆
−1∆|∇p|2 in (2.7.35). The procedure here is similar. Like

with the previous estimate, we obtain

∥∇HN k−2∇n∆
−1∆|∇p|2∥L2(Ωt) ≲A ∥Γt∥Hk∥∆−1∆(|∇p|2)∥

C
1
2 (Ωt)

+ ∥∆(|∇p|2)∥Hk−2(Ωt)

(2.7.36)

and also

∥∆−1∆(|∇p|2)∥
C

1
2 (Ωt)

≲A B.

Moreover, by expanding ∆|∇p|2 (and some simple manipulations), we have

∥∆(|∇p|2)∥Hk−2(Ωt) ≲ ∥|∇2p|2∥Hk−2(Ωt) + ∥|∆p|2∥Hk−2(Ωt) + ∥∇p∆p∥Hk−1(Ωt).

Using Corollary 2.5.4 and Lemma 2.7.9, we have for the first two terms

∥|∇2p|2∥Hk−2(Ωt) + ∥|∆p|2∥Hk−2(Ωt) ≲A ∥∇p∥
C

1
2 (Ωt)

∥p∥
Hk+1

2 (Ωt)
≲A B∥p∥

Hk+1
2 (Ωt)

.

To handle the other term, we use the Laplace equation for p to write

∥∇p∆p∥Hk−1(Ωt) = ∥∇p∂ivj∂jvi∥Hk−1(Ωt). (2.7.37)

Then from (2.5.1), Corollary 2.5.4, Lemma 2.7.5 and Lemma 2.7.8, we have

∥∇p∂ivj∂jvi∥Hk−1(Ωt) ≲A ∥v∥W 1,∞(Ωt)∥∇p∂ivj∥Hk−1(Ωt) + ∥∇p∂ivj∥L∞(Ωt)∥v∥Hk(Ωt)

≲A ∥v∥W 1,∞(Ωt)(∥v∥C 1
2 (Ωt)

∥p∥
Hk+1

2 (Ωt)
+ ∥p∥W 1,∞(Ωt)∥v∥Hk(Ωt))

≲A B∥(v,Γ)∥Hk .

(2.7.38)

Combining the above with the energy coercivity (2.7.15), we obtain

∥∆(|∇p|2)∥Hk−2(Ωt) ≲A B(Ek)
1
2 .

Next, we turn to the estimate for M1. We first write M1 = M ′
1B where M ′

1 is an R-valued
multilinear expression in nΓt and ∇p and B is an R-valued bilinear expression in ∇v. We

use the bilinear frequency decomposition B(∇v,∇v) = B(∇vl,∇v≤l) + B(∇v≤l,∇vl) and
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consider the partition B = B1
j +B2

j where B1
j := B(∇Φ<jv

l,∇v≤l) +B(∇v≤l,∇Φ<jv
l). Then

using this partition, the trace inequality, energy coercivity and Proposition 2.5.30, we have

∥∇HN k−2M1∥L2(Ωt) ≲A ∥M1∥Hk− 3
2 (Γt)

+ ∥Γt∥Hk sup
j>0

2−
j
2∥B1

j∥L∞(Ωt)

+ sup
j>0

2j(k−
3
2
−2ε)∥B2

j∥H 1
2+ε(Ωt)

≲A ∥M1∥Hk− 3
2 (Γt)

+ ∥v∥W 1,∞(Ωt)∥v∥C 1
2+ε(Ωt)

∥Γt∥Hk

+ ∥v∥W 1,∞(Ωt)∥v∥Hk(Ωt)

≲A ∥M1∥Hk− 3
2 (Γt)

+B(Ek)
1
2 .

(2.7.39)

Using the same partition as above and Proposition 2.5.9, Proposition 2.5.11 and Lemma 2.7.5,

we have

∥M1∥Hk− 3
2 (Γt)

≲A ∥∇v∥L∞(Ωt)∥v∥Hk(Ωt)

+ (∥Γt∥Hk + ∥M ′
1(∇p, nΓt)∥Hk−1(Γt)) sup

j>0
2−

j
2∥B1

j∥L∞(Ωt)

+ sup
j>0

2j(k−
3
2
−2ε)∥B2

j∥H 1
2+ε(Ωt)

.

Estimating as in (2.7.39), this simplifies to

∥M1∥Hk− 3
2 (Γt)

≲A B(Ek)
1
2 +B∥M ′

1(∇p, nΓt)∥Hk−1(Γt).

By Proposition 2.5.9, Proposition 2.5.11, Lemma 2.7.8 and the energy coercivity, we have

also

∥M ′
1(∇p, nΓt)∥Hk−1(Γt) ≲A (Ek)

1
2 ,

from which we deduce

∥∇HN k−2M1∥L2(Ωt) ≲A B(Ek)
1
2 .

Next, we estimate M2. This estimate is similar to M1. One starts by writing M2 = M ′
2B

whereM ′
2 is multilinear in∇p and nΓt while B is bilinear in∇v and∇Dtp. Using the partition

B = B1
j +B2

j with B1
j := B(∇Φ<jv

l,∇(Dtp)
≤l)+B(∇v≤l,∇Φ<j(Dtp)

l) and a similar analysis

to M1, we have

∥∇HN k−2M2∥L2(Ωt) ≲A ∥v∥W 1,∞(Ωt)∥Dtp∥Hk(Ωt)

+ ∥Dtp∥W 1,∞(Ωt)(∥Γt∥Hk + ∥M ′
2(∇p, nΓt)∥Hk−1(Γt))

+ ∥Dtp∥W 1,∞(Ωt)∥v∥Hk(Ωt).
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Then using the W 1,∞ bound for Dtp from Lemma 2.7.9 and the Hk bound for Dtp from

Lemma 2.7.8, we have

∥∇HN k−2M2∥L2(Ωt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .

Now we turn to the estimate for the term involving D2
t p. As usual, we first aim to write it in

the form ∆−1∇ · f but in such a way that f involves favorable frequency interactions. This

presents some mild technical challenges as D2
t p will have terms which are up to quadrilinear

in ∇v. To deal with this, we have the following lemma.

Lemma 2.7.11. There exist bilinear, trilinear and quadrilinear expressions B, T and M
taking values in Rd such that

∆D2
t p = −2∆|∇p|2+∇·B(∇Dtp,∇v)+∇·T (∇p,∇v,∇v)+∇·M(vm,∇v≤m,∇v≤m,∇v≤m).

Proof. First, using that v is divergence free, it is straightforward to verify

∆D2
t p = ∂i(∂jDtp∂jvi) + ∂i(∂ivj∂jDtp) +Dt∆Dtp = ∇ · B +Dt∆Dtp.

Next, we expand Dt∆Dtp. We start with the Laplace equation for Dtp from (2.7.17),

∆Dtp = 3∂j(∂ip∂ivj) + ∂i(∂ivj∂jp) + 2∂jvk∂kvi∂ivj.

Using that v is divergence free, we have the commutator identity [∂i, Dt]f = ∂j(∂ivjf).

Combining this with the Euler equations, we obtain

Dt(3∂j(∂ip∂ivj) + ∂i(∂ivj∂jp)) = ∇ · B +∇ · T − 4∂j(∂ip∂i∂jp)

= ∇ · B +∇ · T − 2∆|∇p|2.

It remains to expand 2Dt(∂jvk∂kvi∂ivj). From the Euler equation and symmetry, we have

2Dt(∂jvk∂kvi∂ivj) = 6Dt(∂jvk)∂kvi∂ivj = −6∂j∂kp∂kvi∂ivj − 6∂jvl∂lvk∂kvi∂ivj.

We rearrange the first term as

−6∂j∂kp∂kvi∂ivj = −6∂j(∂kp∂kvi∂ivj) + 6∂kp∂j∂kvi∂ivj

= −6∂j(∂kp∂kvi∂ivj) + 3∂kp∂k(∂jvi∂ivj)

= −6∂j(∂kp∂kvi∂ivj) + 3∂k(∂kp∂jvi∂ivj)− 3∂k∂kp∂jvi∂ivj

= ∇ · T + 3|∆p|2,

(2.7.40)
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where in the last line we used the Laplace equation for p. On the other hand, for the second

term, by symmetry of the indices, we have the quadrilinear frequency decomposition,

−6∂jvl∂lvk∂kvi∂ivj = −24∂jv
m
l ∂lv

≤m
k ∂kv

≤m
i ∂iv

≤m
j

= ∇ ·M+ 24vml ∂l∂jv
≤m
k ∂kv

≤m
i ∂iv

≤m
j + 24vml ∂lv

≤m
k ∂j∂kv

≤m
i ∂iv

≤m
j .

By symmetry and the fact that v is divergence free, the second term on the right-hand side

can be rearranged as

24vml ∂l∂jv
≤m
k ∂kv

≤m
i ∂iv

≤m
j = 8vml ∂l(∂jv

≤m
k ∂kv

≤m
i ∂iv

≤m
j ) = ∇ ·M.

For the third term on the right-hand side, we have

24vml ∂lv
≤m
k ∂j∂kv

≤m
i ∂iv

≤m
j = 12vml ∂lv

≤m
k ∂k(∂jv

≤m
i ∂iv

≤m
j )

= ∇ ·M− 12∂kv
m
l ∂lv

≤m
k ∂jv

≤m
i ∂iv

≤m
j

= ∇ ·M− 3∂kvl∂lvk∂jvi∂ivj

= ∇ ·M− 3|∆p|2,

(2.7.41)

where we used the Laplace equation for p in the last line. Combining (2.7.40) and (2.7.41)

to cancel the 3|∆p|2 terms then completes the proof of the lemma.

Now, we return to the estimate for ∇HN k−2∇nD
2
t p. We use Lemma 2.7.11 and estimate

each term separately. The term −2∇HN k−2∇n∆
−1∆|∇p|2 can be estimated identically to

(2.7.36). Let us then turn to the estimate for ∇HN k−2∇n∆
−1(∇ · B). We use a partition

B = B1
j +B2

j where B1
j is defined as follows: First, we perform the frequency decomposition,

B = B(∇(Dtp)
l,∇v≤l) + B(∇(Dtp)

≤l,∇vl)

and then define

Bj1 := B(∇Φ≤j(Dtp)
l,∇v≤l) + B(∇(Dtp)

≤l,∇Φ≤jv
l).

Then Corollary 2.5.32 and Proposition 2.5.19 gives

∥∇HN k−2∇n∆
−1(∇ · B)∥L2(Ωt) ≲A ∥B∥Hk−1(Ωt) + ∥Γt∥Hk sup

j>0
2−

j
2∥∆−1(∇ · Bj1)∥W 1,∞(Ωt)

+ sup
j>0

2j(k−1−ε)∥∆−1(∇ · Bj2)∥H1(Ωt).

From Sobolev product estimates and the Hk and L∞ estimates for Dtp,

∥B∥Hk−1(Ωt) ≲A ∥v∥W 1,∞(Ωt)∥Dtp∥Hk(Ωt) + ∥Dtp∥W 1,∞(Ωt)∥v∥Hk(Ωt)

≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .
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Using Proposition 2.5.15, we also estimate

2−
j
2∥∆−1(∇ · Bj1)∥C1,ε(Ωt) ≲A ∥Dtp∥W 1,∞(Ωt)∥v∥C 1

2+ε(Ωt)
≲A B log(1 + ∥(v,Γ)∥Hs).

Finally, using the error bounds for Φ>j and the L∞ andHk estimates forDtp from Lemma 2.7.8

we see that

2j(k−1−ε)∥∆−1(∇ · Bj2)∥H1(Ωt) ≲A ∥v∥W 1,∞(Ωt)∥Dtp∥Hk(Ωt) + ∥Dtp∥W 1,∞(Ωt)∥v∥Hk(Ωt)

≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .

Hence,

∥∇HN k−2∇n∆
−1(∇ · B)∥L2(Ωt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)

1
2 .

The estimates for ∇HN k−2∇n∆
−1(∇·T ) and ∇HN k−2∇n∆

−1(∇·M) are very similar. The

main difference is that we use the partition T = T j
1 + T j

2 with

T j
1 = 2T (∇p,∇Φ≤jv

l,∇v≤l)

and the partition M = Mj
1 +Mj

2 with

Mj
1 := M(vm,∇Φ≤jv

≤m,∇v≤m,∇v≤m).

Ultimately, we obtain

∥∇HN k−2∇nD
2
t p∥L2(Ωt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)

1
2

which when combined with the previous analysis gives

∥∇HN k−2f∥L2(Ωt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2

as desired. The last term in the estimate for Q that we need to control is ∇H[N k−2, a]Na.

For this, we have the following technical lemma.

Lemma 2.7.12. We have the following estimate:

∥∇H[N k−2, a]Na∥L2(Ωt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .

Proof. Thanks to the H
1
2 (Γt) → H1(Ωt) bound for H, it suffices to estimate

∥[N k−2, a]Na∥
H

1
2 (Γt)

. We begin by using the Leibniz formula (2.5.36) to expand the com-

mutator,

[N k−2, a]Na =
∑

n+m=k−3

N n(NaNm+1a)− 2N n∇n∆
−1(∇Ha · ∇HNm+1a). (2.7.42)
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We focus on the latter term in (2.7.42) first as it is a bit more delicate to deal with. To

simplify notation slightly, we write

aj := HN ja, F := ∇a0 · ∇am+1, N<j := nΓt · ∇Φ<jH, N≥j := nΓt · ∇Φ≥jH.

Using Corollary 2.5.32 and then Proposition 2.5.19, we have

∥N n(∇n∆
−1F )∥

H
1
2 (Γt)

≲A ∥F∥Hn(Ωt) + ∥Γ∥Hk sup
j>0

2−j(m+ 3
2
)∥∆−1F 1

j ∥W 1,∞(Ωt)

+ sup
j>0

2j(n+1−ε)∥∆−1F 2
j ∥H1(Ωt),

where F = F 1
j +F

2
j is a suitable partition of F to be chosen. To find a suitable partition, we

start with a bilinear frequency decomposition similar to before. We define alj := Φlaj and

a≤lj = Φ≤laj.

Remark 2.7.13. We note that the regularization operator Φ≤l does not preserve the har-

monic property of aj. However, using the definition of Φ≤l (see Section 2.6), the operator

defined by C≤l := [∆,Φ≤l] is readily seen to satisfy the bounds,

∥C≤l∥Cα→L∞ ≲A 2l(1−α) ∥C≤l∥Hα→L2 ≲A 2l(1−α), 0 ≤ α ≤ 1 (2.7.43)

for α, l ≥ 0. That is, C≤l behaves like a differential operator of order 1 localized at dyadic

scale ≲ 2l.

Now, using the same convention as before in this section (where repeated indices are

summed over) we have

F = ∇al0 · ∇a
≤l
m+1 +∇a≤l0 · ∇alm+1 =: F ′ + F ′′.

We can write F ′ and F ′′ to leading order as the divergence of some vector field. Using that

a0 and am+1 are harmonic, we have

F ′ = ∇ · (al0∇a
≤l
m+1)− al0C≤lam+1 =: G′ +H ′,

F ′′ = ∇ · (alm+1∇a
≤l
0 )− alm+1C≤la0 =: G′′ +H ′′.

(2.7.44)

We will focus on F ′ first. To choose a partition of F ′, we need to choose a suitable partition

of G′ and H ′. We show the details for G′ and remark later on the minor changes needed to

deal with H ′. We write G′ = (G′)1j + (G′)2j with

(G′)1j = ∇ · (al0∇Φ≤lam+1,≤j), am+1,≤j := Φ≤j(HNm+1
<j a).
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From Proposition 2.5.15, iterating the maximum principal and using the Cα bounds for H
and the properties of Φ<j, we have

2−j(m+ 3
2
)∥∆−1(G′)1j∥W 1,∞(Ωt) ≲A ∥a∥Cε(Γt)∥a∥C 1

2 (Γt)
≲A B,

where we used Lemma 2.7.5 and Lemma 2.7.9 in the last inequality. For (G′)2j , we can write

(G′)2j = ∇ · (al0∇b
≤l
m+1,j) +

∑
0≤i≤m

∇ · (al0∇b
≤l
i,j)

where

b≤lm+1,j := Φ≤lΦ≥jam+1, b≤li,j := Φ≤lΦ<jHN i
<jN≥jNm−ia.

Using Corollary 2.5.16, the properties of the kernel Φ and the H−1 → H1 bound for ∆−1,

we obtain for each 0 ≤ i ≤ m,

2j(n+1−ε)∥∆−1∇ · (al0∇b
≤l
i,j)∥H1(Ωt) ≲A 2j(n+1−ε)∥al0∥L∞(Ωt)∥b

≤l
i,j∥H1(Ωt)

≲A 2j(n+1−ε)∥a∥
C

1
2 (Γt)

∥HN i
<jN≥jNm−ia∥

H
1
2+ε(Ωt)

.

(2.7.45)

Repeatedly using theHε → H
1
2
+ε estimate (2.5.20), the properties of Φ, the bound ∥nΓt∥Cε(Γt) ≲A

1 and the trace inequality, we can estimate

2j(n+1−ε)∥HN i
<jN≥jNm−ia∥

H
1
2+ε(Ωt)

≲A 2j(n+1+i−ε)∥∇Φ≥jHNm−ia∥
H

1
2+ε(Ωt)

≲A ∥HNm−ia∥
Hn+i+5

2 (Ωt)
.

Using Proposition 2.5.30, Lemma 2.7.5, Lemma 2.7.7 and (2.7.15), we have

∥HNm−ia∥
Hn+i+5

2 (Γt)
≲A ∥a∥Hk−1(Γt) + ∥Γ∥Hk∥a∥Cε(Γt) ≲A (Ek)

1
2 .

If n ≥ 1, then doing a similar analysis for the term ∇ · (al0∇b
≤l
m+1,j) and combining this with

(2.7.45) and the bound ∥a∥
C

1
2 (Γt)

≲A B, we obtain

2j(n+1−ε)∥∆−1(G′)2j∥H1(Ωt) ≲A B(Ek)
1
2 .

If n = 0, the term ∇· (al0∇b
≤l
m+1,j) is instead treated slightly differently. For this, we estimate

similarly to before,

2j(1−ε)∥∆−1∇ · (al0∇b
≤l
m+1,j)∥H1(Ωt) ≲A ∥a∥

C
1
2 (Γt)

∥HNm+1a∥
H

3
2 (Ωt)

.
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Then we use Proposition 2.5.18 to estimate the last term as

∥HNm+1a∥
H

3
2 (Ωt)

≲A ∥Nm+1a∥H1(Γt),

and then estimate this term by (Ek)
1
2 similarly to the above. Next, one readily verifies

analogous bounds for H ′, G′′ and H ′′ by using the similar decompositions,

(H ′)1j = −al0C≤l(am+1,≤j), (G′′)1j = ∇ · (Φl(am+1,≤j)∇a≤l0 ),

(H ′′)1j = −C≤la0Φl(am+1,≤j).
(2.7.46)

From these bounds, ultimately, we obtain

∥N n(∇n∆
−1F )∥

H
1
2 (Γt)

≲A ∥F∥Hn(Ωt) +B(Ek)
1
2 .

It remains to estimate F in Hn. We begin by looking at each summand in the bilinear

frequency decomposition for F ,

Fl := ∇Φla0 · ∇Φ≤lam+1 +∇Φ≤la0 · ∇Φlam+1.

For the latter term, we have

∥∇Φ<la0 · ∇Φlam+1∥Hn(Ωt) ≲A ∥a∥
C

1
2 (Γt)

∥am+1∥Hn+3
2 (Ωt)

,

which when n ≥ 1, we know from the above can be controlled by B(Ek)
1
2 . For n = 0, we

have the same bound by simply using Proposition 2.5.18. For the other term, we can further

decompose

am+1 = a1m+1,l + a2m+1,l (2.7.47)

where a1m+1,l = HNm+1
<l a. We then have from the properties of Φ≤l and the control of

∥Ha∥
Hn+m+5

2 (Ωt)
by the energy (as above),

∥∇Φla0 · ∇Φ≤lam+1∥Hn(Ωt) ≲A ∥a∥
C

1
2 (Γt)

(Ek)
1
2 .

As ∇am+1 is not at top order, we can easily verify using the decomposition above that we

also have the following cruder bound for each l

∥Fl∥Hn(Ωt) ≲A 2−δl∥(v,Γ)∥rHs(Ek)
1
2 , (2.7.48)

for some integer r > 1 and small constant δ > 0. Arguing as in Lemma 2.7.9, we can combine

the above two bounds to estimate

∥F∥Hn(Ωt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .
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This handles the latter term in (2.7.42). Now, we turn to the first term. We have to estimate

∥N n(NaNm+1a)∥
H

1
2 (Γt)

where n,m ≥ 0 and n+m = k−3. Here, we only sketch the details

as the procedure for this estimate is relatively similar to the previous term. We start by

writing

NaNm+1a = (HnΓt · ∇a0)(HnΓt · ∇am) =: K|Γt .

Then we apply Proposition 2.5.30 and Proposition 2.5.11 to estimate

∥N nK|Γt∥H 1
2 (Γt)

≲A ∥K∥Hn+1(Ωt) + ∥Γ∥Hk sup
j>0

2−j(m+ 3
2
)∥K1

j ∥L∞(Ωt)

+ sup
j>0

2j(n+
1
2
−2ε)∥K2

j ∥H 1
2+ε(Ωt)

where K = K1
j +K2

j and

K1
j := Φ<j((HnΓt · ∇Φ<ja0)(HnΓt · ∇Φ<jHNm

<ja)). (2.7.49)

Similarly to the above, we can estimate

2−j(m+ 3
2
)∥K1

j ∥L∞(Ωt) ≲A B.

We also have an estimate of the form

2j(n+
1
2
−2ε)∥K2

j ∥H 1
2+ε(Ωt)

≲A ∥K∥Hn+1(Ωt) +B(Ek)
1
2 + 2j(n+1−ε)∥B(∇Φ≥ja0,∇am)∥L2(Ωt)

≲A ∥K∥Hn+1(Ωt) +B(Ek)
1
2 + sup

l>0
2l(n+1−ε)∥B(∇Φla0,∇am)∥L2(Ωt)

for some bilinear expression B. Using a decomposition of am similar to (2.7.47), we have

2l(n+1−ε)∥B(∇Φla0,∇am)∥L2(Ωt) ≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 .

Therefore, we have

∥N nK|Γt∥H 1
2 (Γt)

≲A B log(1 + ∥(v,Γ)∥Hs)(Ek)
1
2 + ∥K∥Hn+1(Ωt).

To estimateK inHn+1(Ωt), the starting point is similar (but slightly more technical) than the

estimate for F inHn from above. The idea is to do a quadrilinear frequency decomposition for

K and study each summand individually. The relevant terms correspond to terms essentially

of the form (ΦlHnΓt ·∇Φ≤la0)(Φ≤lHnΓt ·∇Φ≤lam) and (Φ≤lHnΓt ·∇Φla0)(Φ≤lHnΓt ·∇Φ≤lam)

and (Φ≤lHnΓt ·∇Φ≤la0)(ΦlHnΓt ·∇Φ≤lam) and (Φ≤lHnΓt ·∇Φ≤la0)(Φ≤lHnΓt ·∇Φlam). The

second and fourth terms can be handled almost identically to the estimate for F in Hn (as
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by the maximum principle, one can dispense with the factors of HnΓt). The first and third

terms are handled similarly by decomposing a0 and am into low and high frequency parts as

in (2.7.47) and using Proposition 2.5.21 when ΦlHnΓt is at high frequency compared to the

other factors. One then obtains the desired estimate similarly to the estimate for F in Hn

above. We omit the remaining details.

We now turn to the estimate for the final source term, R = [Dt,N k−1]a in L2(Γt). To

control this term, we first write

[Dt,N k−1]a = [Dt,N ]N k−2a+N [Dt,N k−2]a.

For the latter term, we have by Lemma 2.5.24,

∥N [Dt,N k−2]a∥L2(Γt) ≲A ∥[Dt,N k−2]a∥H1(Γt).

Then using Proposition 2.5.33 and the coercivity bound, we estimate

∥[Dt,N k−2]a∥H1(Γt) ≲A ∥v∥W 1,∞(Ωt)∥a∥Hk−1(Γt) + ∥a∥
C

1
2 (Γt)

(∥Γ∥Hk + ∥v∥Hk(Ωt))

+ ∥a∥L∞(Γt)∥v∥W 1,∞(Ωt)∥Γ∥Hk

≲A B(Ek)
1
2 .

To conclude the proof of Theorem 2.7.1, it remains to estimate [Dt,N ]N k−2a in L2(Γ). This

term is rather delicate due to the lack of a trace estimate in L2(Γ). To deal with this term,

we have the following proposition.

Proposition 2.7.14. Let s ∈ R with s > d
2
+ 1. Then we have,

∥[N , Dt]f∥L2(Γ) ≲A B log(1 + ∥(v,Γ)∥Hs)∥f∥H1(Γ). (2.7.50)

Our proof requires the following short lemma which is essentially a consequence of Propo-

sition 2.5.18.

Lemma 2.7.15. For each l = 1, ..., d, we have

∥nΓ · (∇∆−1∂l − el)∥H 1
2 (Ω)→L2(Γ)

≲A 1. (2.7.51)

Proof. This will follow by interpolation if we can prove

∥nΓ · (∇∆−1∂l − el)∥L2(Ω)→H− 1
2 (Γ)

+ ∥nΓ · (∇∆−1∂l − el)∥H 1
2+δ(Ω)→Hδ(Γ)

≲A 1, (2.7.52)
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for some 0 < δ < ε. The H
1
2
+δ → Hδ bound follows easily from the trace inequality, the

bound ∥nΓt∥Cε(Γt) ≲A 1 and Proposition 2.5.18. For the L2 → H− 1
2 bound we use duality.

Indeed, let f ∈ L2(Ω). Since (∇∆−1∂l − el)f is divergence free, we have∫
Γ

gnΓ · (∇∆−1∂l − el)f dS =

∫
Ω

∇Hg · (∇∆−1∂l − el)f dx ≲A ∥g∥
H

1
2 (Γ)

∥f∥L2(Ω),

for every g ∈ H
1
2 (Γ). Therefore, we obtain (2.7.52) and thus also (2.7.51).

Proof of Proposition 2.7.14. Now, returning to the proposition, we expand using (2.5.40),

[Dt,N ]f = DtnΓ · ∇Hf − nΓ · ((∇v)∗(∇Hf)) + nΓ · ∇∆−1∆(v · ∇Hf).

The first two terms on the right can easily be estimated in L2 by the right-hand side of

(2.7.50) by using (2.5.35) and Lemma 2.5.24. Now, we turn to the latter term. We write for

simplicity u := Hf . We then split u as

u =
∑
l≤l0

Φlu+ Φ>l0u =:
∑
l≤l0

ul + u≥l0 ,

where l0 is a parameter to be chosen. Note that ul is not harmonic anymore, but it is to

leading order. As usual, we also write the corresponding divergence free regularizations for

v as vl := Ψlv, v<l := Ψ<lv and so forth.

The following lemma shows that we have a suitable estimate when u is replaced by a

single dyadic regularization ul.

Lemma 2.7.16. For each l ∈ N0, we have

∥∇n∆
−1∆(v · ∇ul)∥L2(Γ) ≲A B∥f∥H1(Γ),

where the implicit constant does not depend on l.

Proof. We write

∇n∆
−1∆(v · ∇ul) = ∇n∆

−1∆(v<l · ∇ul) +∇n∆
−1∆(v≥l · ∇ul). (2.7.53)

For the second term, where v is at high frequency, we use the identity ∆−1∆ = I −H and

the H1 → L2 bound for N to estimate

∥∇n∆
−1∆(v≥l · ∇ul)∥L2(Γ) ≲A ∥∇(v≥l · ∇ul)∥L2(Γ) + ∥v≥l · ∇ul∥H1(Γ). (2.7.54)
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For the first term in (2.7.54), we distribute the derivative to obtain

∥∇(v≥l · ∇ul)∥L2(Γ) ≲ B∥∇ul∥L2(Γ) + ∥v≥l · ∇2ul∥L2(Γ). (2.7.55)

For the first term in (2.7.55), we use the variant of the trace theorem leading to (2.4.8) and

the fact that ul is frequency localized to obtain

∥∇ul∥L2(Γ) ≲ ∥∇ul∥
1
2

H1(Ω)∥∇ul∥
1
2

L2(Ω) ≲ ∥u∥
H

3
2 (Ω)

≲A ∥f∥H1(Γ)

where in the last estimate we used Proposition 2.5.18. For the second term in (2.7.55), we

again use the trace theorem and the fact that v≥l is higher frequency to obtain

∥v≥l · ∇2ul∥L2(Γ) ≲ ∥v≥l · ∇2ul∥
1
2

L2(Ω)∥v≥l · ∇
2ul∥

1
2

H1(Ω) ≲ B∥u∥
H

3
2 (Ω)

≲ B∥f∥H1(Γ).

The term ∥v≥l · ∇ul∥H1(Γ) in (2.7.54) is similarly estimated. For this, we only need to es-

timate ∥∇⊤(v≥l ·∇ul)∥L2(Γ), and this is handled by an almost identical strategy to the above.

Now, to estimate the term in (2.7.53) where v is at low frequency, we distribute the

Laplacian and use that v<l is divergence free to write ∇n∆
−1∆(v<l · ∇ul) as a sum of terms

of the form

∇n∆
−1∂j(Dv<lDul) +∇n∆

−1∂j(v<lClu),

where Clu := [∆,Φl]u. Using Lemma 2.7.15 we can then estimate

∥∇n∆
−1∆(v<l · ∇ul)∥L2(Γ) ≲A ∥Dv<lDul∥L2(Γ)∩H

1
2 (Ω)

+ ∥v<lClu∥L2(Γ)∩H
1
2 (Ω)

=: J1 + J2.

Using that v is at low frequency, we can estimate similarly to the above,

J1 ≲A B∥f∥H1(Γ).

For J2, we note that Cl is an operator of order 1 and still retains essentially the frequency

localization scale of 2l. Therefore, we can estimate J2 similarly. This completes the proof of

the lemma.

Returning to the proof of Proposition 2.7.14, we now estimate using Lemma 2.7.16,

∥∇n∆
−1∆(v · ∇u)∥L2(Γ) ≲A l0B∥f∥H1(Γ) + ∥∇n∆

−1∆(v · ∇u≥l0)∥L2(Γ).
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Again, using that v is divergence free, we can (as above) expand ∇n∆
−1∆(v · ∇u≥l0) as a

sum of terms of the form

∇n∆
−1∂j(DvDu≥l0) +∇n∆

−1∂j(vC≤l0u),

where C≤l0u = [∆,Φ≤l0 ]u. For the latter term, we can simply estimate as above (since v is

undifferentiated),

∥∇n∆
−1∂j(vC≤l0u)∥L2(Γ) ≤

∑
l≤l0

∥∇n∆
−1∂j(vClu)∥L2(Γ) ≲A l0B∥f∥H1(Γ).

For the other term, we use Lemma 2.7.15 to obtain

∥∇n∆
−1∂j(DvDu≥l0)∥L2(Γ) ≲A B∥Du≥l0∥L2(Γ) + ∥DvDu≥l0∥H 1

2 (Ω)
.

Since u is harmonic we have

B∥Du≥l0∥L2(Γ) ≲A B∥f∥H1(Γ) +B∥Du<l0∥L2(Γ).

Then expanding u<l0 =
∑

l<l0
ul and using the trace theorem leading to (2.4.8) for each term

as above, we get

B∥Du≥l0∥L2(Γ) ≲A Bl0∥f∥H1(Γ).

Finally, by product estimates and Sobolev embedding, it is easy to bound

∥DvDu≥l0∥H 1
2 (Ω)

≲A B∥f∥H1(Γ)+ ∥Dv≥l0∥H d
2+ε(Ω)

∥f∥H1(Γ) ≲A (B+2−l0δ∥(v,Γ)∥Hs)∥f∥H1(Γ)

for some δ > 0. Then choosing l0 ≈δ log(1 + ∥(v,Γ)∥Hs), we conclude the proof of the

proposition.

Finally, we conclude the proof of Theorem 2.7.1 by observing first from the above propo-

sition that we have

∥[Dt,N ]N k−2a∥L2(Γ) ≲A B log(1 + ∥(v,Γ)∥Hs)∥N k−2a∥H1(Γ).

Then, using Proposition 2.5.30, Lemma 2.7.5, Lemma 2.7.7 and (2.7.15), we have

∥N k−2a∥H1(Γ) ≲A (Ek)
1
2 .

This finally concludes the proof of Theorem 2.7.1.
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2.8 Construction of regular solutions

In this section, we give a new, direct method for constructing solutions to the free boundary

Euler equations in the high regularity regime. Solutions at low regularity will be obtained

in the next section as unique limits of these regular solutions.

Previous approaches to constructing solutions to free boundary fluid equations include

using Lagrangian coordinates, Nash Moser iteration or taking the zero surface tension limit

in the capillary problem. A more recent approach in the case of a laterally infinite ocean

with flat bottom can be found in [157]. The article [157] uses a paralinearization of the

Dirichlet-to-Neumann operator and a complicated iteration scheme to construct solutions.

In contrast, we propose a new, geometric approach, implemented fully within the Eulerian

coordinates.

Our novel approach is roughly inspired by nonlinear semigroup theory, where one con-

structs an approximate solution by discretizing the problem in time. To execute this approach

successfully, one needs to show that the energy bounds are uniformly preserved throughout

the time steps. In our setting, a classical semigroup approach would require one to solve an

elliptic free boundary problem with very precise estimates. However, on the other end of the

spectrum, one could try to view our equation as an ODE and use an Euler type iteration.

Of course, a näıve Euler method cannot work because it loses derivatives. A partial fix to

this would be to combine the Euler method with a transport part, which would reduce but

not eliminate the loss of derivatives.

Our goal is to retain the simplicity of the Euler plus transport method, while ameliorating

the derivative loss by an initial regularization of each iterate in our discretization. In short,

we will split the time step into two main pieces:

(i) Regularization.

(ii) Euler plus transport.

To ensure that the uniform energy bounds survive, the regularization step needs to be done

carefully. For this, we will take a modular approach and try to decouple this process into

two steps, where we regularize individually the domain and the velocity. We believe that

this modular approach will serve as a recipe for a new and relatively simple method for
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constructing solutions to various free boundary problems.

The overarching scheme we employ in this section was carried out in the case of a com-

pressible gas in [72]. While we follow the same rough roadmap here, we stress that the main

difficulties in the incompressible liquid case are quite different than for the gas. One obvious

reason for this is that the surface of a liquid carries a non-trivial energy. Also, we introduce

another new idea here, which is to begin the iteration with a regularized version of the initial

data, and then to partially propagate these regularized bounds through the iteration.

Basic setup and simplifications

We begin by fixing a smooth reference hypersurface Γ∗ and a collar neighborhood Λ∗ :=

Λ(Γ∗, ε0, δ). Here, as usual, ε0 and δ are some small but fixed positive constants. Given

k > d
2
+ 1 sufficiently large and an initial state (v0,Γ0) ∈ Hk, our aim is to construct a

local solution (v(t),Γt) ∈ Hk whose lifespan depends only on the size of ∥(v0,Γ0)∥Hk , the

lower bound in the Taylor sign condition and the collar neighborhood Λ∗. We recall from

Theorem 2.7.1 that we have the coercivity

1 + ∥(v,Γ)∥2Hk ≈A E
k(v,Γ)

for any state (v,Γ) ∈ Hk. For technical convenience, we will work with the slightly modified

energy,

Ek(v,Γ) := ∥∇HN k−2(a−1Dta)∥2L2(Ω)+∥a−
1
2N k−1a∥2L2(Γ)+∥ω∥2Hk−1(Ω)+∥v∥2L2(Ω)+1. (2.8.1)

This new energy is readily seen to be equivalent to the old one in the sense that

Ek(v,Γ) ≈A E
k(v,Γ). (2.8.2)

The primary reason we modify the energy is that it will allow for cleaner cancellations in

the energy when we later regularize the velocity.

Now, fix M > 0. Given a small time step ε > 0 and a suitable pair of initial data

(v0,Γ0) ∈ Hk with ∥(v0,Γ0)∥Hk ≤ M , we aim to construct a sequence (vε(jε),Γε(jε)) ∈ Hk

satisfying the following properties:

(i) (Norm bound). There is a uniform constant c0 > 0 depending only on Λ∗, M and the

lower bound in the Taylor sign condition such that if j is an integer with 0 ≤ j ≤ c0ε
−1,
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then

∥(vε(jε),Γε(jε))∥Hk ≤ C(M),

where C(M) > 0 is some constant depending on M .

(ii) (Approximate solution).
vε((j + 1)ε) = vε(jε)− ε(vε(jε) · ∇vε(jε) +∇pε(jε) + ged) +OC1(ε2) ,

∇ · vε((j + 1)ε) = 0 on Ωε((j + 1)ε),

Ωε((j + 1)ε) = (I + εvε(jε))(Ωε(jε)) +OC1(ε2).

where the first equation holds on Ωε((j + 1)ε) ∩ Ωε(jε).

We will not have to concern ourselves too much with the Taylor sign condition in this section

as we are working at high regularity and this is a pointwise property. In particular, we will

suppress the lower bound in the Taylor sign condition from our notation. A nice feature

about the above iteration scheme is that it suffices to only carry out a single step. For this,

we have the following theorem.

Theorem 2.8.1. Let k be a sufficiently large even integer and M > 0. Consider an initial

data (v0,Γ0) ∈ Hk so that ∥(v0,Γ0)∥Hk ≤M and v0 and ω0 satisfy the initial regularization

bounds

∥v0∥Hk+1(Ω0) ≤ K(M)ε−1, ∥ω0∥Hk+n(Ω0) ≤ K ′(M)ε−1−n, (2.8.3)

for n = 0, 1, where K(M), K ′(M) > 0 are constants, possibly much larger than M , such

that K ′(M) ≪ K(M). Then there exists a one step iterate (v0,Γ0) 7→ (v1,Γ1) with the

following properties:

(i) (Energy monotonicity).

Ek(v1,Γ1) ≤ (1 + C(M)ε)Ek(v0,Γ0). (2.8.4)

(ii) (Good pointwise approximation).
v1 = v0 − ε(v0 · ∇v0 +∇p0 + ged) +OC1(ε2) on Ω1 ∩ Ω0,

∇ · v1 = 0 on Ω1,

Ω1 = (I + εv0)(Ω0) +OC1(ε2).

(2.8.5)
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(iii) (Persistence of the regularization bounds). v1 satisfies the regularization bounds

∥v1∥Hk+1(Ω1) ≤ K(M)ε−1, ∥ω1∥Hk+n(Ω1) ≤ (K ′(M) + C(M)ε)ε−1−n, (2.8.6)

for n = 0, 1.

Remark 2.8.2. Property (2.8.6) ensures that v1 retains the H
k+1 regularization bound with

the same constant compared to the first iterate, and ω1 has a regularization bound which

can only grow by an amount comparable to ε times the initial regularization bound, which is

acceptable over ≈M ε−1 iterations. The energy monotonicity property, along with the energy

coercivity bound from Theorem 2.7.1 will ensure that the resulting sequence (vε(jε),Γε(jε))

of approximate solutions we construct remains uniformly bounded in Hk for j ≪M ε−1. The

second property in Theorem 2.8.1 will ensure that (vε(jε),Γε(jε)) converges in a weaker

topology to a solution of the equation.

The assumption (2.8.3) for v0 is for technical convenience. In the regularization step

of the argument, it will allow us to decouple the process of regularizing the domain and

regularizing the velocity into separate arguments (see Lemma 2.8.4 in the next section).

The condition (2.8.6) ensures that (2.8.3) can be propagated from one iterate to the next.

Assuming that the initial iterate satisfies (2.8.3) is harmless in practice. Indeed, by the

regularization properties of Ψ≤ε−1 , we can replace the first iterate in the resulting sequence

(vε(jε),Γε(jε)) with a suitable ε−1 scale regularization so that the base case is satisfied. We

note crucially that such a regularization is only done once - on the initial iterate - as we

only know that this regularization is bounded on Hk (it does not necessarily satisfy the more

delicate energy monotonicity). In contrast, we require the much stricter energy monotonicity

bound (2.8.4) for all other iterations as in the above theorem. The condition on the vorticity

in (2.8.3) can also be harmlessly assumed for the initial iterate. When we later regularize

the velocity, we will not regularize the vorticity, but rather only the irrotational component.

This is why, in contrast to the Hk+1 bound for v1, the constant for ω1 in (2.8.6) gets slightly

worse. Nonetheless, the careful tracking of its bound in (2.8.6) ensures that it only grows by

an acceptable amount in each iteration. The heuristic reason why the regularization bound

on ω1 is expected is because the vorticity should be essentially transported by the flow, and

therefore should not suffer the derivative loss of the full velocity in the iteration step.

Outline of the argument. We now give a brief overview of the section. The first step

is selecting a suitable regularization scale. To motivate this, we recall that the evolution
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of the domain and the irrotational component of the velocity is essentially governed by the

following approximate equation for a:

D2
t a ≈ −aNa. (2.8.7)

Therefore, heuristically, Dt behaves roughly as a “spatial” derivative of order 1
2
. To con-

trol quadratic errors in the energy monotonicity bound in the Euler plus transport iteration

later, it is therefore natural to attempt to regularize the domain and the irrotational part

of the velocity on the ε−1 scale, as we do in Theorem 2.8.1. As the vorticity is essentially

transported by the flow, we are able to leave the rotational part of the velocity alone, and

instead track its growth as in (2.8.6).

With the above discussion in mind, we begin our analysis in earnest in Section 2.8 by

regularizing the domain on the ε−1 scale. More specifically, given (v0,Γ0) ∈ Hk with v0

satisfying (2.8.3), we construct for each 0 < ε ≪ 1 a domain Ωε ⊆ Ω0 whose boundary is

within OC1(ε2) of Γ0 and which satisfies the regularization bound ∥Γε∥Hk+α ≲M,α ε
−α for all

α ≥ 0. This is achieved by performing a parabolic regularization of the graph parameteri-

zation η0 on Γ∗, together with a slight contraction of the domain. We then define our new

velocity ṽ0 = ṽ0(ε) by restricting the old velocity v0 to the new domain Ωε. As will be the

case in every step of the argument, the main difficulty is to carefully track the effect of the

regularization on the energy growth. The main point in this part of the argument is to show

that the parabolic regularization of η0 induces a corresponding parabolic gain in the surface

component of the energy ∥a− 1
2N k−1a∥2L2(Γ), allowing us to control all of the resulting errors.

With the domain now regularized, we move on to regularizing the velocity in Section 2.8,

which is step 2 of the argument. In this step, we leave the domain and rotational part of the

velocity alone, and regularize the irrotational part of the velocity on the ε−1 scale. The way

we execute this is by using the functional calculus for the Dirichlet-to-Neumann operator.

The main difficulty in this step of the argument is in tracking the effect of this regularization

on the ∥∇HN k−2(a−1Dta)∥2L2(Ω) portion of the energy, which at leading order controls the

irrotational component of the velocity. An additional objective in this step of the argument

is to improve the constant in (2.8.3) so that we can ultimately close the bootstrap in the

upcoming Euler plus transport phase of the argument.

The final step in our construction is to use an Euler plus transport iteration to flow the

regularized variables (vε,Γε) along a discrete version of the Euler evolution. It is in this step
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of the argument that we expect to observe a 1
2
derivative loss (see the equation (2.8.7) for

D2
t a, for instance), which is why the above regularization procedure is imperative. The Euler

plus transport argument we employ is carried out in Section 2.8. Control of the resulting

energy growth is shown by carefully relating the good variables a, Dta and ω for the new

iterate to the corresponding good variables for the regularized data. Then, with the energy

uniformly bounded and the variables appropriately iterated, in Section 2.8 we conclude that

our scheme converges in a weaker topology, completing the construction of solutions.

Step 1: Domain regularization

We begin with the domain regularization step. For this, we have the following proposition.

Proposition 2.8.3. Given (v0,Γ0) ∈ Hk with v0 satisfying (2.8.3), there exists a domain Ωε

contained in Ω0 with boundary Γε ∈ Λ∗ such that the pair (v0|Ωε
,Γε) satisfies

(i) (Energy monotonicity).

Ek(v0|Ωε
,Γε) ≤ (1 + C(M)ε)Ek(v0,Γ0). (2.8.8)

(ii) (Good pointwise approximation).

ηε = η0 +OC1(ε2) on Γ∗. (2.8.9)

(iii) (Domain regularization bound). For every α ≥ 0, there holds,

∥Γε∥Hk+α ≲M,α ε
−α. (2.8.10)

Proof. In the sequel, we will use ṽ0 as a shorthand for v0|Ωε
. To regularize Γ0, we begin with

the preliminary parabolic regularization of η0 given by

η̃ε = eε
2∆Γ∗η0,

where ∆Γ∗ is the Laplace-Beltrami operator for Γ∗. The rationale for using the operator

eε
2∆Γ∗ instead of, for instance, the operator e−ε|D| is to ensure that when k is large enough,

we have ∥∂εη̃ε∥Hk−2(Γ∗) ≲M ε. This ensures that the hypersurface parameterized by η̃ε in

collar coordinates is at a distance on the order of no more than OM(ε2) from Γ0 in the

Hk−2 topology (and thus the C1 topology if k is large enough). We would also like to

additionally guarantee that Ωε is contained in Ω0, so that we can use the restriction of
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the velocity v0 to Ωε as the velocity on the new domain. Therefore, we slightly correct the

above parabolic regularization by defining our regularized hypersurface Γε through the collar

parameterization

ηε = η̃ε − Cε2,

where C is some positive constant depending on M only, imposed to ensure that the do-

main Ωε associated to Γε is contained in Ω0. Clearly, ηε satisfies (2.8.10) and the required

pointwise approximation property in (2.8.9). The main bulk of the work in this step of the

argument will therefore be in understanding how the above parabolic regularization of the

surface (and also the restriction of the velocity to Ωε) affects the energy.

Given (ṽ0,Γε) as above, we define the associated quantities ω̃0 := ∇× ṽ0 and p̃0, Dtp̃0, ã0

and Dtã0 on Ωε and Γε by using the relevant Poisson equations, as in Section 2.7. We will

use the notation Nε to refer to the Dirichlet-to-Neumann operator for Γε. Before proceeding

to the proof of energy monotonicity, we note that the above construction gives rise to a flow

velocity Vε in the parameter ε for the family of hypersurfaces Γε by composing ∂εηεν with

the inverse of the collar coordinate parameterization x 7→ x+ηε(x)ν(x). We may harmlessly

assume that Vε is defined on Ωε by harmonically extending it to Ωε. We use Dε := ∂ε+Vε ·∇
to denote the associated material derivative, which will be tangent to the family of hyper-

surfaces Γε.

We also importantly make note of the fact that for every s ∈ R, we have

∥ω̃0∥Hs(Ωε) ≤ ∥ω0∥Hs(Ω), ∥ṽ0∥Hs(Ωε) ≤ ∥v0∥Hs(Ω). (2.8.11)

Therefore, the bounds in (2.8.3) are retained from the initial data and, moreover, the rota-

tional component of the energy does not increase.

Now we turn to the energy monotonicity bound (2.8.8). We will need the following two

lemmas.

Lemma 2.8.4 (Material derivative bounds). The following bound holds uniformly in ε:

∥Dε∇ṽ0∥Hk−1(Ωε) ≲M 1. (2.8.12)

Lemma 2.8.5 (Variation of the surface energy). Let k be a sufficiently large even integer.

Then we have the following estimate for the ã0 component of the energy:

d

dε
∥ã−

1
2

0 N k−1
ε ã0∥2L2(Γε)

≲M −ε∥Γε∥2Hk+1 +OM(1).
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Lemma 2.8.4 will allow us to essentially ignore any contributions to the energy coming

from the restriction ṽ0, while Lemma 2.8.5 will help in controlling the variation in ε of the

irrotational components of the energy.

Before proving the above lemmas, let us see how they imply the energy monotonicity

bound (2.8.8). Thanks to Lemma 2.8.5 and (2.8.11), we only need to study the Dta compo-

nent of the energy. For this, we recall from the Laplace equation (2.7.4) that we have

ã−1
0 Dtã0 = ã−1

0 nΓε ·∇ṽ0 ·∇p̃0− ã−1
0 nΓε ·∇∆−1

Ωε
(∆ṽ0 ·∇p̃0+4tr(∇2p̃0 ·∇ṽ0)+2tr(∇ṽ0)3) on Γε.

(2.8.13)

We apply Dε∇HεN k−2
ε to (2.8.13) and distribute derivatives. We first dispense with the

commutator. Using the standard H
1
2 (Γε) → H1(Ωε) bound for Hε, the H

k− 3
2 (Γε) to H

1
2 (Γε)

bound for N k−2
ε from Proposition 2.5.30 and the H

1
2 (Γε) → H1(Ωε) bound for [Dε,Hε] from

(2.5.39), we have

∥[Dε,∇HεN k−2
ε ](ã−1

0 Dtã0)∥L2(Ωε) ≲M ∥[Dε,N k−2
ε ](ã−1

0 Dtã0)∥H 1
2 (Γε)

+ ∥ã−1
0 Dtã0∥Hk− 3

2 (Γε)
.

Then, using the formula (2.5.43) and the elliptic estimates in Section 2.5 as well as the bound

∥Vε∥Hk−1(Γε) ≲M 1, it is straightforward to verify the commutator bound

∥[Dε,N k−2
ε ]∥

Hk− 3
2 (Γε)→H

1
2 (Γε)

≲M 1.

By elliptic regularity, ∥ã−1
0 Dtã0∥Hk− 3

2 (Γε)
is OM(1). Hence, we obtain

∥[Dε,∇HεN k−2
ε ](ã−1

0 Dtã0)∥L2(Ωε) ≲M 1.

Using that

∥∇HεN k−2
ε Dε(ã

−1
0 Dtã0)∥L2(Ωε) ≲M ∥Dε(ã

−1
0 Dtã0)∥Hk− 3

2 (Γε)
,

it remains now to estimate ∥Dε(ã
−1
0 Dtã0)∥Hk− 3

2 (Γε)
. For this, we distribute the operator Dε

onto the various terms in (2.8.13). To expedite this process, we collect a few useful bounds.

First, using Lemma 2.8.4, the trace theorem ensures that we have the bound

∥Dε∇ṽ0∥Hk− 3
2 (Γε)

+ ∥Dε∇ṽ0∥Hk−1(Ωε) ≲M 1.

Using the identities for [∆−1
Ωε
, Dε] and DεnΓε in Section 2.5, the Laplace equation for pε, and

the fact that Vε is harmonic, we also readily verify the bounds

∥Dεp̃0∥Hk+1
2 (Ωε)

+ ∥DεnΓε∥Hk−2(Γε) + ∥Dεã0∥Hk−2(Γε) ≲M 1 (2.8.14)
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and

∥[Dε,∇]∥Hk(Ωε)→Hk−1(Ωε) + ∥DεnΓε∥Hk− 3
2 (Γε)

+ ∥Dεã0∥Hk− 3
2 (Γε)

≲M 1 + ∥Vε∥Hk− 1
2 (Γε)

.

From the above bounds and (2.8.13), we obtain the estimate

∥Dε(ã
−1
0 Dtã0)∥Hk− 3

2 (Γε)
≲M 1 + ∥Vε∥Hk− 1

2 (Γε)
.

The term ∥Vε∥Hk− 1
2 (Γε)

does not contribute an OM(1) error, as it “loses” half a derivative.

However, from the definition and regularization properties of Vε, we have

∥Vε∥Hk− 1
2 (Γε)

≲M 1 + ε
1
2∥ηε∥Hk+1(Γ∗).

Hence, using Proposition 2.2.3 and Cauchy-Schwarz, we obtain

d

dε
∥∇HεN k−2

ε (ã−1
0 Dtã0)∥2L2(Ωε)

≲M 1 + δ0ε∥Γε∥2Hk+1 ,

where δ0 > 0 is some sufficiently small constant. Using the parabolic gain from Lemma 2.8.5,

we notice that the latter term on the right-hand side is harmless as long as δ0 = δ0(M) is

small enough.

It remains now to establish the two lemmas. We begin with Lemma 2.8.4, which is quite

simple.

Proof. Since ∂εṽ0 = 0, we have

Dε∇ṽ0 = Vε · ∇∇ṽ0.

Then we use ∥Vε∥Hk− 3
2 (Ωε)

≲M ε and ∥Vε∥Hk− 1
2 (Ωε)

≲M 1 together with the inductive bound

for v0 from (2.8.3); namely, ∥v0∥Hk+1(Ω0) ≤ K(M)ε−1, to estimate

∥Dε∇ṽ0∥Hk−1(Ωε) ≲M ∥Vε∥Hk− 3
2 (Ωε)

∥ṽ0∥Hk+1(Ωε) + ∥Vε∥Hk−1(Ωε)∥ṽ0∥Hk(Ωε) ≲M 1.

This completes the proof of Lemma 2.8.4.

Finally, we come to establishing Lemma 2.8.5, which is where the bulk of the work will

be. We begin by establishing the following representation formula for the good variable

N k−1
ε ã0:

N k−1
ε ã0 = (−1)mã0∆

m
Γε
κε +Rε, (2.8.15)

where κε is the mean curvature for Γε, 2m = k − 2 and Rε is a remainder term satisfying

the bounds

∥Rε∥H 1
2 (Γε)

+ ε
1
2∥Rε∥H1(Γε) + ∥DεRε∥L2(Γε) ≲M 1. (2.8.16)
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The importance of (2.8.15) will be clear later. Roughly speaking, (2.8.15) states that to

leading orderN k−1
ε ã0 has a convenient local expression. Such an observation will facilitate the

use of local formulas later on, consistent with our choice of domain regularization. Observe

also that in (2.8.16), we have DεRε = OL2(Γε)(1). This is stronger than the expected bound

DεRε = O
H− 1

2 (Γε)
(1). The reason for this improvement is the bound (2.8.12) for Dε∇ṽ0; this

term would have had to have been treated more carefully if we had attempted to regularize

the velocity in this step of the argument.

Proof of (2.8.15). In the following analysis, Rε will generically denote a remainder term

satisfying (2.8.16) which is allowed to change from line to line. Likewise, R̃ε will denote an

analogous remainder term but with

R̃ε = O
Hk− 3

2 (Γε)
(1), ε

1
2 R̃ε = OHk−1(Γε)(1), DεR̃ε = OHk−2(Γε)(1). (2.8.17)

To establish (2.8.15), we begin by relatingNεã0 to the mean curvature. Indeed, from ∆Γε p̃0 =

0 and the formula

∆p̃0|Γε = ∆Γε p̃0 − κεnΓε · ∇p̃0 +D2p̃0(nΓε , nΓε),

we have

ã0κε = −ninj∂i∂j p̃0 +∆p̃0

= −ninj∂i∂j p̃0 − tr(∇ṽ0)2

= −ninj∂i∂j p̃0 + R̃ε,

where in the last line, we used Lemma 2.8.4 to check the remainder property for DεR̃ε and

the inductive assumption (2.8.3) and interpolation to control ε
1
2 R̃ε in Hk−1(Γε). We now

further expand using the Laplace equation for p̃0,

−ninj∂i∂j p̃0 = njNε(nj ã0) + njnΓε · ∇∆−1
Ωε
∂jtr(∇ṽ0)2

= njNε(nj ã0) + R̃ε.

Next, we expand

njNε(nj ã0) = Nεã0 + ã0njNεnj − 2njnΓε · ∇∆−1
Ωε
(∇Hεnj · ∇Hεã0)

= Nεã0 + ã0njNεnj + R̃ε

= Nεã0 + R̃ε,
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where in the first equality, we used the Leibniz rule (2.5.36) for Nε. From the second to the

third line, we used the Leibniz rule again, and that Nε(njnj) = 0. In summary, what we

have so far is the identity

Nεã0 = ã0κε + R̃ε. (2.8.18)

The next step is to obtain the leading order identity,

N k−1
ε ã0 = ã0N k−2

ε (ã−1
0 Nεã0) +Rε (2.8.19)

by applying N k−2
ε to Nεã0 and then commuting ã−1

0 with N k−2
ε . Here, Rε can be seen to

satisfy the required bounds through the use of the various commutator identities for Dε

listed in Section 2.5 as well as the Leibniz rule (2.5.36), the elliptic estimates in Section 2.5

for Nε and the estimates in (2.8.14).

Before proceeding further, we recall the formula

−(∆Γε +N 2
ε )f = κεNεf − 2nΓε · ∇(−∆Ωε)

−1(∇HεnΓε · ∇2Hεf)

−NεnΓε · (NεfnΓε +∇⊤f)
(2.8.20)

from [140, Equation A.13]. Also, we recall from (4.23) of [140] the commutator estimate

∥[∆Γε , Dε]∥Hs(Γε)→Hs−2(Γε) ≲M ∥Vε∥Hk− 1
2 (Ωε)

≲M 1, 1 ≤ s ≤ k − 1. (2.8.21)

Then, given that k − 2 = 2m is even, applying (2.8.18), (2.8.19) and iterating (2.8.20) m

times, we have

N k−1
ε ã0 = ã0N k−2

ε (ã−1
0 Nεã0) +Rε = (−1)mã0∆

m
Γε
(ã−1

0 Nεã0) +Rε = (−1)mã0∆
m
Γε
κε +Rε,

where by straightforward (but slightly tedious) computation we verify that the remainder

term Rε has the needed bounds through the use of the various commutator identities for

Dε listed in Section 2.5 as well as the above estimates (2.8.18)-(2.8.21), the relevant elliptic

estimates in Section 2.5 and (2.8.14).

Now, we are ready to establish the differential inequality in Lemma 2.8.5. For the sake of

clarity, let us begin by assuming that the reference hypersurface is given by {xd = 0} and that

Γε is literally given by xd = ηε(x1, ..., xd−1). Then the mean curvature and Laplace-Beltrami

operator take the form

κε = − ∆ηε

(1 + |∇ηε|2)
1
2

+
∂iηε∂jηε∂i∂jηε

(1 + |∇ηε|2)
3
2

,
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and

∆Γεf =
1√

1 + |∇ηε|2
∂i(g

ij
ε

√
1 + |∇ηε|2∂jf), (2.8.22)

where (gijε ) = (δij + ∂iηε∂jηε)
−1. Observe that gijε and ∇ηε are one derivative more regular

than κε. Therefore, by making use of the identity ∂εηε = 2ε∆Γ∗ηε and the regularization

bound (2.8.10), we can differentiate in ε and commute 2ε∆Γ∗ with these coefficients to obtain,

(Dε(N k−1
ε ã0))∗ = 2(−1)mε∆Γ∗(ã0∆

m
Γε
κε)∗ +OL2(Γ∗)(1), (2.8.23)

where we define f∗(x) := f(x + ηε(x)ν(x)) for a function f defined on Γε. Moreover, by

an exercise in local coordinates, the reader may check that (2.8.23), as written, is valid for

general reference hypersurfaces Γ∗. Now, using (2.5.41), the bounds for Rε, and Cauchy-

Schwarz, it follows that

d

dε
∥ã−

1
2

0 N k−1
ε ã0∥2L2(Γε)

≲M 1− ε∥|D|Γ∗(∆
m
Γε
κε)∗∥2L2(Γ∗)

,

where |D|Γ∗ = (−∆Γ∗)
1
2 . To conclude, we now only need to show the coercivity type bound

∥ηε∥Hk+1(Γ∗) ≲M 1 + ∥|D|Γ∗(∆
m
Γε
κε)∗∥L2(Γ∗).

For this, we begin with Proposition 2.5.22 which yields

∥ηε∥Hk+1(Γ∗) ≲M 1 + ∥κε∥Hk−1(Γε).

Then, using (2.8.22) and the fact that 2m = k − 2 (this being relevant for ensuring domain

dependent implicit constants are at most OM(1) in size), one can easily verify the ellipticity

bound

∥κε∥Hk−1(Γε) ≲M 1 + ∥∆m
Γε
κε∥H1(Γε) ≲M 1 + ∥|D|Γ∗(∆

m
Γε
κ)∗∥L2(Γ∗).

This concludes the proof.

Step 2: Velocity regularization

Now, we aim to regularize the velocity ṽ0 on the ε−1 scale, which will help us to improve

the regularization constant in (2.8.3). This will be needed to compensate for the losses

in this constant in the upcoming transport step of the argument. Thanks to the previous

step, we are reduced to the situation of regularizing on a fixed domain which has boundary

regularized at the ε−1 scale. To perform this step of the regularization, we decompose the
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velocity ṽ0 into a rotational component which is tangent to the boundary and an irrotational

component. Roughly speaking, we will then regularize the irrotational component of ṽ0 and

leave the rotational component alone. We will then reconstruct the regularized velocity using

the regularized irrotational part and the original (not regularized) rotational part of ṽ0. The

precise procedure for doing this will come with some slight technical subtleties due to the fact

that the normal to the surface is half a derivative less regular than the trace of the velocity

on the boundary. We will outline these nuances in more detail shortly. Heuristically, the

reason it is unnecessary to regularize the rotational part of ṽ0 in this construction is because

the vorticity will not lose derivatives in the transport step of our argument later. In other

words, the vorticity bound in (2.8.3) is expected to only worsen by an OM(1) error when

measured in Hk and an OM(ε−1) error when measured in Hk+1, which is acceptable.

Proposition 2.8.6. Given the pair (ṽ0,Γε) from the previous step, there exists a regular-

ization ṽ0 7→ vε defined on Ωε which satisfies:

(i) (Energy monotonicity).

Ek(vε,Γε) ≤ (1 + C(M)ε)Ek(ṽ0,Γε).

(ii) (Good pointwise approximation). vε = ṽ0 +OC1(ε2),

∇ · vε = 0.
(2.8.24)

(iii) (Regularization bounds). For each n = 1, 2 and K(M) large enough, there holds

∥vε∥Hk+n(Ωε) ≤
1

4
K(M)ε−n. (2.8.25)

Remark 2.8.7. The bound in (2.8.25) with n = 1 ensures that the constant in (2.8.3)

is improved at this stage. The Hk+2 bound will be needed to close the bootstrap in the

final Euler plus transport step of the iteration in the next section because this step loses

derivatives for the velocity.

Proof. We begin by recalling the rotational/irrotational decomposition of ṽ0 from Appendix

A of [140]:

ṽ0 := ṽrot0 + ṽir0 ,
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where for a divergence free function v, we have vir := ∇HεN−1
ε (v · nΓε). Näıvely, we would

like to directly regularize the irrotational part of ṽ0. However, this does not quite work

because the normal nΓε is half a derivative less regular than the trace of ṽ0 on Γε. To get

around this, we will regularize the irrotational part of a suitable high frequency component

of ṽ0. More precisely, let us consider a subregularization v− of ṽ0, defined by v− := Ψ
≤ε−

1
2
ṽ0,

which lives on an ε
1
2 enlargement of Ωε. We then define w := ṽ0 − v−. Loosely speaking,

we think of w as the portion of ṽ0 with frequency greater than ε−
1
2 . In contrast to the full

irrotational part of ṽ0, it is safe to regularize the irrotational part of w. The heuristic reason

for this is that at leading order the term w · nΓε can be interpreted as a high-low paraprod-

uct. That is, the contribution of the portion where nΓε is at comparable or higher frequency

compared to w is lower order as there is still a nontrivial high frequency component of w to

compensate for the 1
2
derivative discrepancy between the trace of w and nΓε .

For the irrotational part of w, the regularization we choose has to respect the en-

ergy monotonicity bound. We will see below that the spectral multiplier P≤ε−1(Nε) :=

1[−ε−1,ε−1](Nε) is very convenient for this purpose. We therefore define the irrotational com-

ponent of our regularization vε of ṽ0 by removing the high frequency part of w · nΓε as

follows:

virε := ṽir0 −∇HεN−1
ε P>ε−1(w · nΓε)

= vir− +∇HεN−1
ε P≤ε−1(w · nΓε).

For simplicity, let us write

wirε := ∇HεN−1
ε P≤ε−1(w · nΓε).

We define the full regularization vε of ṽ0 by

vε := ṽrot0 + virε .

If k is large enough, the combination of Sobolev embedding, ellipticity of N and spectral

calculus allows us to easily establish the pointwise approximation property (2.8.24). Next,

we establish the regularization bound (2.8.25) for vε. We begin by writing

vε = v− + wirε + wrot,

where wrot is the rotational part of w. We then estimate piece by piece. It is first of all clear

that the corresponding bound holds for v−. So, we turn to estimating wirε . For this, we note
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the following preliminary bound for N−1
ε on the space Ḣs(Γε) := {f ∈ Hs(Γε) :

∫
Γε
f = 0}

from Proposition A.5 in [140]:

∥N−1
ε f∥Ḣs(Γε)

≲M ∥f∥Hs−1(Γε), 0 ≤ s ≤ 1. (2.8.26)

From this and the functional calculus for Nε, we deduce in particular the low regularity

bound

∥P≤ε−1N−1
ε (w · nΓε)∥L2(Γε) ≲M ∥w · nΓε∥H−1(Γε). (2.8.27)

This will be useful for handling the low frequency errors in the estimate for wirε . Next we

check that (2.8.26) and (2.8.27), in conjunction with Proposition 2.5.9, Proposition 2.5.21,

Proposition 2.5.26 and the regularization bounds for nΓε and w, yield

∥wirε ∥Hk+n(Ωε) ≲M,n ∥Γε∥Hk+1
2+n∥w · nΓε∥Hk−2(Γε) + ∥P≤ε−1(w · nΓε)∥Hk− 1

2+n(Γε)
≲M ε−n,

where the implicit constant can be taken to be much smaller than K(M) since K(M) ≫M .

Note that in the above estimate, we used the paraproduct structure of w ·nΓε . More specifi-

cally, in the case when k− 1
2
derivatives fall on nΓε , we compensated the half derivative loss

by an ε
1
2 gain from w.

Finally, we move on to showing the regularization bound for wrot. Here, we use Proposi-

tion 2.5.27 to obtain

∥wrot∥Hk+n(Ωε) ≲M ∥wrot∥L2(Ωε) + ∥∇ × w∥Hk+n−1(Ωε) + ∥Γε∥Hk+n− 1
2

+ ∥∇⊤wrot · nΓε∥Hk+n− 3
2 (Γε)

≲M,K′(M) ε
−n + ∥wrot∥L2(Ωε) + ∥∇⊤wrot · nΓε∥Hk+n− 3

2 (Γε)
,

where we used (2.8.3) for ω̃0. Again, the implicit constant can be taken to be much smaller

thanK(M) ifK ′(M) in (2.8.3) is small enough compared toK(M). To estimate ∥wrot∥L2(Ωε),

we simply use (2.8.26), the identity wrot = w−wir and the H
1
2 (Γε) → H1(Ωε) bound for Hε

to crudely estimate

∥wrot∥L2(Ωε) ≲M ∥w∥H1(Ωε). (2.8.28)

Then, using

∇⊤wrot · nΓε = −wrot · ∇⊤nΓε ,

Proposition 2.5.9, Proposition 2.5.11 and the regularization bounds for Γε, we have (if k is

large enough)

∥wrot∥Hk+n(Ωε) ≲M ε−n + ∥wrot∥Hk−1+n(Ωε) + ε−
1
2
−n∥wrot∥Hk−2(Ωε),
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which implies by interpolation and (2.8.28) that

∥wrot∥Hk+n(Ωε) ≲M,n ε
−n + ε−

1
2
−n∥wrot∥Hk−2(Ωε).

From Proposition 2.5.27, the inequality (2.8.28) and the fact that w is localized to frequency

≥ ε−
1
2 , we easily obtain

∥wrot∥Hk−2(Ωε) ≲M ∥w∥Hk−2(Ωε) ≲M ε.

Therefore, we have

∥wrot∥Hk+n(Ωε) ≲M,n ε
−n,

with implicit constant much smaller than K(M). This yields the desired regularization

bounds for vε.

Next, we turn to the energy monotonicity. The domain is fixed in this step, so it is

advantageous to compare the difference between Ek(vε,Γε) and Ek(ṽ0,Γε) directly. It will

also be convenient to write the first term in Ek(v,Γ) as a surface integral:

∥∇HN k−2(a−1Dta)∥2L2(Ω) = ∥N k− 3
2 (a−1Dta)∥2L2(Γ),

using integration by parts and the functional calculus for N . Moreover, since the vorticity

ωε is the same as ω̃0, we may restrict our attention to the two surface components of the

energy in this step of the argument.

We begin with a simple algebraic identity for the aε component of the surface energy:∫
Γε

a−1
ε |N k−1

ε aε|2 dS =

∫
Γε

ã−1
0 |N k−1

ε ã0|2 dS + 2

∫
Γε

a−1
ε N k−1

ε aεN k−1
ε (aε − ã0) dS

− ∥a−
1
2

ε N k−1
ε (aε − ã0)∥2L2(Γε)

+OM(ε).

To derive an analogous relation for the other portion of the surface energy, we note that from

the integer bounds for N in Section 2.5 and the identity ∥N k− 3
2f∥L2(Γ) = ∥∇HN k−2f∥L2(Ω),

we have the estimate ∥N k− 3
2

ε ∥
Hk− 3

2 (Γε)→L2(Γε)
≲M 1. On the other hand, we have the elliptic

regularity estimate

∥ã0 − aε∥Hk− 3
2 (Γε)

≲M ∥p̃0 − pε∥Hk(Ωε) ≲M ∥ṽ0 − vε∥Hk−1(Ωε) ≲M ε.
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Together, these imply that∫
Γε

|N k− 3
2

ε (a−1
ε Dtaε)|2 dS =

∫
Γε

|N k− 3
2

ε (ã−1
0 Dtã0)|2 dS

+ 2

∫
Γε

N k− 3
2

ε (a−1
ε Dtaε)N

k− 3
2

ε (a−1
ε (Dtaε −Dtã0)) dS

− ∥N k− 3
2

ε (a−1
ε (Dtaε −Dtã0))∥2L2(Γε)

+OM(ε).

Motivated by the identities above, let us define the “energy” corresponding to ṽ0 − vε by

Ek(ṽ0 − vε) := ∥N k− 3
2

ε (a−1
ε (Dtã0 −Dtaε))∥2L2(Γε)

+ ∥a−
1
2

ε N k−1
ε (ã0 − aε)∥2L2(Γε)

.

In light of the above identities, it suffices to show that

2

∫
Γε

N k− 3
2

ε (a−1
ε Dtaε)N

k− 3
2

ε (a−1
ε (Dtaε −Dtã0)) dS + 2

∫
Γε

a−1
ε N k−1

ε aεN k−1
ε (aε − ã0) dS

≤ C(M)ε+ Ek(ṽ0 − vε).

Our starting point is to observe the leading order relation given in the following lemma.

Lemma 2.8.8. We have the following relation between Dtaε −Dtã0 and (vε − ṽ0) · nΓε:

a−1
ε (Dtaε −Dtã0) = −Nε((vε − ṽ0) · nΓε) +O

Hk− 3
2 (Γε)

(ε). (2.8.29)

Proof. We begin by noting the bound

∥ṽ0 − vε∥Hk−1(Ωε) ≲M ε (2.8.30)

and the elliptic regularity estimate

∥p̃0 − pε∥Hk(Ωε) ≲M ∥ṽ0 − vε∥Hk−1(Ωε) ≲M ε.

Using the equation for Dtp from (2.7.4) we may therefore write

Dtaε −Dtã0 = nΓε · ∇(vε − ṽ0) · ∇pε − nΓε · ∇∆−1(∆(vε − ṽ0) · ∇pε) +O
Hk− 3

2 (Γε)
(ε).

Then, using the standard identity N f|Γ = n · ∇f − n · ∇∆−1∆f and commuting nΓε · ∇ in

the first term and ∆ in the second term above, we can verify, from (2.8.30),

Dtaε −Dtã0 = −Nε(aε(vε − ṽ0) · nΓε) +O
Hk− 3

2 (Γε)
(ε).

The conclusion then follows by commuting Nε with aε using the Leibniz rule for Nε and

(2.8.30). In the case when everything falls on aε, we also compensate with the surface

regularization bound (2.8.10) and the associated improvement in the bound for ṽ0− vε when

measured in lower regularity Sobolev norms.
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We now turn to the aε component of the energy, which is straightforward. Indeed, by

elliptic regularity,

2

∫
Γε

a−1
ε N k−1

ε aεN k−1
ε (aε − ã0) dS ≲M ∥aε − ã0∥Hk−1(Γε) ≲M ∥vε − ṽ0∥Hk− 1

2 (Ωε)
.

To estimate vε − ṽ0, we observe the identity vε − ṽ0 = ∇HεN−1
ε P>ε−1((vε − ṽ0) · nΓε), which

follows from the idempotence P>ε−1 = P2
>ε−1 . Using this, Lemma 2.8.8 and ellipticity of Nε,

we have

∥vε − ṽ0∥Hk− 1
2 (Ωε)

≲M ε
1
2∥(vε − ṽ0) · nΓε∥Hk− 1

2 (Γε)
≲M ε

1
2 (Ek(ṽ0 − vε))

1
2 + C(M)ε,

which suffices by Cauchy-Schwarz.

Next, we move to the more difficult portion of the energy which involves Dtaε. We start

by combining Lemma 2.8.8 with (vε − ṽ0) · nΓε = −P>ε−1(w · nΓε) to obtain the relation∫
Γε

N k− 3
2

ε (a−1
ε Dtaε)N

k− 3
2

ε (a−1
ε (Dtaε −Dtã0)) dS

=

∫
Γε

N k− 3
2

ε (a−1
ε Dtaε)N

k− 1
2

ε P>ε−1(w · nΓε) dS +OM(ε).

Define p− and Dta− in the usual way using the relevant Laplace equations. We split the

above integral into the two components,∫
Γε

N k− 3
2

ε (a−1
ε Dtaε)N

k− 1
2

ε P>ε−1(w · nΓε) dS =

∫
Γε

N k− 3
2

ε (a−1
ε Dta−)N

k− 1
2

ε P>ε−1(w · nΓε) dS

+

∫
Γε

N k− 3
2

ε (a−1
ε (Dtaε −Dta−))N

k− 1
2

ε P>ε−1(w · nΓε) dS.

(2.8.31)

We begin by studying the first term in (2.8.31). By self-adjointness of Nε, we have∫
Γε

N k− 3
2

ε (a−1
ε Dta−)N

k− 1
2

ε P>ε−1(w · nΓε) dS =

∫
Γε

N k− 1
2

ε (a−1
ε Dta−)N

k− 3
2

ε P>ε−1(w · nΓε) dS

≲M ε∥a−1
ε Dta−∥Hk− 1

2 (Γε)
∥P>ε−1N k− 1

2
ε (w · nΓε)∥L2(Γε) +OM(ε),

where we used the multiplier P>ε−1 to recover a power of Nε in the high frequency term.

Next, we show that ∥a−1
ε Dta−∥Hk− 1

2 (Γε)
≲M ε−

1
2 . By Sobolev product estimates and the fact

that ∥a−1
ε ∥

Hk− 1
2 (Γε)

≲M ε−
1
2 , it suffices to show the same estimate for ∥Dta−∥Hk− 1

2 (Γε)
. To

see this, recall that, by definition,

Dta− = nΓε · ∇v− · ∇p− − nΓε · ∇Dtp−.
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Note then that by Proposition 2.5.11 we have the estimate ∥∇v−∥Hk− 1
2 (Γε)

≲M ε−
1
2 , since

v− is regularized at the ε−
1
2 scale. Moreover, as nΓε = OHk−1(1) and Γε is regularized

at the ε−1 scale, we have ∥nΓε∥Hk− 1
2 (Γε)

≲M ε−
1
2 . By Proposition 2.5.11 and Proposi-

tion 2.5.19, we also have ∥∇p−∥Hk− 1
2 (Γε)

≲M ε−
1
2 . Therefore, by Proposition 2.5.9, we have

∥nΓε · ∇v− · ∇p−∥Hk− 1
2 (Γε)

≲M ε−
1
2 .

Using Proposition 2.5.19 and the fact that the pressure terms in the Laplace equation for

Dtp− always appear to one half derivative lower than top order, a similar analysis yields

∥nΓε · ∇Dtp−∥Hk− 1
2 (Γε)

≲M ε−
1
2 . Therefore, we obtain from Lemma 2.8.8 the bound,∫

Γε

N k− 3
2

ε (a−1
ε Dta−)N

k− 1
2

ε P>ε−1(w · nΓε) dS ≲M ε
1
2∥P>ε−1N k− 1

2
ε (w · nΓε)∥L2(Γε) +OM(ε)

≲M ε
1
2 (Ek(ṽ0 − vε))

1
2 +OM(ε),

as desired. It remains to deal with the other term in (2.8.31). For this, we need to expand

Dtaε−Dta−. As a first reduction, we note that we can replace every appearance of p− with

pε in the definition of Dta− if we allow for OM(ε
1
2 ) errors. This is because ∥pε−p−∥Hk(Ωε) ≲M

∥vε − v−∥Hk−1(Ωε) ≲M ε
1
2 . Hence, we have

Dta− = nΓε · ∇v− · ∇pε − nΓε · ∇∆−1
Ωε
(4tr(∇2pε · ∇v−) + 2tr(∇v−)3 +∆v− · ∇pε)

+O
Hk− 3

2 (Γε)
(ε

1
2 ).

Wemay also replace the lower order terms involving v− by vε. Arguing similarly to Lemma 2.8.8,

we then obtain the key identity

Dta− −Dtaε = aεNε((vε − v−) · nΓε) +O
Hk− 3

2 (Γε)
(ε

1
2 )

= aεP≤ε−1Nε(w · nΓε) +O
Hk− 3

2 (Γε)
(ε

1
2 ).

Hence, we have∫
Γε

N k− 3
2

ε (a−1
ε (Dtaε −Dta−))N

k− 1
2

ε P>ε−1(w · nΓε) dS

≲M −
∫
Γε

N k− 1
2

ε P≤ε−1(w · nΓε)N
k− 1

2
ε P>ε−1(w · nΓε) dS + ε

1
2∥N k− 1

2
ε P>ε−1(w · nΓε)∥L2(Γε).

The first term on the right-hand side above vanishes by orthogonality (this term is the

reason we reweighted the energy in the first place) and the latter term is controlled by

ε
1
2 (Ek(ṽ0− vε))

1
2 . Therefore, we obtain the desired bound for the Dtaε portion of the energy.

This completes the proof of Proposition 2.8.6.
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Step 3: Euler plus transport iteration

In this subsection, we construct the iterate (v1,Γ1) from the regularized data (vε,Γε). Intu-

itively, what remains to be done is to carry out something akin to the Euler iteration

v1 := vε − ε(vε · ∇vε +∇pε + ged)

and then the domain transport

x1(x) := x+ εvε(x).

Unfortunately, performed individually, these steps lose a full derivative in each iteration.

Therefore, it is important that these two steps be carried out together. This will reduce the

derivative loss and allow us to exploit a discrete version of the energy cancellation seen in the

energy estimates. We will then use the regularization bounds from the previous subsections

to control any remaining errors in the iteration. To carry out this process, we have the

following proposition.

Proposition 2.8.9. Given (vε,Γε) as in the previous step, there exists an iteration (vε,Γε) 7→
(v1,Γ1) such that the following properties hold:

(i) (Approximate solution).
v1 = vε − ε(vε · ∇vε +∇pε + ged) +OC1(ε2) on Ω1 ∩ Ωε,

∇ · v1 = 0 on Ω1,

Ω1 = (I + εvε)Ωε.

(ii) (Energy monotonicity bound).

Ek(v1,Γ1) ≤ (1 + C(M)ε)Ek(vε,Γε).

Moreover, v1 and ω1 satisfy the inductive bounds (2.8.6).

We define the change of coordinates x1(x) := x+ εvε(x) and the iterated domain Ω1 by

Ω1 := (I + εvε)Ωε.

To define v1, we proceed in two steps. First, we define

ṽ1(x1) := vε − ε(∇pε + ged). (2.8.32)
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We note that ṽ1 is not divergence free, so we define the full iterate v1 by correcting the

divergence of ṽ1 by a gradient potential:

v1 := ṽ1 −∇∆−1
Ω1
(∇ · ṽ1).

At this point, we can verify the inductive bound (2.8.6) for v1 and ω1. We start with v1. We

recall that we have to show that

∥v1∥Hk+1(Ω1) ≤ K(M)ε−1.

As a first step, using the regularization bound (2.8.25) for vε from the previous section, we

have from the definition of ṽ1, the regularization bounds (2.8.10) for Γε and the balanced

elliptic estimate Proposition 2.5.19,

∥ṽ1∥Hk+n(Ω1) ≤
1

3
K(M)ε−n, (2.8.33)

for n = 0, 1, 2. Next, we aim to control the error between v1 and ṽ1 in H
k(Ω1) and H

k+1(Ω1)

(but not Hk+2(Ω1)). We have for n = 0, 1 from the balanced elliptic estimate Proposi-

tion 2.5.19,

∥v1 − ṽ1∥Hk+n(Ω1) ≲M ∥Γ1∥Hk+1
2+n∥∇ · ṽ1∥Hk−2(Ω1) + ∥∇ · ṽ1∥Hk−1+n(Ω1)

≲M ε−
1
2
−n∥∇ · ṽ1∥Hk−2(Ω1) + ∥∇ · ṽ1∥Hk−1+n(Ω1).

Above, we used the Hk+1 and Hk+2 (depending on if n is 0 or 1) regularization bounds

for vε, Moser estimates, the bounds for Γε and the relation Γ1 = (I + εvε)(Γε) to con-

trol ∥Γ1∥Hk+1
2+n ≲M ε−

1
2
−n. By using the definition of ṽ1 and the regularization bounds

for vε, it is straightforward to see that the divergence, ∇ · ṽ1, contributes an error of size

OHk−1+n(Ω1)(ε
3
2
−n) and also OHk−2(Ω1)(ε

2). Note that for this computation, one must use the

cancellation between the velocity and the pressure in (2.8.32) in order to see the desired

gain. Therefore, we have

∥∇∆−1
Ω1
(∇ · ṽ1)∥Hk+n(Ω1) = ∥v1 − ṽ1∥Hk+n(Ω1) ≲M ε

3
2
−n.

From this and (2.8.33), we conclude the inductive bound

∥v1∥Hk+1(Ω1) ≤ K(M)ε−1,

and the leading order expansion for v1(x1) in H
k(Ωε),

v1(x1) = vε − ε(∇pε + ged) +OHk(Ωε)(ε
3
2 ).
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If k is large enough, then the leading order expansion (2.8) with OC1(ε2) error can be seen by

slightly modifying the above argument. Now, we verify the inductive bound ∥ω1∥Hk+n(Ω1) ≤
ε−1−n(K ′(M) + εC(M)) for n = 0, 1. It suffices to establish this for ω̃1 since v1 and ṽ1 agree

up to a gradient. Taking curl in the definition of ṽ1 and using that ωε = ω̃0, we have

∥∇ × (ṽ1(x1))∥Hk+n(Ωε) ≤ ∥ω̃0∥Hk+n(Ωε) ≤ K ′(M)ε−1−n. (2.8.34)

By chain rule, using (2.8.33) and the regularization bounds for vε, we have

∥ω̃1(x1)∥Hk+n(Ωε) ≤ ∥∇× (ṽ1(x1))∥Hk+n(Ωε) + C(M)ε−n,

which by a change of variables and (2.8.34) yields

∥ω̃1∥Hk+n(Ω1) ≤ ε−1−n(K ′(M) + εC(M)),

as desired. Note that in the above two lines, we treated C(M) as an arbitrary constant, and

relabelled it from line to line. Importantly, we did not do this for K(M) and K ′(M).

Next, we work towards establishing the energy monotonicity bound for the transport

part of the argument. As a first step, we aim to relate the good variables associated to the

iterate v1 to the good variables associated to vε at the regularity level of the energy. We

have the following lemma.

Lemma 2.8.10 (Relations between the good variables). The following relations hold:

(i) (Relation for ω1).

ω1(x1) = ωε +OHk−1(Ωε)(ε).

(ii) (Relation for p1).

p1(x1)− pε − εDtpε = O
Hk+1

2 (Ωε)
(ε). (2.8.35)

(iii) (Relation for a1).

a1(x1) = aε + εDtaε +OHk−1(Γε)(ε). (2.8.36)

(iv) (Relation for Dta1).

Dta1(x1) = Dtaε − εaεNεaε +O
Hk− 3

2 (Γε)
(ε).
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Proof. The relation for ω1 is immediate. Next, we move to the relations for p1 and a1. By

the chain rule and the Laplace equation (2.7.4) for Dtpε, we have

∆(p1(x1)) = (∆p1)(x1) + ε∆vε · (∇p1)(x1) + 2ε∇vε · (∇2p1)(x1) +O
Hk− 3

2 (Ωε)
(ε)

= ∆pε + ε∆Dtpε + ε∆vε · ((∇p1)(x1)−∇pε) +O
Hk− 3

2 (Ωε)
(ε)

= ∆pε + ε∆Dtpε +O
Hk− 3

2 (Ωε)
(ε),

where in the last line, we controlled ε∆vε · ((∇p1)(x1) −∇pε) = O
Hk− 3

2 (Ωε)
(ε) by using the

regularization bounds for vε as well as the error bound (∇p1)(x1)−∇pε = OL∞(Ωε)(ε), which

is gotten by performing an Hk(Ωε) elliptic estimate in the second line, using the fact that

p1(x1) − pε vanishes on Γε and that each of the source terms can be estimated directly in

Hk−2(Ωε) (but not in Hk− 3
2 (Ωε)). Therefore, since p1(x1) − pε − εDtpε vanishes on Γε, we

may now do a Hk+ 1
2 (Ωε) elliptic estimate to obtain the finer bound,

p1(x1)− pε − εDtpε = O
Hk+1

2 (Ωε)
(ε), (2.8.37)

which gives (2.8.35). We also deduce from this that

(∇p1)(x1) = ∇pε + ε∇Dtpε − ε∇vε · (∇p1)(x1) +O
Hk− 1

2 (Ωε)
(ε)

= ∇pε + εDt∇pε +O
Hk− 1

2 (Ωε)
(ε).

From this we see that

a1(x1) = aε + εDtaε − (nΓ1(x1)− nΓε) · (∇p1)(x1) +OHk−1(Γε)(ε)

= aε + εDtaε +OHk−1(Γε)(ε),

where in the last line we used

(nΓ1(x1)− nΓε) · (∇p1)(x1) = −a1(x1)(nΓ1(x1)− nΓε) · nΓ1(x1) = −a1(x1)
1

2
|nΓ1(x1)− nΓε|2

= OHk−1(Γε)(ε)

This gives the relation (2.8.36).

Next, we prove the relation for Dta1. First, we see that

−(Dt∇p1)(x1) +Dt∇pε = ((∇v1 · ∇p1)(x1)−∇vε · ∇pε)− ((∇Dtp1)(x1)−∇Dtpε)

= ((∇v1)(x1)−∇vε) · ∇pε
− ((∇Dtp1)(x1)−∇Dtpε) +OHk−1(Ωε)(ε).

(2.8.38)
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To control the second term on the right-hand side above, we write out the Laplace equation

for Dtp1(x1):

∆(Dtp1(x1)) = (∆Dtp1)(x1) +OHk−2(Ωε)(ε).

By a similar analysis to the proof of (2.8.36) and the relation

(∆v1)(x1) = ∆(v1(x1)) +OHk−2(Ωε)(ε) = ∆vε − ε∇∆pε +OHk−2(Ωε)(ε) = ∆vε +OHk−2(Ωε)(ε),

we obtain

(∆Dtp1)(x1) = ∆Dtpε + (∆v1 · ∇p1)(x1)−∆vε · ∇pε + 4tr(∇v1 · ∇2p1)(x1)

− 4tr∇vε · ∇2pε +OHk−2(Ωε)(ε)

= ∆Dtpε + 4tr
(
∇vε · ((∇2p1)(x1)−∇2pε)

)
+OHk−2(Ωε)(ε)

= ∆Dtpε +OHk−2(Ωε)(ε),

where in the last line, we used (2.8.37) and that εDtpε = OHk(Ωε)(ε). Combining the above

with (2.8.38), one obtains by elliptic regularity,

−Dt∇p1(x1) +Dt∇pε = ((∇v1)(x1)−∇vε) · ∇pε +OHk−1(Ωε)(ε).

Then, noting from (2.8.36) that

(Dt∇p1)(x1) · (nΓ1(x1)− nΓε) = (Dt∇p1)(x1) · (a−1
ε ∇pε − (a−1

1 ∇p1)(x1)) = O
Hk− 3

2 (Γε)
(ε)

and using the fact that ∆pε is lower order, we obtain

Dta1(x1)−Dtaε = −aεnΓε · ∇(v1(x1)− vε) · nΓε − (Dt∇p1)(x1) · (nΓ1(x1)− nΓε)

+O
Hk− 3

2 (Γε)
(ε)

= εaεnΓε · ∇∇pε · nΓε +O
Hk− 3

2 (Γε)
(ε)

= εaεNε∇pε · nΓε +O
Hk− 3

2 (Γε)
(ε).

Finally, noting that NεnΓε · nΓε is lower order, we have, thanks to the Leibniz rule for Nε,

εaεNε∇pε · nΓε = −εaεNε(nΓεaε) · nΓε = −εaεNεaε +O
Hk− 3

2 (Γε)
(ε).

Therefore, we have the desired relation for Dta1. This completes the proof of the lemma.
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Energy monotonicity. To finish the proof of Proposition 2.8.9, it remains to estab-

lish energy monotonicity. The following lemma will allow us to more easily work with the

relations in Lemma 2.8.10.

Lemma 2.8.11. Define the “pulled-back” energy Ek∗ (v1,Γ1) by

Ek∗ (v1,Γ1) := 1 + ∥N k− 3
2

ε (a−1
1 (x1)Dta1(x1))∥2L2(Γε)

+ ∥a−
1
2

1 (x1)N k−1
ε (a1(x1))∥2L2(Γε)

+ ∥ω1(x1)∥2Hk−1(Ωε)
+ ∥v1(x1)∥2L2(Ωε)

.

Then we have the relation

Ek(v1,Γ1) ≤ Ek∗ (v1,Γ1) +OM(ε).

Before proving the above lemma, we show how it easily implies the desired energy mono-

tonicity bound. In light of Lemma 2.8.11, it suffices to establish the bound

Ek∗ (v1,Γ1) ≤ (1 + C(M)ε)Ek(vε,Γε).

The monotonicity bound for the vorticity is immediate from Lemma 2.8.10. For the surface

components of the energy, we first use Lemma 2.8.10, the fact that ∥N k− 3
2

ε ∥
Hk− 3

2 (Γε)→L2(Γε)
≲M

1 and the regularization bounds for Γε and vε to obtain∫
Γε

|N k− 3
2

ε (a−1
1 (x1)Dta1(x1))|2 dS −

∫
Γε

|N k− 3
2

ε (a−1
ε Dtaε)|2 dS

= 2

∫
Γε

N k− 3
2

ε (a−1
ε Dtaε)N

k− 3
2

ε (a−1
ε ((Dta1)(x1)−Dtaε)) dS +OM(ε)

= −2ε

∫
Γε

a−1
ε N k−1

ε DtaεN k−1
ε aε dS +OM(ε),

(2.8.39)

where in the last line, we used the commutator estimate ∥[N k−1
ε , a−1

ε ]Dtaε∥L2(Γε) ≲M 1 to

shift a factor of N
1
2
ε onto N k− 3

2
ε Dtaε. We similarly observe the leading order relation for the

other component of the energy by using (2.8.36) to obtain,∫
Γε

a−1
1 (x1)|N k−1

ε (a1(x1))|2 dS −
∫
Γε

a−1
ε |N k−1

ε aε|2 dS = 2ε

∫
Γε

a−1
ε N k−1

ε DtaεN k−1
ε aε dS

+OM(ε).

The first term on the right-hand side of the above relation cancels the main term on the

right-hand side of (2.8.39). Combining everything together then gives

Ek(v1,Γ1) ≤ (1 + C(M)ε)Ek(vε,Γε),

as desired. It remains now to establish Lemma 2.8.11.
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Proof of Lemma 2.8.11. By a simple change of variables, it is clear that the difference be-

tween ∥ω1(x1)∥2Hk−1(Ωε)
and ∥ω1∥2Hk−1(Ω1)

contributes only OM(ε) errors. This is likewise true

for the L2 component of the velocity. The main difficulty is in dealing with the surface

components of the energy. For this, we need the following proposition.

Proposition 2.8.12. Let −1
2
≤ s ≤ k−2 and let f ∈ Hs+1(Γ1). Then we have the following

bound on Γε:

∥(N1f)(x1)−Nε(f(x1))∥Hs(Γε) ≲M ε∥f∥Hs+1(Γ1).

Proof. First, we handle the case s = −1
2
. If g ∈ C∞(Γε), we write h = g(x−1

1 )H1J where J

is the Jacobian corresponding to the change of variables y = x1(x). Then we have by the

divergence theorem,∫
Γε

g((N1f)(x1)−Nε(f(x1))) dS =

∫
Γ1

hN1f dS −
∫
Γε

gNε(f(x1)) dS

=

∫
Ω1

∇H1h · ∇H1f dx−
∫
Ωε

∇Hεg · ∇Hε(f(x1)) dx.

Using again the change of variables x 7→ x1 for the first term in the second line above,

together with the estimates

∥H1h∥H1(Ω1) ≲M ∥g∥
H

1
2 (Γε)

and ∥(∇H1f)(x1)∥L2(Ωε) ≲M ∥f∥
H

1
2 (Γ1)

,

it is easy to verify∫
Γε

g((N1f)(x1)−Nε(f(x1))) dS ≲M

∫
Ωε

∇((H1h)(x1)−Hεg) · (∇H1f)(x1) dx

+

∫
Ωε

∇Hεg · ∇((H1f)(x1)−Hε(f(x1))) dx

+ ε∥g∥
H

1
2 (Γε)

∥f∥
H

1
2 (Γ1)

.

(2.8.40)

We label the first and second terms on the right-hand side above by I1 and I2. For I1, we

use the fact that on Γε we have

(H1h)(x1)−Hεg = (J(x1)− I)g

to obtain the following simple elliptic estimate

I1 ≲M ε∥f∥
H

1
2 (Γ1)

∥g∥
H

1
2 (Γε)

+ ∥f∥
H

1
2 (Γ1)

∥∆((H1h)(x1))∥H−1(Ωε) ≲M ε∥f∥
H

1
2 (Γ1)

∥g∥
H

1
2 (Γε)

,

where we used the chain rule and that H1h is harmonic to estimate ∆((H1h)(x1)). A similar

elliptic estimate yields the same bound for I2. This establishes the case s = −1
2
. By
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interpolation, we only need to handle the remaining cases when 1
2
≤ s ≤ k−2. As a starting

point, we have from some simple manipulations with the chain rule and the trace inequality,

∥(N1f)(x1)−Nε(f(x1))∥Hs(Γε) ≲ ε∥f∥Hs+1(Γ1) + ∥(nΓ1(x1)− nΓε) · (∇H1f)(x1)∥Hs(Γε)

+ ∥(H1f)(x1)−Hε(f(x1))∥Hs+3
2 (Ωε)

.

By writing nΓ1(x1)−nΓε = a−1
ε ∇pε−a−1

1 (x1)(∇p1)(x1) and using the relations in Lemma 2.8.10

and that s ≤ k−2, the second term on the right is straightforward to control by ε∥f∥Hs+1(Γε).

For the third term, we do an elliptic estimate analogous to the s = −1
2
case (using that

(H1f)(x1)−Hε(f(x1)) = 0 on Γε) to obtain

∥(H1f)(x1)−Hε(f(x1))∥Hs+3
2 (Ωε)

≲M ∥∆((H1f)(x1))∥Hs− 1
2 (Ωε)

≲M ε∥f∥Hs+1(Γ1).

This completes the proof.

Now we return to the proof of Lemma 2.8.11. We note first that

∥(N k−1
1 a1)(x1)−N k−1

ε (a1(x1))∥L2(Γε) ≲ ∥Nε(N k−2
1 a1)(x1)−N k−1

ε (a1(x1))∥L2(Γε)

+ ∥Nε(N k−2
1 a1)(x1)− (N k−1

1 a1)(x1)∥L2(Γε).

Applying Proposition 2.8.12 to the term in the second line and using the H1 → L2 bound

for N , we have

∥(N k−1
1 a1)(x1)−N k−1

ε (a1(x1))∥L2(Γε) ≲M ∥(N k−2
1 a1)(x1)−N k−2

ε (a1(x1))∥H1(Γε) +OM(ε).

Iterating this procedure and applying Proposition 2.8.12 k − 2 times, we see that we have

∥(N k−1
1 a1)(x1)−N k−1

ε (a1(x1))∥L2(Γε) ≲M ε.

It follows from the above and a change of variables that we have

∥a−
1
2

1 N k−1
1 a1∥2L2(Γ1)

≤ ∥a−
1
2

1 (x1)N k−1
ε (a1(x1))∥2L2(Γε)

+OM(ε).

To conclude the proof of Lemma 2.8.11, we need to show that

∥∇H1(N k−2
1 (a−1

1 Dta1))∥2L2(Ω1)
≤ ∥∇HεN k−2

ε (a−1
1 (x1)Dta1(x1))∥2L2(Ωε)

+OM(ε).

From a change of variables, we see that

∥∇H1(N k−2
1 (a−1

1 Dta1))∥2L2(Ω1)
− ∥∇HεN k−2

ε (a−1
1 (x1)Dta1(x1))∥2L2(Ωε)

≲M J +OM(ε),
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where

J := ∥(∇H1N k−2
1 (a−1

1 Dta1))(x1)−∇HεN k−2
ε (a−1(x1)Dta1(x1))∥L2(Ωε).

By elliptic regularity, it is easy to verify the bound

J ≲M ∥(N k−2
1 (a−1

1 Dta1))(x1)−N k−2
ε (a−1

1 (x1)Dta1(x1))∥H 1
2 (Γε)

+OM(ε).

From here, we use Proposition 2.8.12 similarly to the other surface term in the energy to

estimate

∥(N k−2
1 (a−1

1 Dta1))(x1)−N k−2
ε (a−1

1 (x1)Dta1(x1))∥H 1
2 (Γε)

≲M ε.

This completes the proof.

Convergence of the iteration scheme

We have now arrived at the final step of the existence proof, where we use our one step

iteration result in Theorem 2.8.1 in order to prove the existence of regular solutions. Precisely,

we aim to establish the following theorem.

Theorem 2.8.13. Let k be a sufficiently large even integer and M > 0. Let (v0,Γ0) ∈ Hk

be an initial data set so that ∥(v0,Γ0)∥Hk ≤M . Then there exists T = T (M) and a solution

(v,Γ) to the free boundary incompressible Euler equations on [0, T ] with this initial data

and the following regularity properties:

(v,Γ) ∈ L∞([0, T ];Hk) ∩ C([0, T ];Hk−1)

with the uniform bound

∥(v,Γ)(t)∥Hk ≲M 1, t ∈ [0, T ].

We remark that the solution we construct is unique by the result in Theorem 2.4.6. One

missing piece here is the lack of continuity in Hk, which does not follow from the proof below.

However, this will be rectified in the next section. We now turn to the proof of the theorem.

Proof. Starting from the initial data (v0,Γ0) ∈ Hk with Γ0 ∈ Λ∗ := Λ(Γ∗, ε0, δ), for each

small time scale ε we construct a discrete approximate solution (vε,Γε) which is defined at

discrete times t = 0, ε, 2ε, . . . , as follows:
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(i) We define (vε(0),Γε(0)) by directly regularizing (v0,Γ0) at scale ε. Such a regularization

is provided by Proposition 2.6.2 with ε = 2−j. In view of the higher regularity bound

there, these regularized data will satisfy the hypothesis of our one step Theorem 2.8.1,

with M replaced by M̃ = C(A)M .

(ii) We inductively define the approximate solutions (vε(jε),Γε(jε)) by repeatedly applying

the iteration step in Theorem 2.8.1.

To control the growth of the Hk norms of (vε,Γε) we rely on the energy monotonicity re-

lation, together with the coercivity property in Theorem 2.7.1 (and also the relation (2.8.2)).

We use the energy coercivity in both ways. At time t = 0 we have

Ek(vε(0),Γε(0)) ≤ C1(A)M.

We let our iteration continue for as long as

Ek(vε(jε),Γε(jε)) ≤ 2C1(A)M,

Γε(jε) ∈ 2Λ∗ := Λ(Γ∗, ε0, 2δ).
(2.8.41)

As long as this happens, using the coercivity in the other direction we get

∥(vε(jε),Γε(jε))∥Hk ≤ C2(A)M.

Now by the energy monotonicity bound (2.8.4) we conclude that

Ek(vε(jε),Γε(jε)) ≤ (1 + C(C2(A)M)ε)jEk(vε(0),Γε(0)) ≤ eC(C2(A)M)εjEk(vε(0),Γε(0)).

Hence we can reach the cutoff given by the first inequality in (2.8.41) no earlier than at time

t = εj < T (M) := C(C2(A)M)−1,

which is a bound that does not depend on ε. Similarly, for the second requirement in (2.8.41),

the relations (2.8.5) ensure that at each step the boundary only moves by O(ε), so by step

j it moves at most by O(jε). This leads to a similar constraint as above on the number of

steps. Analogous reasoning shows that the vorticity growth in (2.8.6) is also harmless on

this time scale.

To summarize, we have proved that the discrete approximate solutions (vε,Γε) are all

defined up to the above time T (M), and satisfy the uniform bound

∥(vε,Γε)∥Hk ≲M 1 in [0, T ],
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with Γε ∈ 2Λ∗. Since k is large enough, by Sobolev embeddings, this yields uniform bounds,

say, in C3,

∥vε∥C3 + ∥ηε∥C3 ≲M 1 in [0, T ], (2.8.42)

where ηε := ηΓε is the defining function for Γε ∈ 2Λ∗.

The other piece of information we have about vε comes from (2.8.5). However, this only

tells us what happens over a single time step of size ε, so we need to iterate it over multiple

steps. We begin with the first relation for the velocity in (2.8.5), which implies that

|vε(t, x)− vε(s, y)|+ |∇vε(t, x)−∇vε(s, y)| ≲M |t− s|+ |x− y|, t− s = ε.

Iterating this we arrive at

|vε(t, x)−vε(s, y)|+ |∇vε(t, x)−∇vε(s, y)| ≲M |t−s|+ |x−y|, t, s ∈ εN∩ [0, T ]. (2.8.43)

A similar reasoning based on the last part of (2.8.5) yields

∥ηε(t)− ηε(s)∥C1 ≲M |t− s|, t, s ∈ εN ∩ [0, T ]. (2.8.44)

Similarly, from (2.8.35) in Lemma 2.8.10 and the elliptic estimate ∥Dtpε∥Hk ≲M 1 for each

time, we also get a difference bound for the pressure; namely,

|∇pε(t, x)−∇pε(s, y)| ≲M |t− s|+ |x− y|, t, s ∈ εN ∩ [0, T ]. (2.8.45)

Equipped with the last three Lipschitz bounds in time, we are now able to return to (2.8.5)

and reiterate in order to obtain second order information. As above, we begin with the first

relation in (2.8.5). Here we reiterate directly, using the bounds (2.8.43) and (2.8.45) in order

to compare the expressions on the right at different times in the uniform norm. This yields

vε(t) = vε(s)−(t−s)(vε(s)·∇vε(s)+∇pε(s)+ged)+O((t−s)2), t, s ∈ εN∩[0, T ]. (2.8.46)

The same procedure applied to the last component of (2.8.5) yields

Ωε(t) = (I + (t− s)vε(s))Ωε(s) +O((t− s)2), t, s ∈ εN ∩ [0, T ]. (2.8.47)

We now have enough information about our approximate solutions (vε,Γε), and we seek

to obtain the desired solution (v,Γ) by taking the limit of (vε,Γε) on a subsequence as ε→ 0.

For this it is convenient to take ε of the form ε = 2−m, where we let m→ ∞. Then the time
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domains of the corresponding approximate solutions vm are nested.

Starting from the Lipschitz bounds (2.8.43), (2.8.44) and (2.8.45), a careful application

of the Arzela-Ascoli theorem yields uniformly convergent subsequences

ηm → η, vm → v, ∇vm → ∇v, ∇pm → ∇p, (2.8.48)

whose limits still satisfies the bounds (2.8.43), (2.8.44) and (2.8.45). It remains to show that

(v,Γ) is the desired solution to the free boundary incompressible Euler equations, with Γ

defined by η and p, where p is the associated pressure.

We begin by upgrading the spatial regularity of v and η. For this we observe that for

t ∈ 2−jN∩ [0, T ] we can pass to the limit as m→ ∞ in (2.8.42) to obtain the uniform bound

∥v∥C3 + ∥η∥C3 ≲M 1.

Since both v and η are Lipschitz continuous in t, this extends easily to all t ∈ [0, T ]. A

similar argument applies to the Hk norm of (v,Γ).

Next we show that (v,Γ) solves the free boundary incompressible Euler equations, which

we do in several steps:

i) The initial data. The fact that at the initial time we have (v(0),Γ(0)) = (v0,Γ0) follows

directly from the construction of (vε(0),Γε(0)); namely, by Proposition 2.6.2.

ii) The pressure equation. To verify that p is the pressure associated to v and Γ we

simply use the uniform convergence of ∇vm, ηm and ∇pm in order to pass to the limit in the

pressure equation (2.1.5).

iii) The incompressible Euler equations. Here we directly use the uniform convergence

(2.8.48) in order to pass to the limit in (2.8.46). This implies that v is differentiable in time,

and that the incompressible Euler equations are verified.

iv) The kinematic boundary condition. Arguing as above, this time we directly use the

uniform convergence (2.8.48) in order to pass to the limit in (2.8.47).

Finally, the C(Hk−1) regularity of (v,Γ) follows directly from the incompressible Euler

equations and the kinematic boundary condition.
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2.9 Rough solutions

In this section, we aim to construct solutions in the state space Hs as limits of regular

solutions for s > d
2
+ 1. The general procedure for executing this construction will be as

follows.

(i) We regularize the initial data.

(ii) We prove uniform bounds for the corresponding regularized solutions.

(iii) We show convergence of the regularized solutions in a weaker topology.

(iv) We combine the difference estimates and the uniform Hs bounds from step (ii) to

obtain convergence in the Hs topology.

As will be seen below, this procedure carries with it various subtleties since it involves

comparing functions defined on different domains. In addition, we must carefully address

the fact that our control parameters in the difference and energy estimates are not entirely

consistent.

Initial data regularization

Let (v0,Γ0) ∈ Hs be an initial data. The first step is to place Γ0 within a suitable collar

Λ∗ = Λ(Γ∗, ε, δ) with δ ≪ 1. Since Γ0 ∈ Hs ⊆ C1,ε+, Γ∗ is easily obtained by regularizing

Γ0 on a small enough spatial scale. We remark that the price to pay for a small enough

regularization scale is that the higher Sobolev norms Hk of Γ∗ will be large; but this is

acceptable, as explained in Remark 2.3.4.

Let M := ∥(v0,Γ0)∥Hs denote the data size measured relative to the collar Λ∗, and write

c0 for the lower bound on the Taylor term. We begin by constructing regularized data at

each dyadic scale 2j. For this, we define Γ0,j (along with Ω0,j) by regularizing the collar

parameterization η0. More specifically, we define η0,j := P≤jη0, where the meaning of P≤j

is as in Section 2.6. Then, we define the regularized velocity v0,j := Ψ≤jv0. Here, we recall

that, as long as j is much larger than M , v0,j is defined on some 2−j enlargement of both

Ω0,j and Ω0. Indeed, by Sobolev embeddings, we have the distance bound

|η0,j − η0| ≲M 2−
3
2
j.

Moreover, for such j, we stay in the collar and have a uniform lower bound on the Taylor

term.
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Uniform bounds and lifespan of regular solutions

By Theorem 2.8.13, the regularized data (v0,j,Γ0,j) from the previous step generate corre-

sponding smooth solutions (vj,Γj). Our goal now is to establish uniform bounds for these

regular solutions and, in particular, show that they have a lifespan which depends only on

the size of the initial data (v0,Γ0) in Hs, Taylor sign and the collar. To do this, we carry

out a bootstrap argument with the Hs norm of (vj,Γj).

In the argument below, we will be working with the enlarged control parameter B̃j(t) :=

∥vj∥W 1,∞(Ωj) + ∥Γj∥C1, 12
+ ∥Dtpj∥W 1,∞(Ωj) for the corresponding solution (vj,Γj). Note that

the reason we work for now with B̃j instead of just Bj(t) := ∥vj∥W 1,∞(Ωj) + ∥Γj∥C1, 12
is be-

cause we will make use of the difference estimates which require control of Dtpj. By elliptic

regularity and Sobolev embeddings, it is easy to see that B̃j is controlled by some polynomial

in ∥(vj,Γj)∥Hs .

Fix some large parameters A0 and B0 depending only on the numerical constants for the

data (M , c0 and so forth) such that A0 ≪ B0. As alluded to above, we make the bootstrap

assumption

∥(vj,Γj)(t)∥Hs ≤ 2B0, Aj(t) ≤ 2A0, aj(t) ≥
c0
2
, Γj(t) ∈ 2Λ∗, t ∈ [0, T ],

j(M) =: j0 ≤ j ≤ j1,

with j(M) sufficiently large depending on M , in a time interval [0, T ] where all the (vj,Γj)

are defined as smooth solutions with boundaries in the collar. Above, j1 is some finite but

arbitrarily large parameter, introduced for technical convenience to ensure that we run the

bootstrap on only finitely many solutions at a time. Our aim will be to show that we can

improve this bootstrap assumption as long as T ≤ T0 for some time T0 > 0 which is inde-

pendent of j1.

For any large integer k > s > d
2
+ 1 as in Theorem 2.8.13, we may consider the solutions

(vj,Γj) as solutions in Hk. In light of Theorems 2.7.1 and 2.8.13, for each j ≥ j0, the solution

(vj,Γj) can be continued past time T in Hk (and therefore Hs) as long as the bootstrap is

satisfied. Morally speaking, our choice for T0 will be

T0 ≪
1

P (B0)
,
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for some fixed polynomial P , though this is not entirely accurate, as T0 will also depend on

the collar and c0. Thanks to the energy bound in Theorem 2.7.1, if the bootstrap could be

extended to such a T0, it would guarantee uniform Hk bounds for (vj,Γj) for any integer

k > d
2
+ 1 in terms of its initial data in Hk. The main difficulty we face is that, a priori, the

Hs bounds for (vj,Γj) do not necessarily propagate for noninteger s. The goal, therefore, is

to establish Hs bounds for noninteger s. We will do this by working solely with the energy

estimates for integer indices and the difference estimates.

We begin by letting cj be theH
s admissible frequency envelope for the initial data (v0,Γ0)

given by (2.6.3). We let α ≥ 1 be such that k = s+ α is an integer. From Proposition 2.6.6

we know that the regularized data (v0,j,Γ0,j) satisfy the bounds

∥(v0,j,Γ0,j)∥Hs+α ≲A0 2
αjcj∥(v0,Γ0)∥Hs . (2.9.1)

From the energy bounds in Theorem 2.7.1 and the bootstrap hypothesis, we deduce from

(2.9.1) and the definition of cj that

∥(vj,Γj)(t)∥Hs+α ≲A0 2
αjcj(1 + ∥(v0,Γ0)∥Hs), t ∈ [0, T ], (2.9.2)

as long as T ≤ T0 ≪ 1
P (B0)

. One may think of this as a high frequency bound, which roughly

speaking allows us to control frequencies ≳ 2j in (vj,Γj). Note that in (2.9.2) we suppressed

the implicit dependence on the Taylor term and the collar. We will do this throughout the

subsection except when these terms are of primary importance, as it will be clear that our

argument can handle these minor technicalities.

To estimate low frequencies we use the difference estimates. Precisely, at the initial time

we claim that we have the difference bound

D((v0,j,Γ0,j), (v0,j+1,Γ0,j+1)) ≲A0 2
−2jsc2j∥(v0,Γ0)∥2Hs . (2.9.3)

This bound is clear by Proposition 2.6.6 for the first term in (2.4.2). To see this for the

surface integral, we use that on Γ̃0,j := ∂(Ω0,j ∩ Ω0,j+1), the pressure difference p0,j − p0,j+1

is proportional (with implicit constant depending on A0) to the distance between Γ0,j and

Γ0,j+1, measured using the displacement function (2.4.1). Combining this with a change of

variables, we have∫
Γ̃0,j

|p0,j − p0,j+1|2 dS ≈A0 ∥η0,j+1 − η0,j∥2L2(Γ∗)
≲A0 2

−2jsc2j∥(v0,Γ0)∥2Hs ,
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from which (2.9.3) follows. By Theorem 2.4.2, we can propagate the difference bound (2.9.3)

to obtain

D((vj,Γj)(t), (vj+1,Γj+1)(t)) ≲A0 2
−2jsc2j∥(v0,Γ0)∥2Hs , t ∈ [0, T ], (2.9.4)

as long as T ≤ T0 ≪ 1
P (B0)

. In particular, this gives by a similar argument to the above,

∥vj+1 − vj∥L2(Ωj∩Ωj+1), ∥ηj+1 − ηj∥L2(Γ∗) ≲A0 2
−jscj∥(v0,Γ0)∥Hs . (2.9.5)

Now, the goal is to combine the high frequency bound (2.9.2) and the L2 difference bound

(2.9.5) in order to obtain a uniform Hs bound of the form

∥(vj,Γj)∥Hs ≲A0 1 + ∥(v0,Γ0)∥Hs ,

for T ≤ T0. To establish such a bound for Γj, we consider the telescoping series on Γ∗ given

by

ηj = ηj0 +
∑

j0≤l≤j−1

(ηl+1 − ηl). (2.9.6)

From the higher energy bound (2.9.2), we have for each j0 ≤ l ≤ j − 1,

∥ηl+1 − ηl∥Hs+α(Γ∗) ≲A0 2
lαcl(1 + ∥(v0,Γ0)∥Hs). (2.9.7)

Using the telescoping sum and interpolation, it is straightforward to verify from (2.9.5),

(2.9.7) and an argument similar to Proposition 2.6.6 (see also [71]) that for each k ≥ 0,

∥Pkηj∥Hs(Γ∗) ≲A0 ck(1 + ∥(v0,Γ0)∥Hs). (2.9.8)

As a consequence, by almost orthogonality, we obtain the uniform bound

∥Γj∥Hs ≲A0 1 + ∥(v0,Γ0)∥Hs . (2.9.9)

Next, we turn to the bound for vj. We first note that the analogous decomposition to (2.9.6)

for vj does not work because for each l ≤ j− 1, vl and vl+1 are defined on different domains.

However, we can compare vl and vl+1 by first regularizing each function vl 7→ Ψ≤lvl which is

defined on a 2−l enlargement of Ωl. For this comparison to work, we need to know that Γj

and Γj+1 are sufficiently close. By interpolating using (2.9.5) and (2.9.9) we have

∥ηj+1 − ηj∥L∞(Γ∗) ≲A0 2
− 3

2
j, ∥ηj+1 − ηj∥C1, 12 (Γ∗)

≲A0 2
−δj, (2.9.10)
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for some δ > 0. Now, we return to the uniform bound for vj. Thanks to (2.9.10), we can

safely consider the decomposition on Ωj,

vj = Ψ≤j0vj0 +
∑

j0≤l≤j−1

Ψ≤l+1vl+1 −Ψ≤lvl + (I −Ψ≤j)vj. (2.9.11)

The first term in the telescoping decomposition is trivial to bound. We therefore focus our

attention on the remaining terms. First, define for l ≥ j0

Ω̃l =

j⋂
k=l

Ωk.

Thanks again to (2.9.10), for j0 large enough (independent of j and only depending on the

data parameters), we can arrange for the regularization operator Ψ≤l to be bounded from

Hs(Ω̃l) to H
s(Ω̃′

l) where Ω̃′
l is some 2−l enlargement of the union of all of the Ωk for k ≥ l.

We will use this fact to establish the following lemma which will help us to estimate the

intermediate terms in (2.9.11).

Lemma 2.9.1. Let j0 ≤ l ≤ j − 1, where j0 is some universal parameter depending only on

the numerical constants for the data. Then given the above decomposition for vj, we have

∥Ψ≤l+1vl+1 −Ψ≤lvl∥L2(Ωj) ≲A0 2
−lscl(1 + ∥(v0,Γ0)∥Hs), (2.9.12)

∥Ψ≤l+1vl+1 −Ψ≤lvl∥Hs+α(Ωj) ≲A0 2
lαcl(1 + ∥(v0,Γ0)∥Hs). (2.9.13)

By Sobolev embedding, a corollary of this lemma is the following pointwise bound at the

C1 regularity.

Corollary 2.9.2. We have the estimate

∥Ψ≤l+1vl+1 −Ψ≤lvl∥C1(Ωj) ≲A0 2
−lδ(1 + ∥(v0,Γ0)∥Hs), δ > 0.

Proof. The latter bound (2.9.13) is clear from the Hs+α boundedness of Ψ≤l and (2.9.2). For

the first bound, we split

Ψ≤l+1vl+1 −Ψ≤lvl = (Ψ≤l+1 −Ψ≤l)vl+1 +Ψ≤l(vl+1 − vl).

Using Proposition 2.6.2 and (2.9.2), we have

∥(Ψ≤l+1 −Ψ≤l)vl+1∥L2(Ωj) ≲A0 2
−lscl(1 + ∥(v0,Γ0)∥Hs).
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For the remaining term, we use the difference bound and the L2 boundedness of Ψ≤l to

obtain

∥Ψ≤l(vl+1 − vl)∥L2(Ωj) ≲A0 D((vl,Γl), (vl+1,Γl+1))
1
2 ≲A0 2

−lscl∥(v0,Γ0)∥Hs .

We also observe that the same bounds in Lemma 2.9.1 hold for the third term in (2.9.11)

but with the parameter l replaced by j in the corresponding estimates. This is immediate

for (2.9.13) and follows by telescopic summation from Proposition 2.6.6 in the case of (2.9.12).

We can use the above lemma (and the corresponding bounds for (I−Ψ≤j)vj) to estimate

similarly to (2.9.8) that for each k ≥ 0,

∥Pkvj∥Hs(Rd) ≲A0 ck(1 + ∥(v0,Γ0)∥Hs),

where we carefully note here that for each k ≥ 0, Pk should be interpreted as PkEΩj
where

EΩj
is the extension operator on Ωj from Proposition 2.5.12. From this observation and

almost orthogonality, we obtain the desired uniform bound,

∥(vj,Γj)(t)∥Hs ≲A0 1 + ∥(v0,Γ0)∥Hs ,

for t ∈ [0, T0]. In particular, if the constant B0 is chosen to be sufficiently large relative to

A0 and the data size, this improves the bootstrap assumption for ∥(vj,Γj)∥Hs . It remains

to improve the bootstrap assumption for Aj and at the same time the Taylor term and the

collar neighborhood size. For this we rely on a computation similar to [134, 140] for the

Lagrangian flow map uj(t, ·) : Ω0,j → Ωj(t), defined as the solution to the ODE

∂tuj(t, y) = vj(t, uj(t, y)), y ∈ Ω0,j, uj(0) = I.

Since s > d
2
+ 1, if T0 is small enough, then for any 0 ≤ t ≤ T ≤ T0 we have the bound

∥uj(t, ·)− I∥Hs(Ω0,j) ≲
∫ t

0

∥vj(t′, ·)∥Hs(Ωj(t′))∥uj(t′, ·)∥sHs(Ω0,j)
dt′

≲A0 t∥(v0,Γ0)∥Hs .

If A0 is large enough relative to the data size, this easily implies simultaneously

Γj(t) ∈
3

2
Λ∗, ∥Γj(t)∥C1,ε ≪ A0,
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as long as T0 is small enough. Doing a similar computation with ut in place of u and using

the equation

∂2t uj(t, y) = ∂t(vj(t, uj(t, y))) = −(∇pj + ged)(t, uj(t, y))

together with the elliptic estimates for the pressure, we obtain also

∥vj(t)∥C 1
2+ε(Ωj)

≪ A0.

This improves the bootstrap assumption for Aj. Finally, a similar argument but instead

with the pressure gradient and the Hs bound for Dtp allows one to close the bootstrap for

aj as long as T0 is sufficiently small depending on M and c0.

The limiting solution

Here we show that for T ≤ T0,

(v,Γ) = lim
j→∞

(vj,Γj) in C([0, T ];Hs).

First, we show domain convergence in Hs, which is more straightforward. Indeed, from

(2.9.10) we see that the limiting domain Ω exists and has Lipschitz boundary Γ. Next, we

let j ≥ j0 and consider the telescoping sum

η − ηj =
∞∑
l=j

ηl+1 − ηl.

An analysis similar to the previous subsection, using the difference bounds and the higher

energy bounds, yields

∥η − ηj∥L∞(Γ∗) ≲A0 2
− 3

2
j (2.9.14)

and

∥η − ηj∥C([0,T ];Hs(Γ∗)) ≲A0 ∥c≥j∥l2(1 + |(v0,Γ0)∥Hs),

which in particular shows convergence of Γj → Γ in C([0, T ];Hs(Γ∗)). Next, we turn to show-

ing the convergence vj → v in C([0, T ];Hs). We, formally, define v through the telescoping

sum

v = Ψ≤j0vj0 +
∑
l≥j0

Ψ≤l+1vl+1 −Ψ≤lvl,

where, as usual, j0 ensures that all the terms in the sum are defined on Ω. Thanks to (2.9.14),

this is possible. We begin by showing that Ψ≤jvj → v in Hs(Ωt) uniformly in t (which is
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again unambiguous thanks to (2.9.14)). We have

v −Ψ≤jvj =
∑
l≥j

Ψ≤l+1vl+1 −Ψ≤lvl.

From this we see that

∥v −Ψ≤jvj∥Hs(Ωt) ≲A0 ∥c≥j∥l2(1 + ∥(v0,Γ0)∥Hs),

which establishes the desired uniform convergence in Hs(Ωt). To show convergence of vj in

the sense of Definition 2.3.5, we consider the regularization ṽ = Ψ≤mvm. We then have as

above,

∥v −Ψ≤mvm∥Hs(Ω) ≲A0 ∥c≥m∥l2(1 + ∥(v0,Γ0)∥Hs),

which goes to 0 as m→ ∞. On the other hand, for j > m, we have

∥vj −Ψ≤mvm∥Hs(Ωj) ≲A0∥(1−Ψ≤j)vj∥Hs(Ωj) + ∥Ψ≤j(vj − v)∥Hs(Ωj) + ∥Ψ≤m(vm − v)∥Hs(Ωj)

+ ∥Ψ≤jv −Ψ≤mv∥Hs(Ωj).

Using (2.9.2) for the first term and the difference bounds for D((vj,Γj), (v,Γ)),

D((vm,Γm), (v,Γ)) for the second and third terms, respectively, we obtain

∥vj −Ψ≤mvm∥Hs(Ωj) ≲A0 ∥c≥m∥l2(1 + ∥(v0,Γ0)∥Hs) + ∥Ψ≤jv −Ψ≤mv∥Hs(Ωj).

To estimate the last term above, we have

∥Ψ≤jv −Ψ≤mv∥Hs(Ωj) ≲A0 ∥(Ψ≤j −Ψ≤m)(v −Ψ≤mvm)∥Hs(Ωj) + ∥(Ψ≤j −Ψ≤m)Ψ≤mvm∥Hs(Ωj)

≲A0 ∥v −Ψ≤mvm∥Hs(Ω) + 2−mα∥vm∥Hs+α(Ωm)

≲A0 ∥c≥m∥l2(1 + ∥(v0,Γ0)∥Hs),

where we used (2.9.2) to estimate the second term in the last inequality. The combination

of the above estimates establishes strong convergence in Hs. A similar argument shows

continuity of v with values in Hs. Finally, one may also check that the limiting solution

solves the free boundary Euler equations.

Continuous dependence

Given a sequence of initial data (vn0 ,Γ
n
0 ) ∈ Hs such that (vn0 ,Γ

n
0 ) → (v0,Γ0), we aim to

show that we have the corresponding convergence of the solutions (vn,Γn) → (v,Γ) in
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C([0, T ];Hs). First, we note that thanks to the data convergence, the corresponding solu-

tions have a uniform in n lifespan in Hs, and so, on some compact time interval [0, T ], we

have ∥(vn,Γn)∥Hs + ∥(v,Γ)∥Hs ≲M 1. Let us denote by cnj and cj the admissible frequency

envelopes for the data (vn0 ,Γ
n
0 ) and (v0,Γ0), respectively. Now, let ε > 0 and let δ = δ(ε) > 0

be a small positive constant to be chosen. Moreover, let n0 = n0(ε) be some large integer to

be chosen.

By definition of convergence inHs, there is a divergence free function vδ0 ∈ Hs(Ωδ
0) defined

on some enlarged domain Ωδ
0 such that

∥v0 − vδ0∥Hs(Ω0) + lim sup
n→∞

∥vn0 − vδ0∥Hs(Ωn
0 )
< δ.

Moreover, for n large enough, depending only on δ, vδ0 is defined on a neighborhood of Ω0

and Ωn
0 . Moreover, we may also assume that vδ0 belongs to Hs(Rd). Indeed, for some δ′ ≪ δ,

vδ0 is defined on the domain Ω′
0 defined by taking η′0 = η0 + δ′. Then we can extend vδ0 to

Rd using Proposition 2.5.12. We note that vδ0 is not necessarily divergence free on Rd but

is on an enlargement of Ω0 and Ωn
0 for n large enough. Now, let cδj denote the admissible

frequency envelope for (vδ0,Γ0) (note that we are using the same domain Ω0 as v0 for the

frequency envelope here; if δ is small enough, Taylor sign holds for this state) and denote by

(vδ,Γδ) the corresponding Hs solution (which we note has lifespan comparable to v and vn

for n large enough). We begin by choosing j = j(ε) large enough so that

∥c≥j∥l2 < ε. (2.9.15)

We next observe that we can choose δ(ε) and then n0(δ) so that

∥cn≥j∥l2 ≲M ε+ ∥c≥j∥l2 ≲M ε, (2.9.16)

for n ≥ n0. One can establish this by estimating the error when comparing terms in cδj
and cnj and then the error when comparing terms in cδj and cj by using (2.6.3) and square

summing. The main error in the first comparison is essentially comprised of two terms. The

first term to control involves the error between ηn0 and η0. If δ is small enough and n is large

enough, we have

∥ηn0 − η0∥Hs(Γ∗) < δ < ε.

The second source of error comes from the extensions of the velocity functions,

∥EΩn
0
vn0 − EΩ0v

δ
0∥Hs(Rd) ≤ ∥EΩn

0
vδ0 − EΩ0v

δ
0∥Hs(Rd) + ∥EΩn

0
(vn0 − vδ0)∥Hs(Rd).
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If δ ≪M ε, then the latter term is O(ε) by (uniform in n) boundedness of EΩn
0
and the defini-

tion of vδ0. The first term is O(ε) if n is large enough (relative to δ) thanks to the continuity

property of the family EΩn
0
in Proposition 2.5.12. Then one establishes (2.9.16) by comparing

cj and c
δ
j which just involves controlling essentially the error term ∥EΩ0(v

δ
0 − v0)∥Hs(Rd).

Now that we have uniform smallness of the initial data frequency envelopes, the next

step is to compare the corresponding solutions. First, thanks to the difference estimates,

we observe that for large enough n, Γn and Γδ are within distance ≪ 2−j as long as δ is

chosen small enough relative to j (recall that j was chosen to ensure (2.9.15)). Indeed, by

interpolating and using the uniform Hs bound, we have

∥ηn − ηδ∥L∞(Γ∗) ≲M D((vn,Γn), (vδ,Γδ))
3
4s ≲M δ

3
2s .

This ensures that we may compare Ψ≤jv
δ to vn. Denoting by (vnj ,Γ

n
j ) the regular solution

corresponding to the regularized data (vn0,j,Γ
n
0,j) (from the previous section), we have

∥Ψ≤jv
δ − vn∥Hs(Ωn) ≲ ∥Ψ≤j(v

δ − vn)∥Hs(Ωn) + ∥Ψ≤j(v
n − vnj )∥Hs(Ωn) + ∥vn −Ψ≤jv

n
j ∥Hs(Ωn)

≲M ∥cn≥j∥l2 + 2jsD((vn,Γn), (vnj ,Γ
n
j ))

1
2 + 2jsD((vn,Γn), (vδ,Γδ))

1
2

≲M ∥cn≥j∥l2 + 2jsD((vn,Γn), (vδ,Γδ))
1
2 ,

which if δ is small enough gives

∥Ψ≤jv
δ − vn∥Hs(Ωn) ≲M ε.

Similarly, we may obtain

∥ηn − η∥Hs(Γ∗) ≲M ε

and

∥Ψ≤jv
δ − v∥Hs(Ω) ≲M ε.

This establishes continuous dependence.

Lifespan of rough solutions

Here, we finally establish the continuation criterion from Theorem 2.1.7 for Hs solutions. We

consider initial data (v0,Γ0) ∈ Hs and the corresponding solution (v,Γ) in a time interval

[0, T ) which has the property that

C := sup
0≤t<T

A(t) +

∫ T

0

B(t) dt <∞, a(t) ≥ c0 > 0, t ∈ [0, T ),
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and whose domains Ωt maintain a uniform thickness. Unlike with the construction of rough

solutions, we now work with the weaker control parameter

B(t) = ∥v∥W 1,∞(Ωt) + ∥Γt∥C1, 12
.

One starting difficulty we face in this proof is that we do not a priori have a fixed

reference collar neighborhood. However, the uniform bound on A(t) guarantees that the free

boundaries Γt are uniformly of class C1,ε, and the uniform bound on v guarantees that they

move at most with velocity O(1). This implies that the limiting boundary ΓT = limt→T Γt

exists in the uniform topology, and also belongs to C1,ε, with the corresponding domain ΩT

having positive thickness. Furthermore, by interpolation, it follows that

lim
t→T

Γt = ΓT in C1,ε1 , 0 < ε1 < ε.

This allows us define the reference boundary Γ∗ as a regularization of ΓT , so that ΓT ∈
Λ(Γ∗, ε/2, δ/4) for an acceptable choice of δ ensuring that Λ(Γ∗, ε/2, δ/2) is also a well-defined

collar (cf. Remark 2.3.4). Then the above convergence implies that Γt ∈ Λ∗ := Λ(Γ∗, ε/2, δ/2)

for t close to T .

Reinitializing the starting time close to T , we arrive at the case where we have the initial

data (v0,Γ0) ∈ Hs and the corresponding solution (v,Γ) in a time interval [0, T ) with the

property that

Γt ∈ Λ∗, t ∈ [0, T ).

From the local well-posedness theorem, it suffices to show that

∥(v,Γ)∥L∞([0,T );Hs) <∞. (2.9.17)

Similarly to the previous subsections, the strategy we would like to employ will involve show-

ing that the control parameters for a suitable family of regularized solutions (vj,Γj) can be

controlled to leading order by the control parameters for (v,Γ). The main difficulty is that

vj and v are defined on different domains. As in the previous sections, as long as we can

ensure that Γj and Γ are within distance 2−j(1+δ) of each other, we can compare v with

Ψ≤jvj. However, there is one added difficulty now. The difference bound, which ensured the

closeness of domains in the previous sections, has a stronger control parameter involving the

term ∥Dtp∥W 1,∞(Ωt) in addition to B(t), which from Lemma 2.7.9 has size controlled by B(t)

and an additional logarithmic factor.
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To overcome this, we will divide [0, T ) into two disjoint intervals [0, T̃ ] and [T̃ , T ) where

0 < T̃ < T and T̃ has the property that∫ T

T̃

B(t) dt < δ0,

where δ0 is some parameter to be chosen depending only on C, c0, the collar and the Hs norm

of (v0,Γ0). Given such a T̃ , we consider the regularized data (vT̃ ,j,ΓT̃ ,j) of (v(T̃ ),ΓT̃ ) and

the corresponding solutions (vj,Γj). We remark that T̃ and δ0 need to be chosen carefully

to not depend on j, but we postpone this choice for now. Their purpose is to guarantee

that the stronger control parameter Dtp in the difference bounds as well as the logarithmic

factor in the energy bounds does not cause the distance between Γj and Γ to grow larger

than 2−j(1+δ) for times t < T where (vj,Γj) is defined.

From the continuous dependence result, the above regularized solutions converge to (v,Γ)

in [T̃ , T ) and their lifespans Tj satisfy

lim inf
j→∞

Tj ≥ T − T̃ .

However, a priori, we do not have a uniform L1
T bound on their corresponding control param-

eters Bj, nor a uniform L∞
T bound on Aj, nor a uniform lower bound on the corresponding

Taylor terms aj. Arguing similarly to the previous subsections, if such bounds could be

established, one could hope to use them to establish a uniform Hs bound on the regularized

solutions (vj,Γj) and hence extend their time of existence by an amount uniform in j. To

establish such uniform control on these pointwise parameters, we will run a relatively simple

bootstrap argument. From here on, we write M := ∥(v0,Γ0)∥Hs and MT̃ := ∥(v(T̃ ),ΓT̃ )∥Hs .

To set up the bootstrap, we begin by noting that at time T̃ , we have by Sobolev embedding

and interpolation, the bound

∥ηj(T̃ )− η(T̃ )∥C1,ε(Γ∗) ≲ 2−
j
2MT̃ . (2.9.18)

Moreover, by the properties of Ψ≤j, we have ∥vj(T̃ )∥C 1
2+ε ≲C 1. Hence, initially we have

Aj(T̃ ) ≤ P (C) + 2−
j
2MT̃ (2.9.19)

where P > 1 is some sufficiently large positive polynomial. As long as the choice of T̃ we

make later on depends only on C and c0 (but not on j), we can arrange by taking j large

enough, the initial bound

Aj(T̃ ) ≤ 2P (C). (2.9.20)
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Finally, if j is large enough, and T̃ is as above, we also initially have (for instance),

aj(T̃ ) ≥
2

3
c0.

Now, we make the bootstrap assumption that on a time interval [T̃ , T0] with T̃ < T0 < T we

have the bounds∫ T0

T̃

Bj(t) dt < 4C1(A)δ0, Aj(t) ≤ 4P (C), aj(t) ≥
1

2
c0, Γj(t) ∈ 2Λ∗ (2.9.21)

for j ≥ j0(M,T0) and some large universal constant C1 ≫ 1 depending only on A :=

supt∈[0,T )A(t). Our goal will be to show that the constant 4C1δ0 can be improved to 2C1δ0

and the constant 4P (C) can be improved to 2P (C), with similar improvements on the Taylor

term and the collar. After we close this boostrap, we will give a separate argument which

uses the uniform bounds on the control parameters to establish a uniform bound for (vj,Γj)

in Hs, and hence permit us to continue the solution. To close the above bootstrap, we aim

to establish the bounds

Bj ≤ C1(A)B + C22
−δj, Aj ≤ P (C) + C22

−δj, aj ≥
2

3
c0, Γj(t) ∈

3

2
Λ∗, (2.9.22)

where δ > 0 is some small positive constant and C2 depends on the size of MT̃ as well as the

constant C above. The bootstrap can then be closed by choosing j0 large enough to absorb

the contribution of C2.

As mentioned above, the main difficulty in comparing Bj with B and Aj with A is, as

usual, the fact that the corresponding domains Ωj and Ω are different. Our starting point is

to select the parameter δ0 and the time T̃ (δ0) to ensure that Ωj and Ω are close enough. As

mentioned above, in order for our argument not to be circular, we need to ensure that the

choice of δ0 depends only on c0 and C. Our first aim is to obtain some preliminary bounds

for ηj − ηj+1 in L∞ and C1, 1
2 . We let k be the smallest integer larger than s. First, by the

double exponential bound in Theorem 2.7.1 and the bootstrap hypothesis, we have for each

j,

∥(vj,Γj)∥2Hk ≲A exp
(
exp(Kδ0) log(K(1 + 22j(k−s)∥(v(T̃ ),ΓT̃ )∥

2
Hs)
)
.

Above, K is some (possibly large) constant depending on C and c0 which we will let change

from line to line. In the above estimate, if we take Kδ0 ≪ 1 (in particular, δ0 does not

depend on j), then we can arrange for

∥(vj,Γj)∥2Hk ≲ K22j(k−s)M2
T̃
(MT̃2

j)δ (2.9.23)



CHAPTER 2. THE FREE BOUNDARY EULER EQUATIONS 174

for some small constant δ > 0, where we assumed without loss of generality that MT̃ ≥ 1

to simplify notation. Note here that there is a slight loss compared to (2.9.2) coming from

the double exponential bound in the energy estimate. On the other hand, the difference

estimates, Lemma 2.7.9 and the energy coercivity ensures that by Grönwall and the bootstrap

assumption, we have

D((vj,Γj), (vj+1,Γj+1)) ≲ 2−2jsKM2
T̃
exp (Kδ0Ij) ,

where Ij = supT̃<t≤T0(log(K+KEk(vj,Γj))+log(K+KEk(vj+1,Γj+1))) and k is, again, the

smallest integer larger than s. By the higher energy bound and the bootstrap assumption,

we have

Ij ≲ K log(1 + 22jk∥(v(T̃ ),ΓT̃ )∥
2
L2) ≲k Kj,

where we used the higher energy bound for the regularized solution to propagate log(1 +

Ek(vj,Γj)) and control log(1 +Ek(vj,Γj)) by log(1 + 22kj∥(v(T̃ ),ΓT̃ )∥2L2) as well as the fact

that the volume of Ωt is conserved and Hölder’s inequality to estimate ∥(v(T̃ ),ΓT̃ )∥L2 ≲A 1.

Again, we choose δ0 small enough (and therefore T̃ ) depending only on C and c0 so that

exp(Kδ0Ij) ≤ 2jδ,

for some sufficiently small δ > 0 (depending only on s). Next, we pick j0 depending on MT̃ ,

C and c0 so that if j ≥ j0 (after possibly relabelling δ), we have

D((vj,Γj), (vj+1,Γj+1)) ≲ 2−2j(s−δ), ∥(vj,Γj)∥2Hk ≲ 22j(k−s)2jδ

with universal implicit constant. The key point to observe here is that there is now a slight

loss in the difference estimates and energy estimates compared to the previous subsections

because of the stronger control parameter in the difference bounds and the logarithmic

factor in the energy estimates. However, by using these estimates, we still obtain by Sobolev

embedding and interpolating, the bounds (after possibly relabelling δ)

∥ηj−ηj+1∥C1, 12 (Γ∗)
≲ 2−δj, ∥ηj−ηj+1∥C1,ε(Γ∗) ≲ 2−

1
2
j, ∥ηj−ηj+1∥L∞(Γ∗) ≲ 2−

3
2
j, (2.9.24)

all with universal implicit constant if j0 is large enough. The first bound will give us control

of ∥Γj∥C1, 12
in the first estimate in (2.9.22). The second bound above gives us control over

∥Γj∥C1,ε for the second estimate in (2.9.22) and also shows that Γj ∈ 3
2
Λ∗. The third bound

ensures that Γj and Γj+1 are sufficiently close. With this closeness established, we now

work towards closing the bootstrap (2.9.22) for the ∥vj∥W 1,∞(Ωj) component of Bj and the
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∥vj∥C 1
2+ε(Ωj)

component of Aj. We show the details for ∥vj∥W 1,∞(Ωj) as the other component

is very similar. We estimate in three steps. First, we observe that from the bounds for Ψ≤j,

we have

∥Ψ≤jv∥W 1,∞ ≲A B. (2.9.25)

We can ensure that the implicit constant in this estimate is less than C1(A) if C1(A) is

initially chosen large enough. Then we compare Ψ≤jv and Ψ≤jvj which is justified thanks

to (2.9.24). We have

Ψ≤jv −Ψ≤jvj =
∑
l≥j

Ψ≤jvl+1 −Ψ≤jvl.

By Sobolev embedding and a similar argument to the C1, 1
2 bound for ηj+1 − ηj, we see that

∥Ψ≤jvl+1 −Ψ≤jvl∥W 1,∞ ≤ C22
−lδ,

which gives by summation

∥Ψ≤jv −Ψ≤jvj∥W 1,∞ ≤ C22
−jδ. (2.9.26)

Using the error bound for I − Ψ≤j, Sobolev embedding and the higher energy bounds, we

also have

∥Ψ≤jvj − vj∥W 1,∞ ≤ C22
−jδ. (2.9.27)

Combining (2.9.25), (2.9.26) and (2.9.27) shows that

∥vj∥W 1,∞(Ωj) ≤ C1(A)B + C22
−jδ.

Doing a similar estimate for ∥vj∥C 1
2+ε(Ωj)

and taking j large enough allows us to close the

bootstrap for Aj.

It remains now to improve the bootstrap assumption for the Taylor term aj. To do this,

we need a suitable way of comparing the C1 norms of the pressures pj and p. We begin by

defining the shrunken domain Ω′ via η′ := η − 2−j0 . As Ωj is within distance O(2−
3
2
j) of Ω

for j ≥ j0, it follows that

Ω′ ⊂ Ω ∩
⋂
j≥j0

Ωj.

We next note the following bound which holds on Ω′ for any 0 < δ < ε
2
,

∥vj − v∥
C

1
2+δ(Ω′)

≤ C22
−j0δ. (2.9.28)
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This follows by similar reasoning to the above. Now, we establish the following C1 estimate

for p− pj:

∥p− pj∥C1(Ω′) ≤ C22
−j0δ. (2.9.29)

We begin by splitting p− pj into an inhomogeneous part plus a harmonic part on Ω′,

p− pj = ∆−1∆(p− pj) +H(p− pj).

Using Proposition 2.5.15, the dynamic boundary condition and the fact that the boundary

of Ω′ is within distance 2−j0 of the boundaries of Ω and Ωj, we have

∥H(p− pj)∥C1,δ(Ω′) ≲C 2−j0δ(∥p∥C1,ε(Ω) + ∥pj∥C1,ε(Ωj)).

By Lemma 2.7.5 and the bootstrap assumption on Aj, this gives

∥H(p− pj)∥C1,δ(Ω′) ≲C 2−j0δ.

To estimate the inhomogeneous part, we can argue similarly to the proof of Lemma 2.7.5

using a bilinear frequency decomposition for ∆(pj − p), to obtain

∥∆−1∆(p− pj)∥C1(Ω′) ≲C ∥v − vj∥C 1
2+δ(Ω′)

≤ C22
−j0δ,

where in the second inequality we used (2.9.28). Finally, to close the bootstrap on the Taylor

term aj, we can work in collar coordinates on Γ∗ to estimate

inf
x∈Γj

|∇pj(x)| ≥ inf
x∈Γ

|∇p(x)| − ∥pj − p∥C1(Ω′) − 2−j0δ(∥pj∥C1,ε(Ωj) + ∥p∥C1,ε(Ω)).

In the above, we first estimate the error between ∇pj(x+ ηj(x)ν(x)) and ∇pj(x+ η′(x)ν(x))
(and also ∇p(x + η′(x)ν(x)) and ∇p(x + η(x)ν(x))) using the C1,ε Hölder regularity of pj

and p. Then, we estimate the difference between ∇pj(x+ η′(x)ν(x)) and ∇p(x+ η′(x)ν(x))

on the common domain using our bounds for ∥pj − p∥C1(Ω′).

Taking j0 large enough and using (2.9.29) and Lemma 2.7.5, this gives

aj ≥
2

3
c0,

which closes the bootstrap for aj.

From the above argument, we see that for j ≥ j0, the regular solutions (vj,Γj) are

defined on the interval [T̃ , T ] and satisfy the assumptions (2.9.21). What we do not yet
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know is whether we have a uniform in j bound for the Hs norm of (vj,Γj). Once we have

this, (2.9.17) will follow from our continuous dependence result. From here on, we assume

without loss of generality that MT̃ ≫ C(A). We let cj denote the frequency envelope for the

data at time T̃ . Similarly to the above, on a time interval [T̃ , T0], we make the bootstrap

assumption that for finitely many j ≥ j0,

∥(vj,Γj)∥Hs ≤M2
T̃
. (2.9.30)

As in the previous subsection, we let α ≥ 1 be such that s+α is an integer. Then the higher

energy bounds, (2.9.30) and (2.9.21) yield

∥(vj,Γj)∥Hs+α ≲ 2jαcj exp(Kδ0 log(M
2
T̃
))MT̃

where K is some constant depending on C. As long as δ0 is such that Kδ0 ≪ 1, we obtain

∥(vj,Γj)∥Hs+α ≲ 2jαcjM
1+δ

T̃
(2.9.31)

for some positive constant δ ≪ 1. A similar argument with the difference bounds yields

D((vj,Γj), (vj+1,Γj+1))
1
2 ≲ 2−jscjM

1+δ

T̃
.

Arguing as in the local well-posedness result, we can use the above two bounds to estimate

∥(vj,Γj)∥Hs ≲M1+δ

T̃
,

which improves the bootstrap. We are then able to finally conclude the bound (2.9.17) and

thus the proof of Theorem 2.1.7.
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Chapter 3

Ultrahyperbolic Schrödinger

equations

3.1 Introduction

In this chapter, we consider the large data local well-posedness problem for general quasilin-

ear ultrahyperbolic Schrödinger equations of the form i∂tu+ gjk(u, u,∇u,∇u)∂j∂ku = F (u, u,∇u,∇u), u : R× Rd → Cm,

u(0, x) = u0(x),
(3.1.1)

where g and F are assumed to be smooth functions of their arguments with g real, symmetric

and uniformly non-degenerate and F vanishing at least quadratically at the origin.

In a recent series of articles [105, 107, 106], Marzuola, Metcalfe and Tataru have studied

the well-posedness of the system (3.1.1) in low regularity Sobolev spaces. As a brief overview,

the paper [107] considers the small data problem for cubic and higher nonlinearities in the

Sobolev spaces Hs(Rd), s > d+5
2
. The article [105], on the other hand, permits quadratic

terms in the nonlinearity, but assumes that the data comes from the smaller space l1Hs(Rd),

s > d
2
+ 3. Here, l1Hs is an appropriate translation invariant Sobolev type space, imposing

similar regularity requirements as Hs, but slightly stronger decay. To see that some addi-

tional decay is needed, it is instructive to look at the leading part of the linearized flow,

which can be written schematically as i∂tv + ∂jg
jk∂kv + bj∂jv + b̃j∂jv = f,

v(0, x) = v0(x).
(3.1.2)
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Here, for the purposes of our heuristic discussion, we have written the principal operator

in divergence form with gjk = gjk(u, u) – we will elaborate further on this reduction later

on. As is well-known, a necessary condition for L2 well-posedness of a wide class of such

linear systems is integrability of the first order coefficient Re(bj) along the bicharacteristic

(or Hamilton) flow of the principal differential operator ∂jg
jk∂k. This is usually referred

to as the Mizohata (or Takeuchi–Mizohata) condition. See, for instance, [70, 79, 104, 116,

117, 115, 145] for several manifestations of this ill-posedness mechanism. For cubic and

higher nonlinearities, the integrability of Re(bj) along the bicharacteristics is automatic for

small Hs data, but for quadratic nonlinearities it is not. That being said, there are several

natural ways to recover the above integrability condition. One common approach is to work

in weighted Sobolev spaces. However, the alternative l1Hs spaces also achieve this goal, but

have the additional advantage of being translation invariant – they are also far less restrictive

in terms of regularity and decay, as we will see below.

In contrast to the case of small data, the third paper in the series by Marzuola, Metcalfe

and Tataru [106] considers the significantly more challenging large data problem. Here, the

authors establish well-posedness in the same setting as their small data papers, but under two

additional assumptions. The first assumption is that the initial metric g(u0) is nontrapping,

meaning that all nontrivial bicharacteristics corresponding to the principal operator ∆g(u0)

escape to spatial infinity at both ends. Such a condition is automatic in the small data regime

(assuming sufficient regularity and asymptotic flatness of the metric) as in this setting the

Hamilton trajectories are close to straight lines. For large data well-posedness, a nontrapping

assumption is completely natural, in light of the Mizohata condition.

On the other hand, the methods in [106] also rely on the assumption of uniform ellipticity

of the principal operator, i.e., the existence of a uniform constant c > 0 such that

c−1|ξ|2 ≤ gjk(x)ξjξk ≤ c|ξ|2. (3.1.3)

This assumption is critically used in the above article to effectively diagonalize the linearized

equation (3.1.2) and remove the complex conjugate first order term. Roughly speaking, this

diagonalization proceeds by considering the new variable

Sv := v +Rv,

where R is a pseudodifferential operator of order −1 with symbol which is essentially of the

form

r(x, ξ) =
ib̃lξl
gjkξjξk

,
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when |ξ| ≥ 1. It is not difficult to see that, to leading order, Sv formally satisfies an equa-

tion like (3.1.2), but without the complex conjugate first order term. This diagonalization

procedure is then used as a key ingredient in the proofs of the requisite local smoothing and

L∞
T L

2
x estimates for the linearized flow. A similar diagonalization is heavily relied upon in

[24] and [87].

The primary objective of the current chapter is to generalize the main result of [106] to

the full class of ultrahyperbolic quasilinear Schrödinger flows, while keeping the regularity

and function spaces identical. That is, we shall relax the uniform ellipticity assumption

c−1|ξ|2 ≤ gjkξjξk ≤ c|ξ|2

to the much weaker uniform non-degeneracy condition

c−1|ξ| ≤ |gjkξk| ≤ c|ξ|.

The lack of an ellipticity assumption on the metric in (3.1.1) causes significant difficulties,

and is what prompted the development of the new well-posedness scheme that we present

in this chapter (we were also inspired by the scheme in [81]). On the other hand, there

are several physical sources of motivation for studying the general ultrahyperbolic problem.

Some well-known examples arise naturally in the study of water waves [34] and others arise

in the theory of completely integrable models [76, 137]. More recently, the Hall and electron

magnetohydrodynamic equations without resistivity have been shown to behave at leading

order like degenerate quasilinear Schrödinger systems of ultrahyperbolic type [80]. This

dispersive character of the equations was used to great effect in [80, 81], leading to well-

posedness in certain regimes and ill-posedness in others.

Although [106] requires ellipticity of the metric in order to achieve their low regularity

results, significant progress has been made towards removing the ellipticity assumptions from

the well-posedness theory of (3.1.1) in the high regularity regime. This is best illustrated by

the pioneering series [84, 90, 86, 87] of Kenig, Ponce, Rolvung and Vega, which culminates

in a proof of large data well-posedness under the nontrapping assumption for systems of

the form (3.1.1) in high regularity weighted Sobolev spaces of the form Hs ∩ L2(⟨x⟩Ndx),
where s and N are suitably large, dimension dependent parameters. In this fundamental

series of papers, [87] studies the well-posedness problem assuming ellipticity of the principal

operator ∂jg
jk∂k, while [84, 90, 86] consider symmetric, non-degenerate metrics, first in the

constant coefficient case and then later for variable coefficients. As should be evident from

these articles, the ellipticity assumption on the metric is not easy to remove, even in the
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high regularity regime. The main objective of this thesis is to give a much simpler proof

of well-posedness for the general system (3.1.1) that is also robust enough to work in low

regularity spaces. To the best of our knowledge, this is the first low regularity well-posedness

result that applies to the full class of ultrahyperbolic quasilinear Schrödinger flows.

The rough strategy used in [84] to prove well-posedness of the ultrahyperbolic flow (3.1.1)

in high regularity weighted spaces is to first establish an estimate for the local energy type

norm

∥v∥LE := ∥⟨x⟩−
N
2 ⟨∇⟩

1
2v∥L2

TL
2
x
, N = N(d) ∈ N,

for the linearized equation (3.1.2) (assuming suitably strong asymptotic decay of the coeffi-

cients bj, b̃j and ∇xg
jk) of the form

∥v∥LE ≲ ∥v∥L∞
T L2

x
+ ∥f∥LE∗+L1

TL
2
x
. (3.1.4)

Here, LE∗ denotes the “dual” local energy space. The estimate (3.1.4) shows that the local

energy norm of v remains under control, as long as v satisfies an a priori L∞
T L

2
x bound.

The preliminary estimate (3.1.4) follows, roughly speaking, from a suitable adaptation of

Doi’s construction in [38] to the ultrahyperbolic problem. The more significant technical

obstruction in [84] is in establishing the a priori bound for the L∞
T L

2
x norm. To understand

the difficulties, we first note that when the real part of the coefficient bj vanishes, it is a

relatively straightforward exercise (in view of (3.1.4)) to obtain the bound

∥v∥L∞
T L2

x
≲ ∥v0∥L2

x
+ ∥f∥LE∗+L1

TL
2
x
.

Indeed, this follows by a standard energy estimate, as one can integrate by parts to shift

derivatives off of the first order terms and onto the coefficients bj and b̃j. Therefore, in the

general case, one is motivated to try to conjugate away the badly behaved first order term

Re(bj)∂jv. In [84], this conjugation is accomplished by constructing a (formally) zeroth order

operator O which achieves the approximate cancellation

[O, ∂jgjk∂k] +ORe(bj)∂j ≈ 0. (3.1.5)

The idea here is very loosely akin to the method of integrating factors from ODE. On a

formal level, the symbol for the operator O achieving (3.1.5) is given by

O(x, ξ) := exp

(
−
∫ 0

−∞
Re(b(xt)) · ξtdt

)
, (3.1.6)
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where (xt, ξt) denotes the bicharacteristic flow

(ẋt, ξ̇t) = (∇ξa(x
t, ξt),−∇xa(x

t, ξt)), (x0, ξ0) = (x, ξ),

corresponding to the principal symbol a(x, ξ) := −gjk(x)ξjξk. Unfortunately, the symbol O

does not belong to the standard symbol class S0. Rather, (assuming that b has sufficient

regularity and decay) it satisfies

|∂αξ ∂βxO(x, ξ)| ≲α,β ⟨ξ⟩−|α|⟨x⟩|α|. (3.1.7)

In the case when the metric is positive-definite (i.e. ∆g is elliptic), the mapping properties

of the pseudodifferential operators associated with this class of symbols were intensively

studied in the paper [33] of Craig, Kappeler and Strauss. In the case of a merely non-

degenerate metric, Kenig, Ponce, Rolvung and Vega in [84] execute a systematic study of

this symbol class as well as a very careful analysis of the bicharacteristic flow for −gjk(x)ξjξk
to establish suitable mapping properties for O. In contrast, in the current chapter, to obtain

the L∞
T L

2
x estimate for (3.1.2) we will instead use a spatially truncated version of the above

renormalization operator which achieves a suitable cancellation of the form (3.1.5), at least

within a large compact set. The key advantage of this truncation is that the corresponding

renormalization operator will be a classical pseudodifferential operator of order 0, which will

dramatically simplify the analysis (perhaps at the cost of estimating some extra error terms).

Moreover, it will allow us to considerably lower the regularity and decay assumptions on the

coefficients in (3.1.2) compared to [84] when estimating the L∞
T L

2
x norm of v. Of course, this

idea comes with some technical caveats of its own, which will be discussed later.

We remark that the idea of using the above spatial truncation to close the energy es-

timate for (3.1.2) is inspired by the article [81] of Jeong and Oh, where they consider the

well-posedness problem for the electron MHD equations near non-zero, constant magnetic

fields, and perform an analogous truncation in their setting. As we shall see below, such

a construction turns out to be tied heavily to the direction of propagation of the bichar-

acteristics of the principal part of the corresponding linear flow. For the electron MHD

equations, the bicharacteristics have a distinguished direction of propagation. However, the

bicharacteristics for the Schrödinger equations that we consider in this thesis do not ex-

hibit this feature. Therefore, one key novelty of the present thesis is in dealing with the

multi-directionality present in Schrödinger flows. Another important novelty is our ability

to extend the truncation idea in order to give a new and very simple proof of the natural

local smoothing type estimate for (3.1.2) in the local energy norms compatible with the
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translation invariant function spaces used in this thesis. The method that we present is very

robust and requires only mild decay of the coefficients (e.g. uniform integrability along the

Hamilton flow). A more detailed outline of the argument will be given in Section 3.3.

Statements of the results

We now state our main results more precisely. As in [106], our primary focus will be on the

case of quadratic nonlinear interactions.

Let d,m ≥ 1 and consider a system of equations of the form (3.1.1) where

g : Cm × Cm × (Cm)d × (Cm)d → Rd×d and F : Cm × Cm × (Cm)d × (Cm)d → Cm

(3.1.8)

are smooth functions. We assume that F vanishes at least quadratically at the origin, so

that

|F (y, z)| ≈ O
(
|y|2 + |z|2

)
near (y, z) = (0, 0). (3.1.9)

In [106], the authors assume that the metric g is uniformly elliptic and coincides with the

identity matrix at the origin. That is, they assume that g(0) = Id×d and that there is a fixed

constant c > 0 so that

c−1|ξ|2 ≤ gjk(y, z)ξjξk ≤ c|ξ|2, ∀ξ ∈ Rd, y, z ∈ Cm × (Cm)d.

In this thesis, we only assume that g is symmetric and (uniformly) non-degenerate, in the

sense that

c−1|ξ| ≤ |g(y, z)ξ| ≤ c|ξ|, ∀ξ ∈ Rd, y, z ∈ Cm × (Cm)d, (3.1.10)

for some fixed constant c > 0.

As in [105, 107, 106], we also consider a second class of quasilinear Schrödinger equations

of the form i∂tu+ ∂jg
jk(u, u)∂ku = F (u, u,∇u,∇u), u : R× Rd → Cm,

u(0, x) = u0(x),
(3.1.11)

where F is as in (3.1.9), but where the metric g depends on u but not on ∇u. Such an

equation arises by formally differentiating the system (3.1.1). Indeed, if u solves (3.1.1) then

(u,∇u) solves an equation of the form (3.1.11) with a nonlinearity F which depends at most

quadratically on ∇u.
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Remark 3.1.1. Note that the second order operator in (3.1.11) has a divergence structure,

which can be achieved by commuting the first derivative with g and viewing the commutator

as an additional term on the right-hand side. In contrast, the second order operator in (3.1.1)

cannot be written in divergence form without possibly changing the type of the equations.

To state our main well-posedness theorem, we must recall the function spaces used in

[105, 107, 106]. For now, we limit ourselves to an expository summary, giving more precise

definitions in Section 3.2.

Consider a standard spatial Littlewood-Paley decomposition

1 =
∑
j∈N0

Sj,

where Sj, j ≥ 1, selects frequencies of size ≈ 2j and S0 selects all frequencies of size ≲ 1.

Corresponding to each dyadic frequency scale 2j ≥ 1, we consider an associated partition Qj

of Rd into cubes of side length 2j and an associated smooth partition of unity

1 =
∑
Q∈Qj

χQ.

We define the l1jL
2 norm by

∥u∥l1jL2 =
∑
Q∈Qj

∥χQu∥L2 , (3.1.12)

and the space l1Hs via the norm

∥u∥2l1Hs =
∑
j≥0

22sj∥Sju∥2l1jL2 . (3.1.13)

Note that if one replaces the ℓ1 sum by an ℓ2 sum in (3.1.12) and defines l2Hs analogously to

(3.1.13), then Hs = l2Hs with equivalent norms. The extra summability in the definition of

the l1Hs norm yields the decay necessary to circumvent Mizohata’s ill-posedness mechanism.

However, unlike the high regularity weighted Sobolev spaces used in previous works, the

function spaces l1Hs admit translation invariant equivalent norms and contain functions

exhibiting weaker regularity and decay.

As mentioned above, in the large data problem, one has to contend with trapping. This is

an obvious obstruction to well-posedness, so we will need to impose a nontrapping assumption

on the initial metric g(u0) to prevent this. Then, as part of our well-posedness theorem, we

will show that the nontrapping assumption propagates on a time interval whose length

depends on the data size and the profile of the initial metric. Our definition of nontrapping

is the same as [106].
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Definition 3.1.2. We say that the metric g(u0) is nontrapping if all nontrivial bicharacter-

istics for ∆g(u0) escape to spatial infinity at both ends.

The above qualitative definition of nontrapping suffices in order to state our main results.

However, as we shall see, the proofs require us to introduce a parameter L which gives a

quantitative description of nontrapping. The precise way in which we define L is slightly

different than [106], so as to better handle the case when ∆g is not elliptic.

With the above discussion in mind, we may state our main well-posedness theorem as

follows.

Theorem 3.1.3. Let s > d
2
+ 3 and suppose that the initial data u0 ∈ l1Hs makes g(u0)

into a real, symmetric, uniformly non-degenerate, nontrapping metric. Then (3.1.1) with

the quadratic nonlinearity (3.1.9) is locally well-posed in l1Hs. The same result holds if

s > d
2
+ 2 for the equation (3.1.11).

Remark 3.1.4. We will prove the latter result in Theorem 3.1.3 as it will imply the former

by differentiating the equation.

Remark 3.1.5. As in [106], the regularity and decay assumptions in the above results can

be weakened if the metric and nonlinearity satisfy the stronger vanishing conditions

g(y, z) = g(0) +O
(
|y|2 + |z|2

)
, |F (y, z)| ≈ O

(
|y|3 + |z|3

)
near (y, z) = (0, 0).

Namely, it can be shown that (3.1.1) is well-posed in the same sense as Theorem 3.1.3 when

u0 ∈ Hs and s > d+5
2
. An analogous result holds if s > d+3

2
for the equation (3.1.11).

To prove this, one makes modifications to the quadratic case which are virtually identical

to those made in [106]. In order to simplify our exposition, we omit the details for these

relatively straightforward modifications and instead focus on the general case of quadratic

nonlinearities.

Remark 3.1.6. In the above results, well-posedness is to be interpreted in the standard

quasilinear fashion. More precisely, in the setting of Theorem 3.1.3 it includes the following

key features.

• (Regular solutions). For large σ and nontrapping initial data u0 ∈ l1Hσ there is a

unique solution u ∈ C([0, T ]; l1Hσ) which persists and remains nontrapping on some

nontrivial maximal time interval I = [0, T∗).
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• (Rough solutions). For s > d
2
+ 3 and nontrapping data u0 ∈ l1Hs there is a unique

solution u ∈ C([0, T ]; l1Hs) ∩ l1Xs([0, T ]) which persists and remains nontrapping on

some nontrivial maximal time interval I = [0, T∗). Here, the auxiliary space l1Xs is a

natural analogue of the local energy space LE described earlier. A precise definition

of this space will be given in Section 3.2.

• (Continuous dependence). The maximal time T∗(u0) is a lower semicontinuous function

of u0 with respect to the l1Hs topology and for each T < T∗(u0) the data-to-solution

map v0 7→ v is continuous near u0 from l1Hs into C([0, T ]; l1Hs) ∩ l1Xs([0, T ]).

Remark 3.1.7. As in [106, Remark 1.3.2], the maximal existence time T∗(u0) a priori

depends on the full profile of the initial data u0 rather than just its size in l1Hs, due to the

nontrapping condition on the metric.

Remark 3.1.8. As in [106], the arguments we use here are purely dispersive. This is in

contrast to the viscosity methods used in earlier works, which are less tailored to the structure

of the equations, and hence less suitable for low regularity analysis.

Organization of the chapter

The chapter is organized as follows. In Section 3.2 we recall the precise functional setting used

in [106] as well as the standard Fourier-analytic, nonlinear, and pseudodifferential machinery

that will be used throughout the chapter. In certain cases, we adapt this machinery in order

to obtain refined estimates in the space-time function spaces where we aim to construct

solutions to (3.1.1) and (3.1.11). In Section 3.3, we provide a detailed outline of the proof.

Then, in Section 3.4, we analyze the bicharacteristic flow. The key objectives of this section

are to quantify nontrapping, show that nontrapping is stable under small perturbations, and

establish suitable asymptotic bounds for the bicharacteristics. In Section 3.5, we state our

main well-posedness theorem for the linearized flow and reduce the main linear estimate to

establishing a simplified bound for the corresponding inhomogeneous linear paradifferential

flow in the l1Xs spaces where we intend to construct solutions. Then, in Section 3.6, we aim

to establish a suitable estimate for the L∞
T L

2
x component of the l1Xs norm by constructing a

truncated version of the renormalization operator O in (3.1.6). Such an estimate will close on

a short enough time interval, up to controlling a small factor of the local energy component

of the l1Xs norm. In Section 3.7, we control this remaining component of the l1Xs norm for

the linear paradifferential flow. Then, in Section 3.8, we deduce the full l1Xs estimate for
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the paradifferential and linearized equations by combining the local energy estimate with the

L∞
T L

2
x estimate from Section 3.6. Finally, in Section 3.9 we use the linearized estimates from

the previous sections along with a suitable paradifferential reduction of the full nonlinear

equation to establish Theorem 3.1.3.
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3.2 Preliminaries

In this section, we recall some basic Fourier-analytic tools as well as the definitions and

elementary properties of the function spaces that will be used in our analysis. We also recall

some standard facts about pseudodifferential operators and establish some new estimates for

these operators in our function spaces.

Littlewood-Paley decomposition

We begin by recalling the standard Littlewood-Paley decomposition. We let φ : Rd → [0, 1]

be a smooth radial function supported in the ball of radius 2, B2 = B2(0), which satisfies

φ = 1 on B1. We define Fourier multipliers S0 and Sk by

Ŝk := φ(2−kξ)− φ(2−k+1ξ), k ∈ N,

Ŝ0 := φ(ξ).

We then define for each k ∈ N,

S<k :=
∑

0≤j<k

Sj, S≥k :=
∑

k≤j<∞

Sj.

With the above notation, we have the standard (inhomogeneous) Littlewood-Paley decom-

position

1 =
∑
k≥0

Sk.
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In the sequel, we will often phrase our bilinear and nonlinear estimates in the language of

paradifferential calculus. For a suitable pair of complex-valued functions f and g, we will

write Tgf to mean

Tgf :=
∑
k≥0

S<k−4gSkf. (3.2.1)

In other words, Tgf selects the portion of the product fg where f is at high frequency

compared to g. With this notation, we have the so-called Bony decomposition or Littlewood-

Paley trichotomy,

fg = Tfg + Tgf +Π(f, g).

We refer the reader to [14] and [109] for some basic properties of these operators. To

compactify the above notation, we will sometimes write f<k as shorthand for S<kf and

f≥k as shorthand for S≥kf .

Function spaces

Next, we recall the definitions and basic properties of the function spaces that will be used

in our analysis. Much of the material here is recalled from [105] and the large data paper

[106]. For each frequency scale 2k, we consider a partition of Rd into a set Qk of disjoint

cubes of side length 2k along with a smooth partition of unity in physical space,

1 =
∑
Q∈Qk

χQ.

For a translation-invariant Sobolev type space U , we define the spaces lpkU by

∥u∥lpkU :=

(∑
Q∈Qk

∥χQu∥pU

) 1
p

, 1 ≤ p <∞, ∥u∥l∞k U := sup
Q∈Qk

∥χQu∥U .

As noted in [105], these spaces have a translation invariant equivalent norm, obtained by

replacing the sum over cubes with an integral. Moreover, up to norm equivalence, the smooth

partition by compactly supported cutoffs can be replaced by a partition consisting of cutoffs

which are all localized to frequency zero.

We next recall the definition of the local energy type space X, which is defined for each

T > 0 by

∥u∥X := sup
l∈N0

sup
Q∈Ql

2−
l
2∥u∥L2

TL
2
x([0,T ]×Q).
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Associated to X is the “dual” local energy type space Y ⊂ L2([0, T ] × Rd) which satisfies

the relation X = Y ∗. See [105] for more details on the properties and construction of this

space. For each non-negative integer k, we define

Xk := 2−
k
2X ∩ L∞

T L
2
x, ∥u∥Xk

:= 2
k
2 ∥u∥X + ∥u∥L∞

T L2
x

and

Yk := 2
k
2Y + L1

TL
2
x, ∥u∥Yk := inf{2−

k
2 ∥u1∥Y + ∥u2∥L1

TL
2
x
: u = u1 + u2}.

Loosely speaking, we will use Xk to measure solutions to the Schrödinger equation localized

at frequency 2k whereas Yk will be used to measure inhomogeneous source terms localized

at this frequency. Next, we define for each s ∈ R,

∥u∥lpXs :=

(∑
k≥0

22ks∥Sku∥2lpkXk

) 1
2

, ∥u∥lpY s :=

(∑
k≥0

22ks∥Sku∥2lpkYk

) 1
2

,

for 1 ≤ p < ∞ (with the natural modification for p = ∞). We will also work with the

corresponding spaces without the ℓp summability,

∥u∥Xs :=

(∑
k≥0

22ks∥Sku∥2Xk

) 1
2

, ∥u∥Y s :=

(∑
k≥0

22ks∥Sku∥2Yk

) 1
2

.

As already mentioned, throughout the chapter we will frequently make use of the standard

tools of paradifferential calculus to estimate various multilinear and nonlinear expressions.

A very nice bookkeeping device for efficiently tracking the frequency distribution of such

terms is the language of frequency envelopes introduced by Tao in [147]. To define these,

suppose that we are given a translation-invariant Sobolev type space U with the orthogonality

relation,

∥u∥U ≈

(∑
k≥0

∥Sku∥2U

) 1
2

.

An admissible frequency envelope for u ∈ U is a positive sequence (ck) ⊂ N0 such that for

each k ∈ N0, we have

(i) (Boundedness and size).

∥Sku∥U ≲ ck∥u∥U , ∥ck∥l2k ≈ 1.
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(ii) (Left-slowly varying).

cj ≥ 2δ(j−k)ck, j < k,

for some fixed parameter δ > 0.

(iii) (Right-uniformly varying).

cj ≥ 2σ(k−j)ck, j > k,

for some fixed parameter σ > 0.

For nonzero u, such a frequency envelope always exists. For instance, we may define

cj = ∥u∥−1
U

(
max
k≥j

2−δ|j−k|∥Sku∥U +max
k≤j

2−σ|j−k|∥Sku∥U
)
.

In this chapter, the primary purpose of the above frequency envelopes will be to facilitate the

proof of the continuity of the data-to-solution map for the quasilinear Schrödinger systems

we consider.

Pseudodifferential calculus

Our objective in this subsection is to recall some basic properties of pseudodifferential oper-

ators and then establish some refined estimates for these operators in the local energy and

“dual” local energy spaces defined above.

For m ∈ R, we recall that the standard symbol class Sm := Sm1,0 is defined by

Sm := {a ∈ C∞(R2d) : |a|(j)Sm <∞ , j ∈ N0},

where the corresponding seminorms |a|(j)Sm are given by

|a|(j)Sm := sup{∥⟨ξ⟩|α|−m∂βx∂αξ a(x, ξ)∥L∞(R2d) : |α + β| ≤ j}.

To each symbol a ∈ Sm we can associate the pseudodifferential operator Op(a) ∈ OPSm,

defined for f ∈ S(Rd) by the quantization

Op(a)f(x) =
1

(2π)d

∫
Rd

a(x, ξ)eix·ξf̂(ξ)dξ.

We now list some basic properties of pseudodifferential operators; proofs can be found in the

standard reference [151]. We begin with an elementary result on Sobolev boundedness.
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Proposition 3.2.1 (Sobolev boundedness). Let s,m ∈ R and let a ∈ Sm. Then Op(a)

extends to a bounded linear operator from Hs+m to Hs and there exists j depending only

on s, m and the dimension such that

∥Op(a)∥Hs+m→Hs ≲ |a|(j)Sm .

We next recall the sharp G̊arding inequality for symbols a ∈ S1.

Proposition 3.2.2 (Sharp G̊arding inequality). Let a ∈ S1 and let R > 0 be such that

Re(a) ≥ 0 for |ξ| ≥ R. Then Op(a) is semi-positive. That is, there exists j depending on d

such that for f ∈ S(Rd), we have

Re⟨Op(a)f, f⟩ ≳R −|a|(j)S1∥f∥2L2 ,

where ⟨·, ·⟩ denotes the usual L2 inner product.

Proof. See, e.g., [68].

Remark 3.2.3. As shown in [68, 96], a variant of Proposition 3.2.2 also holds for N × N

matrix-valued symbols. More specifically, if a ∈ S1 is an N ×N symbol satisfying Re(a) ≥
0 then the associated pseudodifferential operator Op(a) is semi-positive in the sense that

Re⟨Op(a)f, f⟩ ≥ −c∥f∥2L2 for all f in the Schwartz class.

Next, we recall a (weak) version of the Calderon-Vaillancourt theorem [19].

Proposition 3.2.4 (Calderon-Vaillancourt theorem). Let a ∈ S0. There exists an integer

j > 0 depending on the dimension such that

∥Op(a)∥L2→L2 ≲ sup
|α+β|≤j

∥∂αξ ∂βxa∥L∞(R2d),

where the implicit constant is universal.

Finally, we recall some elementary symbolic calculus which will allow us to perform basic

manipulations with pseudodifferential operators.

Proposition 3.2.5 (Algebraic properties of pseudodifferential operators). Let m1,m2 ∈ R
and let a1 ∈ Sm1 and a2 ∈ Sm2 . The following properties hold.
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(i) (Composition property). There is a ∈ Sm1+m2−1 such that

Op(a1)Op(a2) = Op(a1a2) +Op(a)

and for every j ∈ N0, |a|(j)Sm1+m2−1 is controlled by |a1|(k)Sm1 |a2|
(k)
Sm2 for some k depending

on j and d.

(ii) (Adjoint). There is a ∈ Sm1−1 such that

Op(a1)
∗ = Op(a1) +Op(a)

and for every j ∈ N0, |a|(j)Sm1−1 is controlled by |a1|(k)Sm1 for some k depending on j and

d.

(iii) (Commutator). There is a ∈ Sm1+m2−2 such that

Op(a1)Op(a2)−Op(a2)Op(a1) = Op(−i{a1, a2}) +Op(a)

where {·, ·} denotes the Poisson bracket, which is defined by

{a1, a2} = ∇ξa1 · ∇xa2 −∇ξa2 · ∇xa1.

Moreover, for every j ∈ N0, |a|(j)
Sm1+m2−2 is controlled by |a1|(k)Sm1 |a2|

(k)
Sm2 for some k

depending on j and d.

Proof. See, e.g., [84, Theorem 2.1.2] for a precise statement and [55, 151] for proofs.

In our construction, we will need the following refinement of the Calderon-Vaillancourt

theorem for symbols a ∈ S0, which ensures that the L2 → L2 operator bound for Op(a)

depends only on the L∞ norm of a when applied to functions localized at sufficiently high

frequency. This refinement will be important later when we attempt to spatially localize the

renormalization operator mentioned in the introduction. We remark that Proposition 3.2.6

is also used in the paper [81] to achieve a similar purpose. We include the simple proof for

completeness.

Proposition 3.2.6 (Calderon-Vaillancourt theorem at high frequency). Let a ∈ S0. There

is k0 depending on a such that for k ≥ k0, Op(a) satisfies the L
2 → L2 bound,

∥Op(a)S≥k∥L2→L2 ≲ ∥a∥L∞ .

That is, the L2 → L2 bound for Op(a) depends only on the L∞ norm of the symbol a when

applied to functions at sufficiently high frequency.
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Proof. The proof is a simple scaling argument. The symbol for S>k is of the form ψk(ξ) :=

1−φ(2−kξ), where φ is a smooth bump function equal to one on the unit ball and supported

in B2(0). Define the symbol ak := aψk. Let λ > 0 be some constant to be chosen, and define

ak,λ(x, ξ) := ak(λ
−1x, λξ), vλ(x) := v(λx). We clearly have

Op(ak)v = (2π)−d
∫
Rd

ak(x, λξ)e
iλx·ξv̂λ−1(ξ)dξ.

Hence,

∥Op(ak)v∥L2 = λ−
d
2∥Op(ak,λ)vλ−1∥L2 .

By Proposition 3.2.4, we have

λ−
d
2∥Op(ak,λ)vλ−1∥L2 ≲ λ−

d
2 sup
|α|,|β|≤j(d)

∥∂βx∂αξ ak,λ∥L∞∥vλ−1∥L2

= sup
|α|,|β|≤j(d)

∥∂βx∂αξ ak,λ∥L∞∥v∥L2 ,

where j(d) depends only on the dimension. To conclude, we therefore only need to show

that for a suitable choice of λ, we have

sup
|α|,|β|≤j(d)

∥∂βx∂αξ ak,λ∥L∞ ≲ ∥a∥L∞ .

Taking λ = 2
k
2 and using that a ∈ S0, we find

|∂βx∂αξ ak,λ| ≲ |a|(|α|+|β|)
S0 2−|α|kλ|α|−|β| ≲ |a|(|α|+|β|)

S0 2−(|α|+|β|) k
2 .

The proof is concluded by taking k sufficiently large (depending only on the symbol bounds

for a).

Next, we extend the above bounds to the X0 and Y 0 spaces.

Proposition 3.2.7 (Operator bounds for X0 and Y 0). Let a ∈ S0 be time-independent and

let T ≲ 1. Then there is j = j(d) such that we have the operator bounds

∥Op(a)∥X0→X0 + ∥Op(a)∥Y 0→Y 0 ≲ 1 + |a|(j)S0 . (3.2.2)

Moreover, there is k0 > 0 depending only on a such that if k ≥ k0, we also have

∥Op(a)S≥k∥X0→X0 + ∥Op(a)S≥k∥Y 0→Y 0 ≲ 1 + ∥a∥L∞ . (3.2.3)

Remark 3.2.8. The inequality (3.2.3) can be thought of as the analogue of Proposition 3.2.6

for the X0 and Y 0 spaces.



CHAPTER 3. ULTRAHYPERBOLIC SCHRÖDINGER EQUATIONS 194

Proof. We prove (3.2.2) and remark on the very minor modifications required to prove (3.2.3)

where necessary. For notational convenience, we let Ka denote the term on the right-hand

side of (3.2.2). We begin with the X0 → X0 bound. By definition, we have

∥Op(a)f∥2X0 =
∑
k≥0

∥SkOp(a)f∥2Xk

≲
∑
k≥0

∥Sk[Op(a), S̃k]f∥2Xk
+
∑
k≥0

∥SkOp(a)S̃kf∥2Xk
,

(3.2.4)

for some fattened Littlewood-Paley projection S̃k. For the first term, we can crudely estimate

using Hölder in T and dyadic summation,(∑
k≥0

∥Sk[Op(a), S̃k]f∥2Xk

) 1
2

≲

(∑
k≥0

2k∥Sk[Op(a), S̃k]f∥2L∞
T L2

x

) 1
2

≲ sup
k≥0

∥[Op(a), S̃k]f∥
L∞
T H

1
2+ε
x

≲ε Ka∥f∥
L∞
T H

− 1
2+ε

x

≲ Ka∥f∥X0 ,

where in the second to third line, we used Proposition 3.2.1 and that [Op(a), S̃k] ∈ OPS−1

(which has symbol bounds uniform in k, thanks to Proposition 3.2.5).

Remark 3.2.9. We remark briefly on one change needed here for the proof of (3.2.3). If f is

replaced by S>kf for some sufficiently large k, then in the third line above, we can estimate

Ka∥S>kf∥
L∞
T H

− 1
2+ε

x

≲ Ka2
−k( 1

2
−ε)∥f∥X0 ,

and so, the factor of Ka can be replaced by 1 in the above estimate by taking k large enough.

Now, we turn to the second term in (3.2.4). By square summing and Proposition 3.2.4

(or Proposition 3.2.6 when proving (3.2.3)), it suffices to estimate the 2−
k
2X component of

the Xk norm. For this, we have

∥Op(a)S̃kf∥
2−

k
2X

= sup
l∈N0

sup
Q∈Ql

2
k−l
2 ∥χQOp(a)S̃kf∥L2

TL
2
x
.

Using the L2 → L2 bound for Op(a) from Proposition 3.2.4 and that [Op(a), χQ] ∈ OPS−1

with bounds independent of l, we obtain for each Q ∈ Ql,

2
k−l
2 ∥χQOp(a)S̃kf∥L2

TL
2
x
≲ Ka2

k−l
2 ∥χQS̃kf∥L2

TL
2
x
+ 2

k
2Ka∥S̃kf∥L2

TH
−1
x

≲ Ka∥S̃kf∥Xk
+ 2−

k
2Ka∥S̃kf∥L∞

T L2
x
.

(3.2.5)
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Therefore, (∑
k≥0

∥Op(a)S̃kf∥2Xk

) 1
2

≲ Ka∥f∥X0 ,

which establishes the X0 → X0 bound. The high-frequency variant (3.2.3) is proved by

using instead Proposition 3.2.6 in place of Proposition 3.2.4 above and using the frequency

gain in the latter term in the second line of (3.2.5) to absorb the factor of Ka.

Next, we turn to the Y 0 → Y 0 bound. Again, by definition, we have

∥Op(a)f∥2Y 0 =
∑
k≥0

∥SkOp(a)f∥2Yk

≲
∑
k≥0

∥Sk[Op(a), S̃k]f∥2Yk +
∑
k≥0

∥SkOp(a)S̃kf∥2Yk .

For the first term, we estimate using the embedding L1
TL

2
x ⊂ Yk and that [Op(a), S̃k] ∈

OPS−1 to obtain(∑
k≥0

∥Sk[Op(a), S̃k]f∥2Yk

) 1
2

≲ Ka∥f∥L1
TH

−1+ε
x

≲ Ka∥f∥Y 0 ,

where the last inequality follows from the fact that Y 0 ⊂ L1
TH

− 1
2
−ε

x . Similarly to before, for

the bound (3.2.3) when f is replaced by S>kf , we have

Ka∥S>kf∥L1
TH

−1+ε
x

≲ Ka2
−k( 1

2
−2ε)∥f∥Y 0 ,

and so, the factor of Ka can be replaced by 1 if k is large enough. For the second term,

we use duality. Let g ∈ Xk with ∥g∥Xk
≤ 1. We have by Proposition 3.2.5 and similar

embeddings as above,

|⟨SkOp(a)S̃kf, g⟩| ≲ ∥S̃kf∥Yk∥S̃k(Op(a))Skg∥Xk
+Ka∥S̃kf∥L1

TH
−1
x
∥Skg∥L∞

T L2
x

≲ ∥S̃kf∥Yk∥S̃k(Op(a))Skg∥Xk
+ 2−k(

1
2
−ε)Ka∥S̃kf∥Yk .

Again, if k is large enough, the Ka factor in the latter term can be discarded. Using the

X0 → X0 bound already established above, we also have

∥S̃k(Op(a))Skg∥Xk
≲ ∥Op(a)Skg∥X0 ≲ Ka,

where Ka can be replaced by 1 + ∥a∥L∞ if k is large enough. The proof of (3.2.2) is then

concluded by dyadic summation.
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In our analysis later, we will sometimes need to estimate commutators of pseudodifferen-

tial and paradifferential operators. For this purpose, we recall the following Coifman-Meyer

type estimate from (3.6.4) and (3.6.5) of [151].

Proposition 3.2.10 (Coifman-Meyer type bound). For every m,σ ∈ R and P ∈ OPSm,

we have

∥[P, Tg]f∥Hσ ≤ C∥g∥W 1,∞∥f∥Hσ+m−1 , (3.2.6)

where C > 0 is a constant depending on P and σ.

Multilinear and Moser estimates

Here we recall several of the multilinear and Moser-type estimates for the local energy and

dual local energy spaces defined above.

Proposition 3.2.11 (Proposition 3.1 in [105]). Let s > d
2
. Then for u, v ∈ l1Xs we have

the algebra property

∥uv∥l1Xs ≲ ∥u∥l1Xs∥v∥l1Xs .

We also have the Moser-type estimate,

∥F (u)∥l1Xs ≲ ∥u∥l1Xs(1 + ∥u∥l1Xs)c(∥u∥L∞),

for s > d
2
and any smooth function F with F (0) = 0.

We next recall some elementary bilinear estimates for the l1kYk spaces.

Proposition 3.2.12 (Bilinear estimates). The following bilinear estimates hold for l1kYk

spaces.

(i) (High-low interactions). If j < k − 4,

∥SjuSkv∥l1kYk ≲ 2j(
d
2
+1)2−k∥Skv∥

2−
k
2X

∥Sju∥l1jL∞
T L2

x
.

(ii) (Balanced interactions). If |i− j| ≤ 4 and i, j ≥ k − 4,

∥Sk(SiuSjv)∥l1kYk ≲ 2
jd
2 ∥Siu∥l1iL2

TL
2
x
∥Sjv∥L∞

T L2
x
.

Proof. This is a slight refinement of Lemma 4.3 in [106]. The proof is almost identical, so

we omit the details.
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By dyadic summation, the following is a consequence of Proposition 3.2.12.

Proposition 3.2.13 (Paradifferential bilinear estimates). Let s0 >
d
2
+ 2. Then for every

σ ≥ 0, we have

∥Tuv∥l1Y σ + ∥(Tv − v)u∥l1Y σ ≲ ∥u∥l1Xs0−1∥v∥Xσ−1 ,

∥Tuv∥l1Y σ + ∥(Tv − v)u∥l1Y σ ≲ ∥u∥l1Xs0−2∥v∥Xσ .

If 0 ≤ σ ≤ s0, we also have

∥(Tv − v)u∥l1Y σ ≲ ∥u∥l1Xσ−1∥v∥Xs0−1 ,

∥(Tv − v)u∥l1Y σ ≲ ∥u∥l1Xσ−2∥v∥Xs0 .
(3.2.7)

We next state a closely related commutator estimate, which is a slight refinement of the

version in [105].

Proposition 3.2.14. Let s > d
2
+ 2 and let A ∈ S0 be a Fourier multiplier. Then we have

∥∇[S<k−4g, A(D)]∇Sku∥l1Y 0 ≲A ∥g − g∞∥l1Xs∥Sku∥X0 ,

where g∞ is any constant matrix.

Proof. The proof of this is essentially identical to the proof of Proposition 3.2 in [105]. We

omit the details.

Remark 3.2.15. We note that if A ∈ Sm is a Fourier multiplier for some real number m ≥ 0

then we can write the commutator in the above proposition as

[S<k−4g, A(D)]∇Sku = 2mkS̃k[S<k−4g, 2
−mkA(D)S̃k]∇Sku,

for some fattened projection S̃k. Since 2−mkA(D)S̃k ∈ OPS0 with symbol bounds uniform

in k, we have from Proposition 3.2.14,

∥[S<k−4g, A(D)]∇Sku∥l1Y 0 ≲ 2(m−1)k∥g − g∞∥l1Xs∥Sku∥X0 .

The next bound will allow us to precisely estimate certain error terms in the dual lo-

cal energy space Y 0 which involve commutators of pseudodifferential and paradifferential

operators. This is essentially a variant of Proposition 3.2.10 but for the X and Y spaces.
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Proposition 3.2.16 (X−2 → Y 0 commutator estimate). Let T ≲ 1, O ∈ OPS0 be time-

independent with symbol O ∈ S0 and let s0 >
d
2
+2. Moreover, let g be a function such that

g − g∞ ∈ l1Xs0 for some constant g∞. Then we have the estimate

∥[O, Tg]f∥Y 0 ≤ C∥g − g∞∥l1Xs0∥f∥X−2 ,

where C depends only on O.

Proof. Clearly, it suffices to prove the claim with g∞ = 0. Moreover, it suffices to work

with the principal part of the commutator since the remainder is bounded from H−2
x → L2

x

uniformly in T with norm ≲O ∥g∥L∞
T C2,ε for some sufficiently small ε > 0, which by Sobolev

embedding can be controlled by ∥g∥l1Xs0 . The principal symbol p for [Tg,O] is

p(x, ξ) := −i
∑
k≥0

{S<k−4g(x)Ŝk(ξ), O}

= −i
∑
k≥0

S<k−4g(x)∇ξŜk(ξ) · ∇xO + i
∑
k≥0

S<k−4∇xg(x)Ŝk(ξ) · ∇ξO =: p1 + p2.

First, we consider bounds for P1 := Op(p1). Modulo an operator which is bounded from

H−2
x → L2

x with norm ≲O ∥g∥L∞
T C2,ε , we can write

P1 = −i
∑
k≥0

S<k−4g(x)(∇ξŜk)(D) ·Op(∇xO)S̃k +OL∞
T H−2

x →L∞
T L2

x
(1),

where S̃k is a slightly fattened Littlewood-Paley projection. As∇ξŜk is localized at frequency

≈ 2k, we can use Proposition 3.2.12 and dyadic summation to estimate

∥P1f∥Y 0 ≲ ∥g − g∞∥l1Xs0−1∥f∥X−2 .

A similar argument for P2 := Op(p2) gives

∥P2f∥Y 0 ≲ ∥∇xg∥l1Xs0−1∥f∥X−2 ,

which concludes the proof.

Finally, we state versions of some of the above bilinear and Moser estimates which are

phrased in terms of frequency envelopes. This will be convenient for establishing the finer

properties of the solution map later on, such as the continuous dependence of the solution

on the initial data. From Proposition 3.2 of [105], we have the following estimates.
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Proposition 3.2.17 (Frequency localized estimates I). Let s > d
2
and let u, v ∈ l1Xs with

l1Xs frequency envelopes given by ak and bk, respectively. Then for each k ∈ N0, we have

∥Sk(uv)∥l1Xs ≲ (ak + bk)∥u∥l1Xs∥v∥l1Xs .

Moreover, if F is a smooth function with F (0) = 0, then we have

∥Sk(F (u))∥l1Xs ≲ ak∥u∥l1Xs(1 + ∥u∥l1Xs)c(∥u∥L∞).

Proposition 3.2.18 (Frequency localized estimates II). Let s > d
2
+ 2. The following

estimates hold for k ∈ N0.

(i) Let 0 ≤ σ ≤ s and let u ∈ l1Xσ−1 and v ∈ l1Xs−1 with corresponding frequency

envelopes ak and bk, respectively. We have

∥Sk(uv)∥l1Y σ ≲ (ak + bk)∥u∥l1Xσ−1∥v∥l1Xs−1 .

(ii) Let 0 ≤ σ ≤ s − 1 and let u ∈ l1Xσ and v ∈ l1Xs−2 with corresponding frequency

envelopes ak and bk, respectively. We have

∥Sk(uv)∥l1Y σ ≲ (ak + bk)∥u∥l1Xσ∥v∥l1Xs−2 .

(iii) Let 0 ≤ σ ≤ s and let u ∈ l1Xσ and v ∈ l1Xs−2 with corresponding frequency envelopes

ak and bk, respectively. We have

∥Sk(vS≥k−4u)∥l1Y σ ≲ (ak + bk)∥u∥l1Xσ∥v∥l1Xs−2 .

3.3 Overview of the proof

In this section, we give an overview of the key ideas that go into the proof of Theorem 3.1.3.

We recall that our essential aim is to establish local well-posedness for the system i∂tu+ ∂jg
jk(u, u)∂ku = F (u, u,∇u,∇u), u : R× Rd → Cm,

u(0, x) = u0(x),
(3.3.1)

in the l1Hs scale, for s > s0 >
d
2
+2. As we shall see, our scheme builds on and complements

the ideas from [81, 84, 90, 86, 87, 106], but also has several important novelties.
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The linear and paradifferential ultrahyperbolic flows

The main component of our argument involves a careful analysis of the linear ultrahyperbolic

flow  i∂tv + ∂jg
jk∂kv + bj∂jv + b̃j∂jv = f,

v(0, x) = v0(x),
(3.3.2)

which is naturally associated with the linearization of (3.3.1). Here, the metric gjk is real,

nontrapping, symmetric and non-degenerate, and the coefficients g, b, and b̃ satisfy the

asymptotic flatness conditions

∥g − g∞∥l1Xs0 + ∥∂tg∥l1Xs0−2 + ∥(b, b̃)∥l1Xs0−1 + ∥∂t(b, b̃)∥l1Xs0−3 ≤M, (3.3.3)

where M > 0 is a fixed constant and g∞ is a constant, non-degenerate, symmetric matrix.

Note that in the special case where v corresponds to the linearization around a solution u

to (3.3.1), the coefficients and inhomogeneous source term in (3.3.2) take the form bj := ∇ug
jk∂ku−∇(∇u)jF, b̃j := ∇ug

jk∂ku−∇(∇u)jF,

f := (∇uF − ∂j(∇ug
jk)∂ku)v + (∇uF − ∂j(∇ug

jk)∂ku)v,
(3.3.4)

where we have suppressed the dependence on u in the coefficients for simplicity of notation.

In our general analysis of (3.3.2), we will not require that b, b̃ and f arise from solutions to

(3.3.1) via linearization.

An equation that is closely related to (3.3.2) is the associated linear paradifferential flow i∂tv + ∂jTgjk∂kv + Tbj∂jv + Tb̃j∂jv = f,

v(0, x) = v0(x),
(3.3.5)

which extracts the leading part of the linear flow. Here, the paradifferential operator Tg is

defined as in (3.2.1). Again, when v arises from the linearization around a solution u to

(3.3.1), bj and b̃j remain as in (3.3.4), but now

f := (∇uF − ∂j(∇ug
jk)∂ku)v + (∇uF − ∂j(∇ug

jk)∂ku)v + (∂jTgjk∂k − ∂jg
jk∂k)v

+ (Tbj − bj)∂jv + (Tb̃j − b̃j)∂jv.

In this case, f can be thought of as being comprised of perturbative error terms when

measured in the dual local energy space l1Y 0. These terms either have a suitable algebraic

balance of derivatives between the coefficients and v or have coefficient functions that are at

high or comparable frequency relative to v.
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Quantitative nontrapping and the bicharacteristic flow

As in [106], to adequately study the linear (and ultimately nonlinear) problem, we will

need a quantitative measure of nontrapping. For our purposes, we will only need to define

nontrapping for time-independent metrics g with regularity and decay given by

∥g − g∞∥l1Hs0 ≤M,
d

2
+ 2 < s0 < s, (3.3.6)

where M > 0 is a fixed constant and g∞ is a constant, non-degenerate, symmetric matrix.

Note that the condition (3.3.6) guarantees that g ∈ C2,δ, which in particular ensures that

the corresponding Hamilton flow,

(ẋt, ξ̇t) = (∇ξa(x
t, ξt),−∇xa(x

t, ξt)), a(x, ξ) = −gij(x)ξiξj, (x0, ξ0) = (x, ξ),

is locally well-posed. The first preliminary objective of Section 3.4 is to show that under the

nontrapping assumption on g and the asymptotic flatness condition (3.3.6), the Hamilton

flow is in fact globally defined. This is not automatic when ∆g is not elliptic. Indeed,

although gijξiξj is conserved by the Hamilton flow, unlike in the elliptic case, it does not

necessarily control the size of |ξt| in our setting.

The second objective of Section 3.4 is to provide a quantitative measure of nontrapping.

For this, we define a function L : [0,∞) → [0,∞) where L(R) measures (roughly speaking)

the maximal amount of time any initially unit speed bicharacteristic can intersect the ball

BR(0). Our definition differs slightly from the definition in [106], as they define L in terms

of the Hamilton flow projected onto the co-sphere bundle |ξt| = 1. This latter definition is

natural in the elliptic case, in light of the conservation of gijξiξj, but is not quite suitable

for our problem. Analogously to [106], we show that our nontrapping parameter L is stable

under small perturbations of the metric, which will be important later on when we analyze

the linear and nonlinear Schrödinger flows.

The main linear estimate

The crux of our argument centers around establishing the following key estimate for the

linear paradifferential flow (3.3.5):

∥v∥l1Xσ ≤ C(M,L)(∥v0∥l1Hσ + ∥f∥l1Y σ), 0 ≤ σ, (3.3.7)

which as a simple consequence yields the following estimate for the linear flow (3.3.2):

∥v∥l1Xσ ≤ C(M,L)(∥v0∥l1Hσ + ∥f∥l1Y σ), 0 ≤ σ ≤ s0.
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Here, C(M,L) is a constant depending on the coefficient size M in (3.3.3) and on the

nontrapping parameter L for g within a fixed compact set whose size depends on the profile

of the metric g and the rate of decay of the coefficients bj and b̃j. In Section 3.5, we reduce

establishing the above two estimates to establishing the following simpler bound for the

linear paradifferential flow:

∥v∥Xσ ≤ C(M,L)(∥v0∥Hσ + ∥f∥Y σ), σ ≥ 0, (3.3.8)

in the setting where v̂ is supported at frequencies ≳ 2k1 , where k1 is some sufficiently large

parameter. This latter reduction follows in a straightforward manner as low-frequency errors

can be controlled by taking T small enough depending on k1. The reason we perform

this reduction is so that we can make use of the more precise pseudodifferential mapping

properties in Propositions 3.2.6 and 3.2.7, which provide high frequency operator bounds for

pseudodifferential operators that depend only on the L∞ norm of their symbols (as long as

the symbol itself does not depend on k1). This will be of critical importance in Sections 3.6

and 3.7, as we will explain below.

L2 bounds for the linear flow

We next give an outline of Section 3.6, where we prove the first of the two main components

of the bound (3.3.8). The main aim of Section 3.6 is to establish control of the L∞
T H

σ
x norm

of v. Throughout the discussion, we assume that v̂ is supported at frequencies larger than

2k1 . Given ε > 0, our aim is to prove an estimate of the form

∥v∥L∞
T Hσ

x
≤ C(M,L)(∥v0∥Hσ + ∥f∥Y σ) + ε∥v∥Xσ , σ ≥ 0, (3.3.9)

on a time interval [0, T ] whose length depends on M, L and ε. In order to clearly outline

the main techniques, we focus on the case σ = 0. The key objective in this part of the proof

is to construct a spatially truncated version of the renormalization operator in (3.1.6) which

conjugates away the “main” portion of the term Re(bj)∂jv. As noted in the introduction,

obtaining an L∞
T L

2
x bound for (3.3.5) is straightforward in the absence of such a term. Unlike

the symbol in (3.1.6), however, we want the symbol O(x, ξ) of our renormalization operator

O to be time-independent and to belong to S0. In view of the first goal (and also to ensure

that our symbol is smooth) we truncate in frequency and time, rewriting the paradifferential

linear flow as  i∂tv + ∂jTgij∂iv + bj<k0(0)∂jv + b̃j<k0(0)∂jv = f +R1,

v(0) = v0.
(3.3.10)
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We then prove that if the frequency truncation parameter k0 is large enough and T is small

enough, the resulting error term R1 satisfies the perturbative bound

∥R1∥Y 0 ≤ ε∥v∥X0 .

In order to guarantee smoothness of our symbol O, we will only work with the Hamilton flow

(xt, ξt) for the truncated symbol a := −gij<k0(0)ξiξj. By our stability results, the truncated

metric gij<k0(0) will be nontrapping with comparable parameters to gij if k0 is sufficiently

large and T is sufficiently small. The downside of working exclusively with these truncated

quantities, however, is that we will need to obtain an estimate of the form

∥[O, ∂i(Tgij − gij<k0(0))∂j]∥X0→Y 0 ≤ ε,

when we commute the equation with O. Establishing such a bound is not completely trivial,

but can be handled expeditiously with the tools developed in Section 3.2. Knowing this,

our construction of O proceeds as follows: First, we fix a large parameter R such that the

coefficients in the equation are small outside of BR(0). That is,

∥(g − g∞)χ>R∥l1Xs0 + ∥(b, b̃)χ>R∥l1Xs0−1 ≪ ε. (3.3.11)

We then make the ansatz O := eψ1+ψ2 , where ψ1, ψ2 ∈ S0. The purpose of the symbol ψ1 is

to arrange for the leading order cancellation

{a, ψ1}+Re(bj<k0(0))ξj ≥ 0,

within the region BR(0) where the coefficient bj is potentially large. Roughly speaking (but

not exactly), we will take

ψ1(x, ξ) := −χ<2R(x)

∫ 0

−∞
Re((χ<4Rb<k0(0))(x

t)) · ξtdt.

The symbol ψ2 will then be chosen to correct the error terms in the transition region |x| ≈ R

which appear when derivatives are applied to the localization χ<2R. The resulting symbol

O will turn out to be a classical time-independent S0 symbol, allowing us to avoid the more

exotic symbol class (3.1.7) used in [84].

We crucially note that the spatial localization in O comes with one significant caveat.

Namely, it only conjugates away the bad first order term within the region BR(0). Therefore,

we still have to estimate the residual error term χ>RRe(bj<k0(0))∂jOv in Y 0. Ideally, such



CHAPTER 3. ULTRAHYPERBOLIC SCHRÖDINGER EQUATIONS 204

an estimate would follow easily from the smallness (3.3.11) of bj outside of BR(0). However,

the symbol bounds for O grow in the parameter R. Therefore, we have to somehow ensure

that the X0 → X0 bounds for O do not counteract the smallness coming from bj. This is

accomplished by using the observation that, unlike the higher order symbol bounds, the L∞

norm of the symbol O is independent of the parameter R (as R → ∞). Therefore, since v̂

is supported at frequencies ≳ 2k1 , we can make use of the bounds in Proposition 3.2.6 and

Proposition 3.2.7 to ensure that we have an estimate essentially of the form

∥Ov∥X0 ≲ ∥O∥L∞∥v∥X0 .

This is what will ultimately allow us to break any potential circularity in our analysis. As

mentioned earlier, an analogous construction was used to establish well-posedness for the

electron MHD equations in [81].

Local energy bounds for the linear flow

In Section 3.7, we turn to the second of the two main components of the bound (3.3.8).

Again, for simplicity of discussion, we take σ = 0. Here, the aim is to establish control of the

local energy component of the X0 norm of v in terms of the dual norm of f and the L∞
T L

2
x

norm of v. More precisely, we aim to prove an estimate of the form

∥v∥X0 ≤ C(M,L)(∥v∥L∞
T L2

x
+ ∥f∥Y 0). (3.3.12)

Combining this bound with the L∞
T L

2
x bound (3.3.9) (with ε sufficiently small), it is relatively

straightforward to obtain the main bound (3.3.8). To obtain (3.3.12), we implement a novel

approach based on the truncation idea used in the L∞
T L

2
x bound. As before, we begin by

fixing R > 0 so that we have the smallness (3.3.11) outside of BR(0).

Our first observation is that we can use the small data result from [105] (which holds

for the general ultrahyperbolic Schrödinger flows that we consider here) to reduce having

to control the entire local energy component of v to having to obtain the corresponding

estimate within the compact set BR(0). Precisely, we can reduce matters to establishing the

bound

∥χ<Rv∥
L2
TH

1
2
x

≤ C(M,L)(∥v∥L∞
T L2

x
+ ∥f∥Y 0) + ε∥v∥X0 . (3.3.13)

Note that in (3.3.13) we work with the stronger (but simpler) L2
TH

1
2
x norm within the compact

set BR(0). The starting point in the proof of this estimate is to rewrite (3.3.5) as a system
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for v := (v, v):

∂tv +Pv +B0
k0
v = R,

where P is the corresponding principal operator. As in the L∞
T L

2
x estimate, the operator B0

k0

is a suitable time and frequency truncated version of the first order differential operator in

the paralinearized Schrödinger equation and R is a source term which can be controlled by

the right-hand side of (3.3.13) in Y 0. We write P0
k0

as a shorthand for the associated time

and frequency truncated principal operator.

The estimate (3.3.13) proceeds via a positive commutator argument. Our implementation

can be thought of as a spatially truncated version of Doi’s argument in [38]. Precisely, we aim

to construct a real symbol q ∈ S0 and a corresponding pseudodifferential operator Q such

that the principal symbol for the commutator [Q,P0
k0
] is elliptic within BR(0) and controls

the first order term B0
k0

up to a small error. Like before, we work with the bicharacteristic

flow (xt, ξt) for the time and frequency truncated metric gij<k0(0) to ensure that the symbol we

construct is smooth and time-independent. To construct q, we first fix a secondary parameter

R′ ≫ R to be chosen. Similarly to before, we make the ansatz

q := eC(M)(p1+p2+p3),

where C(M) is a suitably large constant and p1, p2, p3 are S0 symbols to be chosen. The

choice of p1 will simply ensure the ellipticity of [Q,P0
k0
] in BR(0). We can take

p1(x, ξ) := −χ<R′

∫ ∞

0

χ<R(x
t, ξt)|ξt|dt.

A natural next step would be to correct this symbol in the transition region |x| ≈ R′ and use

the smallness of the coefficients (b, b̃) outside of BR(0) as in the L∞
T L

2
x estimate. However,

this will not work because the L∞ bound for p1 will not be uniform in R. Instead, we consider

a second symbol p2 whose purpose will be to ensure that the commutator [Q,P0
k0
] controls

the first order term B0
k0

within the much larger compact set BR′(0) but with an L∞ bound

which does not depend on the larger parameter R′. Roughly speaking, we will take p2 to be

p2(x, ξ) := −χ<R′

∫ ∞

0

χ<R′(xt)

√
|(b<k0(0))(xt)|2 + |(b̃<k0(0))(xt)|2 + L(R′)−2⟨ξt⟩dt,

which turns out to be a S0 symbol with the desired properties. The symbol p3 will then be

chosen to correct the error in the transition region |x| ≈ R′ similarly to the L∞
T L

2
x bound. If

v is localized at high enough frequency, the multiplier Q will then achieve the following key

outcomes.



CHAPTER 3. ULTRAHYPERBOLIC SCHRÖDINGER EQUATIONS 206

• [Q,P0
k0
] will have an essentially positive-definite principal symbol which is elliptic of

order 1 within BR(0). This will permit the use of G̊arding’s inequality to control χ<Rv

in L2
TH

1
2
x .

• [Q,P0
k0
]v will control the first order term χ<R′B0

k0
Qv.

• If v is at high enough frequency 2k1 , ∥QS>k1−4∥X0→X0 will be independent of R′.

This will allow us to control χ≥R′B0
k0
v in Y 0 by a small factor of ∥v∥X0 by taking R′

sufficiently large and using the smallness of bj and b̃j outside of BR′(0).

The above scheme turns out to be sufficient for closing the estimate (3.3.12). We remark

that this method is very robust and works under extremely mild decay assumptions on the

coefficients – we essentially only require integrability along the bicharacteristic flow (xt, ξt).

Such integrability is guaranteed by the asymptotic flatness condition (3.3.3) and the fact

that the metric is nontrapping.

Well-posedness for the nonlinear equation

Finally, in Section 3.9 we will make use of the estimate (3.3.7) for both the linear and

paradifferential flows as well as its various corollaries to establish well-posedness for the

nonlinear flow. Having established our key linear estimate, the scheme for establishing well-

posedness is virtually identical to the one implemented in Section 7 of [106]. We therefore

only outline the minor changes, and refer to [106] for additional details. The interested

reader may also consult [71] for an expository presentation of the overarching well-posedness

scheme.

3.4 The bicharacteristic flow

In this section, we define our quantitative measure of nontrapping and establish basic prop-

erties of the bicharacteristic flow corresponding to the symbol a(x, ξ) := −gij(x)ξiξj. We

begin by fixing s0 >
d
2
+ 2 and letting g be a time-independent metric satisfying

∥g − g∞∥l1Hs0 ≤M, (3.4.1)

for some constant non-degenerate symmetric matrix g∞. We moreover assume the non-

degeneracy condition

c−1|ξ| ≤ |gijξj| ≤ c|ξ|, ∀ξ ∈ Rd, (3.4.2)
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for some constant c > 0. By Sobolev embedding, we have for some δ > 0,

∥g∥C2,δ ≲g∞ 1 +M.

As a consequence, for each (x, ξ) ∈ R2d, the bicharacteristic flow (xt, ξt) := (xt(x,ξ), ξ
t
(x,ξ))

given by

(ẋt, ξ̇t) = (∇ξa(x
t, ξt),−∇xa(x

t, ξt)), (x0, ξ0) = (x, ξ), (3.4.3)

is well-defined in a neighborhood of t = 0 (whose size a priori depends on (x, ξ)).

In addition to the above decay and non-degeneracy assumptions, we will also impose the

condition that the metric g be nontrapping. The meaning of this is given in a qualitative

form by the following definition.

Definition 3.4.1 (Nontrapping metric). A non-degenerate metric g is said to be nontrapping

if for every (x, ξ) ∈ Rd × (Rd − {0}) and every compact set K ⊂ Rd, the bicharacteristic xt

intersects K on a compact time interval.

As in [106], we will need a more quantitative description of the above definition. The

quantitative parameter L = L(R) we introduce should measure, in some sense, how long a

given bicharacteristic can intersect BR(0). However, since the bicharacteristic flow satisfies

the homogeneity law

ξ 7→ λξ, t 7→ λt, (3.4.4)

such a parameter will not be uniform in the size of ξ. To deal with this, it is natural to

restrict to data ξ ∈ Sd−1. From the non-degeneracy of the metric, this restricts the initial

speed of a given bicharacteristic to approximately unit size.

At this point, we fix a non-degenerate, nontrapping metric g satisfying (3.4.1) and (3.4.2).

By a compactness argument, the function

L : [0,∞) → [0,∞)

given formally by

L(R) := inf{s ≥ 0 : |xt| > R, ∀ |t| ≥ s, ∀(x, ξ) ∈ BR(0)× Sd−1} (3.4.5)

is well-defined. We will use L := L(R) as a quantitative measure of nontrapping.
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Remark 3.4.2. In the case where ∆g is elliptic, it is automatic that the bicharacteristic

flow is globally well-defined because the quantity

gijξiξj (3.4.6)

is preserved by the flow, which, by ellipticity, implies that |ξt| remains bounded uniformly

in t by |ξ|. The same is not immediate when the symbol gijξiξj is not elliptic and therefore

it still needs to be proved that the bicharacteristic flow is globally well-defined. We remark

that our definition of the nontrapping parameter L is slightly different than the one used

in [106]. In their article, they define L in terms of the maximal time any bicharacteristic

for the projected flow onto {|ξt| = 1} can intersect BR(0). In light of the above discussion,

this is a natural definition in the case of an elliptic symbol, but is not so natural for our

purposes because the bicharacteristic flow should not in general preserve any normalization

of |ξ| (even though (3.4.6) is still preserved by the flow). We therefore only restrict the initial

ξ to the unit sphere in our quantitative measure of nontrapping.

Our next proposition addresses the problem of global existence and asymptotic bounds

for the bicharacteristic flow when the metric is nontrapping and satisfies the decay condition

g − g∞ ∈ l1Hs0 .

Proposition 3.4.3. Let s0 > d
2
+ 2 and let g be a non-degenerate, nontrapping metric

satisfying (3.4.1). Then

(i) For each (x, ξ) ∈ Rd × (Rd − {0}), the bicharacteristic flow for a(x, ξ) := −gijξiξj is

globally defined.

(ii) For every ε0 > 0 sufficiently small, there exists R0 > 0 such that for any initially

outgoing bicharacteristic (i.e. ẋt(0)·x ≥ 0) with data (x, ξ) ∈ (Rd−BR0(0))×(Rd−{0}),
xt is defined for t ≥ 0 and is close to the flat flow in the sense that for all t ≥ 0, we

have

|xt − x+ 2tgij∞ξj| ≤ tε0|ξ|, |ξt − ξ| ≤ ε0|ξ|. (3.4.7)

Proof. The proof of this is very similar to Lemma 5.1 in [106]. We include the short argument

for completeness. We begin by choosing R0 large enough so that g is sufficiently close to the

flat metric g∞ in l1Hs0 outside of BR0
2
(0). That is,

∥χ
>

R0
2
(g − g∞)∥l1Hs0 < ε, (3.4.8)
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where 0 < ε ≪ ε0 ≪ 1 is some sufficiently small constant relative to ε0. We let (xt, ξt) be

any initially outgoing bicharacteristic with data (x, ξ) ∈ (Rd − BR0(0)) × (Rd − {0}) and

make the bootstrap assumption that the bicharacteristic (xt, ξt) satisfies (3.4.7) on a time

interval t ∈ [0, T ]. Our goal will be to show that when ε > 0 is small enough, the factor of ε0

in the bootstrap hypothesis can be improved to ε0
2
. Thanks to the nontrapping assumption

on g, this will clearly suffice for establishing both (i) and (ii).

To close the bootstrap, we note that on [0, T ], thanks to (3.4.7) and the fact that xt

is initially outgoing, the bicharacteristic xt remains outside B 3
4
R0
(0). Using this and the

bootstrap hypothesis, we aim to prove the following simple lemma.

Lemma 3.4.4. The following estimate holds for every t ∈ [0, T ] :∫ t

0

|∇xg(x
s)|ds ≲ ε|ξ|−1.

Proof. We estimate∫ t

0

|∇xg(x
s)|ds ≲

∑
k≥0

∑
Q∈Qk

∫ t

0

|χQ(xs)(Sk(χ>R0
2
∇xg))(x

s)|ds

≲ |ξ|−1
∑
k≥0

∑
Q∈Qk

2k∥χQSk(χ>R0
2
∇xg)∥L∞

≲ |ξ|−1∥χ
>

R0
2
∇xg∥l1Hs0−1

≤ |ξ|−1ε,

where in the second line we used (3.4.7) and the non-degeneracy of g∞, which ensures that

the bicharacteristic xs intersects a cube of size 2k for time at most ≲ 2k|ξ|−1. In the third

line, we used Bernstein’s inequality and in the fourth line, we used (3.4.8). This concludes

the proof.

To close the bootstrap, we note that by (3.4.7) we have |ξt| ≤ (1 + ε0)|ξ|. Therefore, by
using Lemma 3.4.4 and integrating in time the equation

d

dt
(ξt − ξ) = ∇xg

ij(xt)ξtiξ
t
j

we obtain

|ξt − ξ| ≲ ε|ξ|.

Using this bound, integrating in time the equation

d

dt
(xt − x+ 2tgij∞ξj) = 2(gij∞ − gij)(xt)ξtj − 2gij∞(ξtj − ξj)
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and using that |(g − g∞)(xt)| ≲ ε, we also obtain

|xt − x+ 2tgij∞ξj| ≲ tε|ξ|,

which improves the bootstrap (3.4.7) if ε is small enough relative to ε0. This concludes the

proof of the proposition.

The next proposition shows that the size of the nontrapping function L as well as the

bicharacteristic bounds are stable under small perturbations of the metric.

Proposition 3.4.5. Let g0 be a non-degenerate nontrapping metric satisfying (3.4.1). For

every sufficiently small ε0 > 0, there is a radius R0(ε0) > 0 and a constant C0 > 0 depending

only on M and the profile of g0 such that if g1 is another non-degenerate metric satisfying

∥g0 − g1∥l1Hs0 < e−C0L(R0) (3.4.9)

then the bicharacteristics corresponding to g1 satisfy (ii) in Proposition 3.4.3 with comparable

parameters R0 and ε0 and, moreover, g1 is also nontrapping with comparable parameters L1

and data size M1.

Proof. Choosing e−C0L(R0) so small that

∥g0 − g1∥l1Hs0 ≪ ε0

ensures that the data size M1 is comparable to M and also that the proof of part (ii) of

Proposition 3.4.3 works equally well for the metric g1. It therefore suffices to show that L1

is comparable to L for R ≤ R0. To do this, we fix (x, ξ) ∈ BR0(0) × Sd−1. The desired

conclusion will follow if we can show that the bicharacteristic flows corresponding to g0 and

g1 are close within BR0(0) in the sense that

|xt0 − xt1|L∞
t
+ |ξt0 − ξt1|L∞

t
≲ e−C(M)L(R0) (3.4.10)

for times in which xt0 intersects BR0(0). The proof of this is similar to the proof of Proposition

5.2 in [106] but since our nontrapping parameter L is slightly different than theirs, we include

the short proof.

We implement a simple bootstrap. First, we can restrict to a time interval J such that

|J | ≤ L(R0). We will then assume the bound (3.4.10) on some smaller interval I ⊂ J and
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establish the same bound with an improved constant. We begin by writing the equation for

δxt := xt0 − xt1 and δξt := ξt0 − ξt1. Dropping the i, j indices, we obtain
d
dt
δxt = 2(g1 − g0)(x

t
1)ξ

t
1 + 2(g0(x

t
1)− g0(x

t
0))ξ

t
0 − 2g0(x

t
1)δξ

t,

d
dt
δξt = −ξt1∇(g1 − g0)(x

t
1)ξ

t
1 − ξt1(∇g0(xt1)−∇g0(xt0))ξt1 + (ξt0∇g0(xt0)ξt0 − ξt1∇g0(xt0)ξt1),

(δx0, δξ0) = (0, 0).

By definition, we have |I| ≤ L(R0). Moreover, by a compactness argument, there is a

constant K0 > 1 depending on the profile of g0 (but not on (x, ξ)) such that

|ξt0| ≲ K0

for every t ∈ J . By the bootstrap hypothesis, this implies the same bound for ξt1 on I. From

this, (3.4.9), the bootstrap hypothesis and the fact that g0 ∈ C2, we obtain the bound

d

dt
[(δxt)2 + (δξt)2] ≲ e−2C0L(R0) + C(K0)(1 +M)[(δxt)2 + (δξt)2].

By Grönwall’s inequality and the bound |I| ≤ L(R0), we obtain

(δxt)2 + (δξt)2 ≲ e−2C0L(R0)eC(K0)(1+M)L(R0)

on I. Choosing C0 large enough improves the bootstrap hypothesis and concludes the proof.

By combining Proposition 3.4.3 with Proposition 3.4.5, we have the following immediate

corollary which gives a precise quantitative bound for ξt.

Corollary 3.4.6. Let g0 be as in Proposition 3.4.3. Then the corresponding bicharacteristic

ξt0 (which is defined for all t) satisfies the bound

|ξt0| ≲ C0|ξ|

for all (x, ξ) ∈ R2d and some constant C0 > 1 depending only on M and the profile of

g0. Moreover, if g1 is any other metric satisfying the conditions of Proposition 3.4.5, then

the corresponding bicharacteristic ξt1 is globally defined and satisfies the same bound with a

similar constant.

Proof. For |ξ| = 1, this follows immediately from Proposition 3.4.3, Proposition 3.4.5, and

the nontrapping assumption. The general case follows from this case and the homogeneity

law (3.4.4).
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We next note the following bounds for the x and ξ derivatives of xt and ξt.

Proposition 3.4.7 (Higher regularity bounds). Let (x, ξ) ∈ BR(0) × Sd−1. Let k be a

positive integer. Assume that the metric satisfies g ∈ Ck+1 and write Mk := ∥g∥Ck+1 . Then

if |xt| ≤ R, there holds

|∂αξ ∂βxxt(x,ξ)|+ |∂αξ ∂βx ξt(x,ξ)| ≤ eC(Mk)L(R), |α + β| ≤ k.

Proof. The proof follows by differentiating (3.4.3) in the x and ξ variables, which leads to a

differential inequality for
d

dt

(
|∂αξ ∂βxxt|2 + |∂αξ ∂βx ξt|2

)
.

One then concludes by inductively applying Grönwall’s inequality. We omit the details which

are straightforward.

The final result of this section shows that functions in l1Hs with s > d
2
+1 are uniformly

integrable along the bicharacteristic flow. This is what will allow us to recover the Mizohata

condition.

Proposition 3.4.8. Let g be as in Proposition 3.4.3 and let s > d
2
+1. Let v ∈ l1Hs. Then

v is integrable along the bicharacteristic flow and satisfies the bound

sup
(x,ξ)∈Rd×Sd−1

∥v(xt(x,ξ))∥L1
t (R) ≲ (1 + L(R0))∥v∥l1Hs ,

where R0 is as in Proposition 3.4.3.

Proof. We abbreviate xt(x,ξ) by x
t. Without loss of generality, we may assume that xt inter-

sects BR0(0) only if |t| < L(R0). We then have∫ L(R0)

−L(R0)

|v(xt)|dt ≤ 2L(R0)∥v∥L∞ ≲ L(R0)∥v∥l1Hs .

By homogeneity of the flow, it therefore suffices to show that∫ ∞

L(R0)

|v(xt)|dt ≲ ∥v∥l1Hs .

Without loss of generality, we may assume that xt(L(R0)) is outgoing. Using Proposi-

tion 3.4.3, we see that if t ≥ L(R0), then for every cube Q ⊂ Rd, xt intersects the cube on a

time interval I of size at most |I| ≲ |Q| 1d . Therefore, we have∫ ∞

L(R0)

|v(xt)|dt ≲
∑
k≥0

∑
Q∈Qk

2k∥χQSkv∥L∞ ≲ ∥v∥l1Hs ,
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where in the last step we used Bernstein’s inequality and dyadic summation. Here, the strict

inequality s > d
2
+ 1 was what allowed us to retain summability in k. This completes the

proof.

3.5 The linear ultrahyperbolic flow

Let s0 >
d
2
+ 2 and let 0 ≤ σ ≤ s0. Here we consider the l1Hσ well-posedness of the linear

ultrahyperbolic flow,  i∂tv + ∂jg
jk∂kv + bj∂jv + b̃j∂jv = f,

v(0, x) = v0(x),
(3.5.1)

as well as the corresponding linear paradifferential flow, i∂tv + ∂jTgjk∂kv + Tbj∂jv + Tb̃j∂jv = f,

v(0, x) = v0(x).
(3.5.2)

We make the following basic assumptions on the metric gjk and the coefficients bj in the

above equations:

(i) (Non-degeneracy). The metric gjk is real, symmetric and non-degenerate. That is,

there is c > 0 such that for all ξ ∈ Rd we have,

c−1|ξ| ≤ |gjkξk| ≤ c|ξ|.

(ii) (Asymptotic flatness and size). There is a constant, symmetric, non-degenerate matrix

g∞ and a constant M > 0 such that

∥g − g∞∥l1Xs0 + ∥∂tg∥l1Xs0−2 + ∥(b, b̃)∥l1Xs0−1 + ∥∂t(b, b̃)∥l1Xs0−3 ≤M. (3.5.3)

(iii) (Asymptotic smallness). For every ε0 > 0, there is R0 > 0 such that

∥(gjk − gjk∞)χ>R0∥l1Xs0 + ∥(bj, b̃j)χ>R0∥l1Xs0−1 ≤ ε0, (3.5.4)

where 0 ≤ χ>R0 ≤ 1 is a smooth cutoff which vanishes on BR0(0) and is equal to 1

outside of B2R0(0).

(iv) (Nontrapping). The metric is nontrapping with parameter L as defined in (3.4.5).
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Note that condition (iii) follows from the asymptotic flatness condition (ii). However, we

prefer to make statement (iii) explicit, as it will play a prominent role in the analysis.

In the sequel, we will write C(L) to denote a constant which depends on the parameter L

within some fixed compact set whose size depends on the profile of the metric g. The main

result we aim to prove is the following.

Theorem 3.5.1. Let s0 >
d
2
+ 2 and 0 ≤ σ ≤ s0. Moreover, assume that gjk, bj, b̃j satisfy

the above assumptions with parameters M and L. Then for every f ∈ l1Y σ, the equation

(3.5.1) is well-posed in l1Hσ. Furthermore, there is T0 > 0 depending on the size of L within

a compact set and on the data size M such that for every 0 ≤ T ≤ T0, we have

∥v∥l1Xσ ≤ C(M,L)(∥v0∥l1Hσ + ∥f∥l1Y σ). (3.5.5)

The same result holds for the paradifferential flow (3.5.2) for every σ ≥ 0.

As the above result holds for the paradifferential flow for all σ ≥ 0, it is a straightforward

consequence to deduce the following frequency envelope variant using similar reasoning to

Section 5 of [105] (see also [71]).

Corollary 3.5.2. Let σ ≥ 0 and assume the other properties in the statement of Theo-

rem 3.5.1. Let ak be an admissible l1Hσ frequency envelope for v0 and let bk be an admissible

l1Y σ frequency envelope for f . Then the solution v to the paradifferential equation (3.5.2)

satisfies the bound

∥Skv∥l1Xσ ≤ C(M,L) (ak∥v0∥l1Hσ + bk∥f∥l1Y σ)

on a time interval [0, T ] whose length depends on the size of L within a compact set and on

the data size M .

The main component of the proof of well-posedness for the equations (3.5.1) and (3.5.2)

is the energy estimate (3.5.5). This is because the adjoint equation, which has essentially

the same form, will also satisfy a similar energy estimate. Well-posedness then follows by a

standard duality argument. Therefore, we focus our attention mainly on the bound (3.5.5).

Some simplifying reductions

We begin our analysis by making some straightforward but useful reductions which will allow

us to simplify some of the steps in the proof of Theorem 3.5.1. Our first reduction shows
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that by restricting the time interval to be small enough, we may assume that v̂ is supported

at high frequency. More precisely, we have the following lemma.

Lemma 3.5.3 (High frequency reduction). Let ε > 0. Under the assumptions of Theo-

rem 3.5.1, for every k1 > 0 there is T0 > 0 depending on k1, ε, M and σ such that for

0 < T ≤ T0, v>k1 := S>k1v satisfies the equation i∂tv>k1 + ∂jg
ij∂iv>k1 + bj∂jv>k1 + b̃j∂jv>k1 = h,

v>k1(0) := S>k1v0,

where h and S≤k1v satisfy the estimate

∥S≤k1v∥l1Xσ + ∥h∥l1Y σ ≤ C(M,k1, σ)(∥v0∥l1Hσ + ∥f∥l1Y σ) + ε∥v∥l1Xσ

for 0 ≤ σ ≤ s0. The analogous result holds for the paradifferential equation (3.5.2) for σ ≥ 0.

Proof. We show the proof for the full linear equation. The proof for the paradifferential flow

is similar. Using the notation of the lemma, we easily compute that

h = S>k1f − (∂jg
ij∂iS≤k1v + bj∂jS≤k1v + b̃j∂jS≤k1v)

+ S≤k1(∂jg
ij∂iv + bj∂jv + b̃j∂jv).

We clearly have

∥S>k1f∥l1Y σ ≲ ∥f∥l1Y σ .

For the remaining source terms, if 0 ≤ σ ≤ s0 − 1, we can estimate in l1L1
TH

σ
x ⊂ l1Y σ in a

näıve fashion using the frequency projection S≤k1 to obtain

∥h∥l1Y σ ≲ ∥f∥l1Y σ + ε∥v∥l1L∞
T Hσ

x
,

by applying Hölder’s inequality in T and taking T small enough (depending on k1). On the

other hand, for s0−1 < σ ≤ s0, we can instead use the bilinear estimates in Proposition 3.2.13

to obtain

∥h∥l1Y σ ≲ ∥f∥l1Y σ + C(M,k1, σ)∥v∥l1L∞
T L2

x
.

We can estimate the latter term on the right using the crude energy inequality

∥v∥l1L∞
T L2

x
≲M ∥v0∥l1L2

x
+ ∥v∥l1L1

TH
1
x
+ ∥f∥l1Y σ ,

which follows from a direct energy estimate for (3.5.1) where the first order terms are es-

timated directly in L1
TL

2
x. Since σ > 1, we may conclude by applying Hölder in T and
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taking T ≪ ε to control the second term on the right by ε∥v∥l1Xσ . It remains to estimate

∥S≤k1v∥l1Xσ . Using that S≤k1v is frequency localized, we easily have

∥S≤k1v∥l1Xσ ≲ 2k1(σ+
1
2
)∥S≤k1v∥l1L∞

T L2
x
.

We then note the näıve energy type estimate

∥S≤k1v∥l1L∞
T L2

x
≲M,k1 ∥v0∥l1L2

x
+ ∥v∥l1L1

TL
2
x
+ ∥f∥l1Y 0 ,

which follows from inspecting the equation for S≤k1v and using the fact that the first and

second-order terms in the resulting equation are localized to frequencies ≲ k1. Then using

Hölder in T and taking T small enough (depending on M , k1 and ε) we can again control

the second term on the right by ε∥v∥l1Xσ . This concludes the proof of the lemma for (3.5.1).

A very similar argument works for the paradifferential analogue. We omit the details.

Reduction to the paradifferential flow

As a second reduction, we reduce proving Theorem 3.5.1 to proving the corresponding es-

timate for the paradifferential equation. We begin by writing (3.5.1) in the paradifferential

form  i∂tv + ∂jTgij∂iv + Tbj∂jv + Tb̃j∂jv = f +R,

v(0) = v0,

where R is a remainder term given by

R = (Tbj∂jv − bj∂jv) + (Tb̃j∂jv − b̃j∂jv) + ∂j(Tgij∂iv − gij∂iv). (3.5.6)

Thanks to Lemma 3.5.3, we may harmlessly assume that v is localized to frequencies ≳ 2k1 .

Our next lemma shows that the error term R can be treated perturbatively if k1 is large

enough.

Lemma 3.5.4 (Paradifferential source terms). Assume that the estimate in Theorem 3.5.1

holds for the paradifferential flow for each σ ≥ 0. Let ε > 0 and assume that v̂ is supported

at frequencies |ξ| ≳ 2k1 . Then for k1 large enough and T small enough depending on ε and

k1, the remainder term R satisfies the estimate

∥R∥l1Y σ ≤ C(M,k1, σ)(∥v0∥l1Hσ + ∥f∥l1Y σ) + ε∥v∥l1Xσ .
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Proof. We show the details for the first term as the estimates for the other two are similar.

We split the analysis into two cases. First, assume that σ ≤ s0 − δ where δ > 0 is such

that s0 − 2δ > d
2
+ 2. Then since v is localized to frequencies ≳ 2k1 , we may replace the

coefficient bj in (Tbj∂jv − bj∂jv) with S≥k1−5b
j. Therefore, by (3.2.7) in Proposition 3.2.13

and Bernstein’s inequality, we have

∥(Tbj∂jv − bj∂jv)∥l1Y σ ≲ ∥S≥k1−5b
j∥l1Xs0−1−δ∥v∥l1Xσ

≲M 2−δk1∥v∥l1Xσ .

Taking k1 large enough, we therefore have

∥(Tbj∂jv − bj∂jv)∥l1Y σ ≤ ε∥v∥l1Xσ .

The other terms in (3.5.6) can be estimated similarly to obtain

∥R∥l1Y σ ≤ ε∥v∥l1Xσ .

In the case s0 ≥ σ ≥ s0 − δ > d
2
+ 2, we use instead the first estimate in Proposition 3.2.13

to obtain

∥(Tbj∂jv − bj∂jv)∥l1Y σ ≲ ∥bj∥l1Xσ−1∥v∥l1Xs0−2δ

≲M 2−k1δ∥v∥l1Xσ ,

where we used the fact that v is localized to frequencies greater than 2k1 . Estimating the

other terms in (3.5.6) in a similar fashion, and again taking k1 large enough, we obtain

∥R∥l1Y σ ≤ ε∥v∥l1Xσ .

This concludes the proof.

Reduction to the Xσ estimate

To summarize what we have so far, it now suffices to establish (3.5.5) for the paradifferential

flow under the assumption that v is localized to high frequency. As one final simplification,

we reduce the proof of this estimate for the paradifferential flow to the corresponding Xσ

estimate without the l1 summability. For this, we will need the small data result from [105].

Theorem 3.5.5 (Small data well-posedness). Let bj, b̃j, gij and M , σ be as above. Let

0 < T ≤ 1. For every σ ≥ 0, there is δ > 0 such that if M ≤ δ then (3.5.2) is well-posed in

both Hσ and l1Hσ with the uniform bounds

∥v∥Xσ ≲ ∥v0∥Hσ + ∥f∥Y σ ,

∥v∥l1Xσ ≲ ∥v0∥l1Hσ + ∥f∥l1Y σ .
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Remark 3.5.6. Strictly speaking, the small data result above is only explicitly stated in the

case when g∞ is the identity, but as remarked on page 1154 of [105], the result is also true

when g∞ is of the form we consider here, and the estimates above follow almost verbatim

from the proof of Proposition 4.1 in their paper.

We may now phrase our final reduction as follows.

Lemma 3.5.7. Let bj, b̃j, gij and M , σ be as in Theorem 3.5.1. Assume that the paradif-

ferential flow (3.5.2) admits the estimate

∥v∥Xσ ≤ C(M,L)(∥v0∥Hσ + ∥f∥Y σ) (3.5.7)

for each σ ≥ 0. Then the corresponding estimate in Theorem 3.5.1 in l1Xσ also holds for

(3.5.2) for each σ ≥ 0.

Proof. We can again harmlessly assume that v is localized to frequencies ≳ 2k1 . Now let

ε > 0 and let R(ε) be such that (3.5.4) holds. Using Proposition 3.2.13 and Theorem 3.5.5,

our first aim will be to reduce to estimating v in a compact set. More precisely, we aim to

prove the estimate

∥χ>2Rv∥l1Xσ ≲ ∥v0∥l1Hσ + ∥f∥l1Y σ + ∥χ<4Rv∥l1Xσ . (3.5.8)

This is a straightforward computation which follows by inspecting the equation for vext :=

χ>2Rv. Indeed, if we define gext := χ>Rg+χ≤Rg∞, bext := χ>Rb and b̃ext := χ>Rb̃, we obtain i∂tvext + ∂iTgijext
∂jvext + Tbjext

∂jvext + Tb̃jext
∂jvext = fext,

vext(0) = χ>2Rv(0),

where

fext := χ>2Rf + [∂iTgij∂j + Tbj∂j + Tb̃j∂j, χ>2R]v + (∂iTgijext
∂j − ∂iTgij∂j)vext

+ (Tbjext
∂j − Tbj∂j)vext + (Tb̃jext

∂j − Tb̃j∂j)vext.

Making use of Proposition 3.2.13 and paradifferential calculus, we can easily estimate

∥[∂iTgij∂j + Tbj∂j + Tb̃j∂j, χ>2R]v∥l1Y σ ≤ C(M,R)(∥χ<4Rv∥l1Xσ + ∥v∥l1L1
TH

σ
x
)

≤ C(M,R)∥χ<4Rv∥l1Xσ + δ∥v∥l1Xσ

for some small δ > 0. We note that in the last inequality, we used Hölder’s inequality in T

and took T sufficiently small depending on R and M . Using the disjointness of the supports
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of gext − g and vext, we obtain from the embedding l1L1
TH

σ
x ⊂ l1Y σ and paradifferential

calculus,

∥(∂iTgijext∂j − ∂iTgij∂j)vext∥l1Y σ ≲M ∥v∥l1L1
TH

σ
x
≲ δ∥v∥l1Xσ .

We can similarly estimate the last two terms in the definition of fext. In light of this and

the small data result Theorem 3.5.5 which applies to the equation for vext, we obtain (3.5.8).

We have therefore reduced the estimate for v in l1Xσ to obtaining the bound

∥χ<4Rv∥l1Xσ ≤ C(M,L)(∥v0∥l1Hσ + ∥f∥l1Y σ).

However, this simply follows from (3.5.7) and the fact that the l1Xσ and Xσ norms are

equivalent within the set B4R(0) (with equivalence constant depending on R).

3.6 The L2 estimate for the linear flow

We begin our analysis by showing that we can close an estimate for the L∞
T H

σ
x norm of a

solution to the paradifferential linear equation (3.5.2) up to a small error term in Xσ as

long as the time interval is small enough. Thanks to Lemma 3.5.3, we may from here on

harmlessly assume that

supp(v̂) ⊂ {|ξ| > 2k1}

for some large parameter k1 to be chosen. We will make this assumption for the rest of the

section. The main estimate we wish to prove is the following.

Proposition 3.6.1 (L2 estimate for the paradifferential linear flow). Let s0, g
ij, bj and b̃j

be as in Theorem 3.5.1 with parameters M and L. Let ε > 0. There is T0 = T0(ε) > 0 such

that for 0 ≤ T ≤ T0, we have the a priori bound for v satisfying (3.5.2),

∥v∥L∞
T Hσ ≤ C(M,L)(∥v0∥Hσ + ∥f∥Y σ) + ε∥v∥Xσ ,

for every σ ≥ 0.

As noted earlier, by C(M,L) we mean a constant which depends on M and the trapping

parameter L within some fixed compact set (which is allowed to depend on ε). The main

obstruction to establishing Proposition 3.6.1 is essentially the presence of the real part of the

first order term TRe(bj)∂jv. This is characterized somewhat by the following basic estimate

for a truncated version of the linear flow in which the coefficient bj is purely imaginary.
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Lemma 3.6.2 (Basic energy estimate). Let gij be smooth, real and symmetric and let bj

and b̃j be smooth functions. Assume that we have the size condition (3.5.3). Moreover, let

A(x,D) ∈ OPS1 be a time-independent pseudodifferential operator with symbol satisfying

Re(A) ≥ 0 and assume that v solves the equation

i∂tv + ∂iTgij∂jv + i Im(bj)∂jv + b̃j∂jv + iA(x,D)v = f. (3.6.1)

Then for every 0 < δ ≪ 1 there is T0 > 0 depending onM , δ and A such that for 0 < T ≤ T0,

we have the L2 estimate,

∥v∥2L∞
T L2

x
≲ ∥v0∥2L2

x
+ ∥v∥X0∥f∥Y 0 + δ∥v∥2X0 .

In the above lemma, we allow for the extra first order term iA(x,D)v. This will afford

us some flexibility when dealing with commutations of the principal operator ∂jTgij∂i with

various zeroth order Fourier multipliers and pseudodifferential operators later on when we

deal with the full linear paradifferential flow.

Proof. We start with the basic energy identity:

∥v(t)∥2L2
x
+ 2Re⟨A(x,D)v, v⟩ = ∥v0∥2L2

x
+ 2Re⟨i∂iTgij∂jv, v⟩ − 2Re⟨Im(bj)∂jv, v⟩

+ 2Re⟨ib̃j∂jv, v⟩ − 2Re⟨if, v⟩,

which holds for each 0 ≤ t ≤ T . Here ⟨·, ·⟩ denotes the inner product on L2
tL

2
x. Unlike the

operator ∂ig
ij∂j, the paradifferential operator ∂iTgij∂j is not quite self-adjoint. However, we

do have the relation

Re⟨i∂iTgij∂jv, v⟩ = Re⟨i∂i(Tgij − gij)∂jv, v⟩.

By standard paradifferential calculus and the fact that ∥gij∥L∞
T C2,α ≤ C(M) for some α > 0,

we have

∥∂i(Tgij − gij)∂jv∥L2
x
≲M ∥v∥L2

x
.

Hence, by Hölder in T and taking T sufficiently small, we have

2Re⟨i∂iTgij∂jv, v⟩ ≲M T∥v∥2L∞
T L2

x
≤ δ∥v∥2X0 .

Now, we turn to the other terms in the energy estimate. Integrating by parts and making

use of Sobolev embeddings, we obtain the bound

−2Re⟨Im(bj)∂jv, v⟩+ 2Re⟨ib̃j∂jv, v⟩ ≲MT∥v∥2L∞
T L2

x
≤ δ∥v∥2X0 ,
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if T is small enough. Moreover, by the Y ∗ = X duality, we have

−2Re⟨if, v⟩ ≲ ∥v∥X0∥f∥Y 0 .

Therefore, if T is small enough, we arrive at the bound

∥v∥2L∞
T L2

x
+Re⟨A(x,D)v, v⟩ ≲ ∥v0∥2L2

x
+ ∥v∥X0∥f∥Y 0 + δ∥v∥2X0 .

Finally, by the sharp G̊arding inequality Proposition 3.2.2 and Hölder in time, we have

Re⟨A(x,D)v, v⟩ ≳A −T∥v∥2L∞
T L2

x
.

Taking T sufficiently small concludes the proof.

The remainder of this section will be essentially devoted to transforming the equation

(3.5.2) into an equation of the ideal form (3.6.1). Our primary means of doing this will be

to construct a time-independent pseudodifferential renormalization operator O = Op(O) ∈
OPS0 which upon commuting O with the equation achieves this transformation within a

compact ball BR(0). The hope is then to use the asymptotic smallness (3.5.4) to control the

residual error terms outside BR(0). Quite a bit of care is needed here to avoid a circular

argument because the higher order symbol bounds for O will grow in the parameter R, and

so, at first glance, the operator bounds for O could counteract any smallness coming from

the remaining error terms. Therefore, we will need to carefully track the dependence of the

operator bounds for O on the parameters R and L. In our construction, it will turn out that

the L∞ norm of the symbol O will have a R independent bound (as R → ∞). Therefore,

for large enough k1, the operator OS≥k1 will have R independent L2 → L2, X0 → X0 and

Y 0 → Y 0 bounds thanks to Proposition 3.2.6 and Proposition 3.2.7, respectively. This is

how we will break the potential circularity.

First order truncations

Since we want the symbol for O to be time-independent and smooth, our first aim will be

to show that the first order paradifferential coefficients in (3.5.2) can be replaced by smooth

time-independent coefficients localized at a suitable frequency scale. To achieve this, let

us fix another large parameter k0 with 0 ≪ k0 ≪ k1 to be chosen. We can rearrange the

paradifferential equation as i∂tv + ∂jTgij∂iv + bj<k0(0)∂jv + b̃j<k0(0)∂jv = f +R1,

v(0) = v0,
(3.6.2)
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where

R1 = (bj<k0(0)∂jv − Tbj∂jv) + (b̃j<k0(0)∂jv − Tb̃j∂jv). (3.6.3)

We have the following short lemma which shows that for large enough k0, k1 and small

enough T , the error term R1 can be treated perturbatively.

Lemma 3.6.3. For k0 and k1 sufficiently large and T sufficiently small, we have

∥R1∥Y σ ≤ ε∥v∥Xσ .

Proof. We estimate the first term in (3.6.3) as the other term is essentially identical. By

Bernstein’s inequality, averaging in T and the assumption (3.5.3), we have

∥bj<k0 − bj<k0(0)∥l1Xs0−1 ≲M 22k0T.

Therefore, by the assumption k1 ≫ k0, Proposition 3.2.13 and taking T small enough (de-

pending on k0 and M), we have

∥(bj<k0 − bj<k0(0))∂jv∥Y σ = ∥T(bj<k0
−bj<k0

(0))∂jv∥Y σ ≤ ε∥v∥Xσ .

Next, using k1 ≫ k0, we can write

Tbj∂jv − bj<k0∂jv = TS≥k0
bj∂jv.

So, from Proposition 3.2.13, there is δ > 0 depending only on s0 such that

∥Tbj∂jv − bj<k0∂jv∥Y σ ≲ ∥S≥k0b
j∥l1Xs0−1−δ∥v∥Xσ

≲M 2−k0δ∥v∥Xσ .

The above term can be controlled by ε∥v∥Xσ by taking k0 large enough. This completes the

proof.

Commuting with derivatives

The next step is to commute (3.5.2) with ⟨∇⟩σ. This will essentially reduce matters to

proving an L2 estimate for the paradifferential flow and get us one step closer to a situation

in which we can apply Lemma 3.6.2. This would typically be a completely straightforward

matter since the equation is already in paradifferential form; however, the commutation of

the principal operator P with ⟨∇⟩σ will generate a further first order term which cannot be
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treated perturbatively in the large data regime.

To proceed, we define u := ⟨∇⟩σv. We also compactify the notation for the principal and

new first order terms by defining

P := ∂jTgij∂i,

B := bj<k0(0)∂j − [P , ⟨∇⟩σ]⟨∇⟩−σ,
B̃ := b̃j<k0(0)∂j.

By commuting (3.6.2) with ⟨∇⟩σ, we obtain

i∂tu+ Pu+ Bu+ B̃u = ⟨∇⟩σf +R1
σ +R2

σ,

where R1
σ := ⟨∇⟩σR1 and

R2
σ := −[⟨∇⟩σ, bj<k0(0)]∂jv − [⟨∇⟩σ, b̃j<k0(0)]∂jv.

Thanks to Lemma 3.6.3, we have a suitable estimate for R1
σ in Y 0 which allows us to treat

this term perturbatively. The following lemma shows that R2
σ can be estimated näıvely in

L1
TL

2
x ⊂ Y 0.

Lemma 3.6.4. For T small enough, the source term R2
σ satisfies the bound

∥R2
σ∥L1

TL
2
x
≤ ε∥v∥Xσ . (3.6.4)

Proof. Since k0 ≪ k1 and v̂ is supported at frequencies ≳ 2k1 , we can write

[⟨∇⟩σ, bj<k0(0)]∂jv = [⟨∇⟩σ, Tbj<k0
(0)]∂jv.

Hence, by Proposition 3.2.10, Sobolev embedding and the regularity assumptions on bj, we

have

∥[⟨∇⟩σ, bj<k0(0)]∂jv∥L1
TL

2
x
≲M,k0 ∥v∥L1

TH
σ
x
≲M T∥v∥L∞

T Hσ
x
.

The other term in R2
σ can be estimated similarly. Hence, by taking T small enough, we

obtain (3.6.4), as desired.

Next, we further frequency and time truncate the commutator in the term B. As we

will see later, such truncations will ensure that our renormalization operator O belongs to

OPS0. Note that while we cannot directly truncate the principal operator P because it is

second order, it is reasonable to expect that we can do this (as long as the truncation is
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sharp enough) for commutators involving P , which are first order. We therefore define time

and frequency truncated variants of P , B and B̃ (technically, this last term is unchanged)

via

P0
k0

:= ∂jg
ij
<k0

(0)∂i,

B0
k0

:= bj<k0(0)∂j − [P0
k0
, ⟨∇⟩σ]⟨∇⟩−σ,

B̃0
k0

:= b̃j<k0(0)∂j,

and obtain the equation

i∂tu+ Pu+ B0
k0
u+ B̃0

k0
u = ⟨∇⟩σf +R1

σ +R2
σ +R3

σ, (3.6.5)

where

R3
σ := (B0

k0
− B)u = −[P0

k0
− P , ⟨∇⟩σ]v.

The next lemma treats the new source term R3
σ.

Lemma 3.6.5. For k0 and k1 large enough and T small enough, we have

∥R3
σ∥Y 0 ≤ ε∥v∥Xσ . (3.6.6)

Proof. We begin by writing

P0
k0
− P = (∂ig

ij
<k0

(0)− T∂igij)∂j + (gij<k0(0)− Tgij)∂i∂j.

As with the estimate for R2
σ, we have

∥[⟨∇⟩σ, (∂igij<k0(0)− T∂igij)]∂jv∥L1
TL

2
x
≤ ε∥v∥Xσ ,

by taking T small enough. The term [⟨∇⟩σ, (Tgij − gij<k0(0))]∂i∂jv is more difficult to deal

with since it is like an operator of order σ+1 applied to v, and therefore cannot be estimated

in L1
TL

2
x without losing derivatives. Consequently, we must estimate it in the weaker space

Y 0. Since k1 ≫ k0, we have the identity

[⟨∇⟩σ, (Tgij − gij<k0(0))]∂i∂jv =
∑
k≥0

S̃k[⟨∇⟩σ, S<k−4(g
ij − gij<k0(0))]∂i∂jSkv,

where S̃k is a fattened Littlewood-Paley projection. Therefore, by almost orthogonality,

Proposition 3.2.14 and Remark 3.2.15 we have

∥[⟨∇⟩σ, (Tgij − gij<k0(0))]∂i∂jv∥Y 0 ≲ ∥gij − gij<k0(0)∥l1Xs0−δ

(∑
k≥0

22k(σ−1)∥Sk∇v∥2X0

) 1
2

≲ ∥gij − gij<k0(0)∥l1Xs0−δ∥v∥Xσ
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for some δ > 0. By taking k0 large enough and then T small enough, we can estimate using

Bernstein type inequalities and the fundamental theorem of calculus,

∥gij − gij<k0(0)∥l1Xs0−δ ≤ ε.

Combining this with the above estimates concludes the proof of (3.6.6), as desired.

To summarize what we have so far, u := ⟨∇⟩σv solves the equation

i∂tu+ Pu+ B0
k0
u+ B̃0

k0
u = R, (3.6.7)

where the source term R can be estimated in Y 0 by

∥R∥Y 0 ≤ C∥f∥Y σ + ε∥v∥Xσ ,

for some universal constant C.

Renormalization construction

Now we are ready to construct the renormalization operatorO whose role will be to transform

(3.6.7) into an equation essentially of the form (3.6.1). As alluded to earlier, the main enemy

we have to deal with is the first order term Re(B0
k0
)u. The strategy will be to construct an

operator with symbol in S0 which conjugates away the “worst part” of this term. As noted

in [84], conjugating the entire term away would give a symbol that does not belong to S0.

We opt therefore to conjugate away only a portion of the first-order term whose principal

part is supported within some large compact set BR(0). The hope is that the remaining

error term will contribute errors of size ≈ ε∥v∥Xσ due to the smallness of the coefficients

in (3.5.4) outside of BR(0). As mentioned earlier, this does not come for free. The trade-

off is that we will also need to control the X0 → X0, Y 0 → Y 0, and L2 → L2 norms of

our renormalization operator to ensure that the smallness is retained when applying this

operator (as the ξ derivatives of its symbol will not have uniform in R bounds).

The details of this construction will be given below. To set the stage, let us fix a large

constant R ≫ 1 to be chosen. We also define for each ρ > 0, the function χ<ρ(x) := χ(ρ−1x)

where χ is a radial cutoff function equal to 1 on the unit ball and vanishing outside |x| > 2.

As a first constraint, we demand for R to be such that (3.5.4) holds with some R0 <
R
8
and

ε0 ≪ ε. The bulk of the renormalization construction is given by the following proposition.
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Proposition 3.6.6. Let u be as above. Let k0 be large enough so that gij<k0(0) is a non-

trapping metric with comparable parameters to gij(0) (the existence of which is guaranteed

by Proposition 3.4.5). Define the truncated symbol a(x, ξ) := −gij<k0(0)ξiξj, which is the

principal symbol for P0
k0
. Write also iB(x, ξ) := iRe(bj<k0(0))ξj + i{a, ⟨ξ⟩σ}⟨ξ⟩−σ to denote

the principal symbol of ReB0
k0

and

Ha := ∇ξa · ∇x −∇xa · ∇ξ

to denote the Hamiltonian vector field for a. Let the parameters R, M and L be as above.

Then there exists a smooth, non-negative, real-valued, time-independent symbol O ∈ S0

with the following properties.

(i) (Positive commutator with good error). There exists r ∈ S1 such that if T is sufficiently

small,

HaO + χ<2RB(x, ξ)O(x, ξ) + r(x, ξ)O(x, ξ) ≥ 0, ∥Op(r)∥X0→Y 0 ≲M ε.

(ii) (Uniform L2 bound at high frequency). For k0, k1 large enough and T small enough

depending on R, M and L, O := Op(O) satisfies the estimates

∥Ou∥L2 ≈ ∥u∥L2 , ∥Ou∥Y 0 ≲ ∥u∥Y 0 , ∥Ou∥X0 ≲ ∥u∥X0 , (3.6.8)

with implicit constants depending only on M and on L within a fixed compact set

whose size is independent of R.

(iii) (Even in ξ within BR
8
(0)). The symbol s := O(x, ξ) − O(x,−ξ) is supported in the

region |x| > R
8
and for k1 large enough, there holds

∥Op(s)S≥k1∥Y 0→Y 0 ≲ 1,

with implicit constants depending only on M and on L within a fixed compact set

whose size is independent of R.

The first property will allow us to transform (3.6.7) into an equation of the type (3.6.1)

up to an error term supported outside BR(0) (plus an acceptable remainder). The second

property ensures that the L2 → L2, Y 0 → Y 0 and X0 → X0 operator bounds for O
do not depend on R, at least at high frequency. The third property ensures that O :=

Op(O) commutes with complex conjugation to leading order (i.e. within BR
8
(0) where the

coefficient b̃j can be large). The second and third properties will be important for avoiding
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the circularity mentioned earlier when trying to estimate the error terms supported outside

BR
8
(0).

We also emphasize that a is the principal symbol for the truncated operator P0
k0

and not

P . This is to ensure that O will be a classical (time-independent) S0 symbol with bounds not

depending on higher derivatives of gij (however, they will depend on the frequency truncation

scale 2k0). The trade-off is that when commuting the equation for u with O, we will need to

estimate an additional first order error term of the form

[P − P0
k0
,O]u

in Y 0. It will turn out that this can be made small by taking k0, k1 large enough and T

small enough. We will discuss how to estimate this term later. For now, we start by proving

Proposition 3.6.6.

Proof. We make the ansatz O(x, ξ) = eψ(x,ξ) where ψ is some smooth real-valued function to

be chosen. We begin by trying to enforce condition (i). For this, we recall that the vector

field Ha corresponds to differentiation along the Hamilton flow of a, which is given by (3.4.3).

That is,

(Haψ)(x, ξ) =
d

dt
ψ(xt, ξt)|t=0,

where (xt, ξt) are the bicharacteristics for a with initial data (x, ξ). We will perform our

construction in two stages. That is, we will define two symbols ψ1 and ψ2 in S
0. The symbol

ψ1 will be chosen so that Haψ1 cancels the bulk of the term χ<2RB(x, ξ) but possibly with

an additional error term which isn’t small but has the redeeming feature that it is supported

in the transition region |x| ≈ R where gij<k0(0) is close to the corresponding flat metric. The

second symbol ψ2 will be chosen to correct ψ1 so that the error term can be made sufficiently

small. The full symbol ψ will then be defined by ψ := ψ1 + ψ2. Inspired by the previous

works [33, 38, 67, 90], our starting point is to consider the ideal “symbol”

ψideal(x, ξ) := −1

2
χ>1(|ξ|)

∫ 0

−∞
B(xt(x,ξ), ξ

t
(x,ξ)) +B(xt(x,−ξ), ξ

t
(x,−ξ))dt,

where χ>1(|ξ|) is an increasing Fourier multiplier selecting frequencies ≥ 1. We note that

since gij<k0(0) is nontrapping and bj,∇xg
ij ∈ l1Xs0−1, the integral in ψideal is well-defined.

On a formal level, the commutator of the principal part of the equation with Op(eψideal)

conjugates away the leading part of the term ReB0
k0
u, but as mentioned above, the symbol

ψideal is not a classical S0 symbol, so it is not ideal to work with such a construction directly.
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In order to resolve this issue, we localize this symbol to the compact set B2R(0) by instead

defining

ψ1(x, ξ) := −1

2
χ>1(|ξ|)χ<2R(x)

∫ 0

−∞
(χ<4RB)(xt(x,ξ), ξ

t
(x,ξ)) + (χ<4RB)(xt(x,−ξ), ξ

t
(x,−ξ))dt.

The corresponding pseudodifferential operator Op(eψ1) will conjugate away the leading part

of the first order term ReB0
k0
u within the ball B2R(0), which is the region where theX0 → Y 0

operator bounds for B0
k0

are expected to be large. The difficulty is then shifted to controlling

the remaining errors in the exterior region, but now we have the benefit of ψ1 being a genuine

S0 symbol (this fact will be confirmed below). We remark that since B(x, ξ) is real, ψ1 is as

well. Moreover, ψ1 is even in ξ.

Since B is odd in ξ, it is straightforward to verify that we have the leading order cancel-

lation,

Haψ1 + χ<2RB(x, ξ) ≥ −KR−1|χ′(
1

2
R−1r)||ξ| −Kχ<2(|ξ|), (3.6.9)

where K > 0 is such that K ≫M ∥ψideal∥L∞ . We remark that K is uniformly bounded

in R because of Proposition 3.4.8. The term on the right-hand side of (3.6.9) is not quite

suitable for defining a symbol r ensuring the bound in (i) (the corresponding operator need

not have small X0 → Y 0 bound due to the insufficient spatial decay in the first term). For

this reason, we seek to further correct ψ1 by a symbol ψ2 which is supported in the region

|x| ≳ R. Precisely, our aim will be to construct ψ2 so that

Haψ2 −KR−1|χ′(
1

2
R−1r)||ξ| −Kχ<2(|ξ|) + r(x, ξ) ≥ 0 (3.6.10)

where r ∈ S1 is a suitable remainder term satisfying the bound in (i). Before proceeding,

to simplify the notation somewhat, for the remainder of the proof we will write A := A(x)

as a shorthand for gij<k0(0) and A∞ as a shorthand for gij∞. We also define the functions

θ(x, ξ) := ∠(x,A∞ξ), α(x, ξ) := ∠(x,Aξ), β(ξ) := ∠(Aξ,A∞ξ) and γ(x, ξ) :=
1
2
(1 + cos(θ)).

Now, to proceed, we begin by recalling that the assumption (3.5.4) ensures that we have

the bounds

|A− A∞|+ |∇A| ≪ ε, |x| > R

8
. (3.6.11)

In particular, A is close to the flat metric in L∞ when |x| > R
8
. Now, let:

(i) ρ be a smooth, increasing function such that ρ′ ≈ 1 for 1
7
≤ r ≤ 2, ρ = 0 for r ≤ 1

8
and

ρ = 1 for r ≥ 3. Define ρR(x) = ρ(R−1r) and ρθ(x, ξ) = ρR(xγ).
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(ii) For c ∈ [−1, 1] and some fixed positive δ0 ≪ 1, let φ<c be a decreasing smooth function

which vanishes for x > c+δ0 and is identically one for x ≤ c. Define also φ>c := 1−φ<c.

We then define the symbol ψ2 by

ψ2(x, ξ) := K ′χ>1(|ξ|)
(
ρRφ<− 1

2
(cos(θ))− ρθφ>− 1

2
(cos(θ))

)
(3.6.12)

where K ′ ≫ K is a constant to be chosen. We note that the weight ρR is increasing in the

direction of the bicharacteristics in the regions of phase space where they are outgoing with

respect to the flat metric. In such regions, this will give a good bound from below for the

bulk of Haψ2. The purpose of ρθ will be to accomplish the same task in the incoming region

as well as the regions of phase space where A∞ξ is nearly orthogonal to x. In such regions,

a purely radially increasing cutoff (such as ρR) would be insufficient. The reason we use the

average 1
2
(1 + cos(θ)) in the definition of ρθ is to ensure that ρθ still vanishes for a suitable

range of r on the support of φ>− 1
2
(cos(θ)) (r < R

8
, say). This, in particular, ensures that

the pointwise error between A and A∞ is small on the support of ρθφ>− 1
2
(cos(θ)). To verify

that ψ2 has the required properties, we first make note of the following simple algebraic

computation.

Lemma 3.6.7. For r > R
8
, we have

Aξ · ∇x cos(θ) = |Aξ|
(
sin2(θ)

r
+ δ(x, ξ)

)
,

where δ(x, ξ) is an error term with |δ(x, ξ)| ≪ 1
r
.

Proof. This is a simple computation. We have

Aξ · ∇x cos(θ) =
|Aξ|
r

(cos(β)− cos(α) cos(θ))

=
|Aξ|
r

sin2(θ) +
|Aξ|
r

((cos(β)− 1) + cos(θ)(cos(θ)− cos(α))).

(3.6.13)

By non-degeneracy of A and A∞ and (3.6.11), we have

| cos(α)− cos(θ)|+ | cos(β)− 1| ≪ 1, r ≥ R

8
.

Taking δ to be the coefficient of |Aξ| in the second term in the second line of (3.6.13)

concludes the proof.



CHAPTER 3. ULTRAHYPERBOLIC SCHRÖDINGER EQUATIONS 230

Now, we compute the Hamilton vector field applied to ψ2. We define the remainder

symbol r ∈ S1 by

r(x, ξ) := −ξiξj∇ξψ2 · ∇xA
ij +K ′′χ<2(|ξ|), (3.6.14)

where K ′′ ≫ K ′ is some sufficiently large constant. We note that r essentially consists of

the part of Haψ2 in which ψ2 is differentiated in ξ. This is expected to contribute a small

X0 → Y 0 operator norm because its principal part includes a factor of ∇xA which is small in

l1Xs0−1 when |x| > R
8
. The subprincipal terms will contribute small L1

TL
2
x → L1

TL
2
x operator

bounds by taking T to be sufficiently small. We then have

Haψ2 + r(x, ξ) ≥ −2Aξ · ∇xψ2 +K ′′χ<2(|ξ|). (3.6.15)

We now expand the first term on the right-hand side of (3.6.15) to obtain

− Aξ · ∇xψ2

= −K
′

R
χ>1(|ξ|)|Aξ|

(
cos(α)ρ′(R−1r)φ<− 1

2
(cos(θ))

+
R

r

(
sin2(θ) + rδ

)
ρ(R−1r)φ′

<− 1
2
(cos(θ))

)
+
K ′

R
χ>1(|ξ|)|Aξ|

(
1

2
(cos(α) + cos(β))ρ′(R−1rγ)φ>− 1

2
(cos(θ))

+
R

r

(
sin2(θ) + rδ

)
ρ(R−1rγ)φ′

>− 1
2
(cos(θ))

)
,

where α and β are as in Lemma 3.6.7. If ε0 is small enough in (3.5.4), we observe that on

the support of ρ′(R−1r)φ<− 1
2
(cos(θ)), we have cos(α) < −1

3
. Additionally, (sin2(θ) + rδ) is

non-negative on the support of ρ(R−1r)φ′
<− 1

2

(cos(θ)) and ρ(R−1rγ)φ′
>− 1

2

(cos(θ)). Moreover,

on the support of ρ′(R−1rγ)φ>− 1
2
(cos(θ)), we have (cos(α) + cos(β)) > 1

3
.

By non-degeneracy of A, we can choose K ′ depending only on g so that

K ′|Aξ| ≫ K|ξ|.

Combining the above, we can arrange for

−Aξ · ∇xψ2 ≥ KR−1|χ′(
r

2R
)||ξ| − K ′′

2
χ<2(|ξ|),

where K ′′ is as in (3.6.14). We then define the full symbol ψ by

ψ := ψ1 + ψ2.
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It is left to verify the properties (i), (ii) and (iii) in Proposition 3.6.6. The positive commu-

tator bound

HaO + χ<2RB(x, ξ)O(x, ξ) + r(x, ξ)O(x, ξ) ≥ 0

follows easily from the chain rule and the above construction if K ′ is large enough. Next,

we verify that r ∈ S1 and that r has the operator bound

∥Op(r)∥X0→Y 0 ≤ ε. (3.6.16)

The fact that r ∈ S1 is clear so we turn our attention to (3.6.16). Using the definition of r,

we can write

Op(r) = (χ>R
8
∇xA

ij) ·Op(ξiξj∇ξψ2) +K ′′χ<2(|D|).

Using the embedding L1
TL

2
x ⊂ Y 0 and that ξiξj∇ξψ2 ∈ S1, we can estimate using simple

paradifferential calculus and Proposition 3.2.5,

∥(χ>R
8
∇xA

ij − Tχ
>R

8
∇xAij) ·Op(ξiξj∇ξψ2)∥L1

TL
2
x→Y 0 ≲M,k0 1.

Therefore, by Hölder’s inequality in T , we have for T small enough (depending on M and

k0),

∥(χ>R
8
∇xA

ij − Tχ
>R

8
∇xAij) ·Op(ξiξj∇ξψ2)∥X0→Y 0 ≤ ε.

Hence, we now only need to show that the X0 → Y 0 norm for Tχ
>R

8
∇xAij ·Op(ξiξj∇ξψ2) can

be made small. For this, let us define r̃ ∈ S0 by

r̃(x, ξ) = ⟨ξ⟩−1ξiξj∇ξψ2.

By Proposition 3.2.5, one can verify that the operator ⟨∇⟩Op(r̃)−Op(ξiξj∇ξψ2) is bounded

from L1
TL

2
x → L1

TL
2
x with norm depending only on M and k0. Therefore, by taking T small,

we can make the X0 → Y 0 bound of this operator smaller than ε. From Proposition 3.2.13

and the smallness assumption (3.5.4), we then have

∥Tχ
>R

8
∇xAij ·Op(ξiξj∇ξψ2)∥X0→Y 0 ≲ ∥χ>R

8
∇xA

ij∥l1Xs0−1∥⟨∇⟩∥X0→X−1∥Op(r̃)∥X0→X0 + ε

≲ ε∥Op(r̃)∥X0→X0 + ε

≲M ε.

Clearly, the X0 → Y 0 bound for the remaining subprincipal term K ′′χ<2(|D|) can be made

small by taking T small. This concludes the proof of (i). Now, we turn to (ii) and (iii). For

this, we need the following lemma involving symbol bounds for O.
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Lemma 3.6.8. The symbol O constructed above satisfies the following bounds.

(i) (R independent L∞ bound). There is a constant C0 depending only on the profile of

g(0) and on M but not on R or k0 such that

∥O(x, ξ)∥L∞
x,ξ

≲ C0.

(ii) (Higher order symbol bounds). For every |α+β| ≥ 2, there is a constant Cα,β depending

on M , L(R), R and k0 such that

∥⟨ξ⟩|α|∂αξ ∂βxO(x, ξ)∥L∞
x,ξ

≤ Cα,β.

If |α + β| = 1, the constant can be taken to be uniform in k0.

The crucial thing to note here is that only the higher order symbol bounds for O depend

on R and k0 while the L∞ bound does not.

Proof. Clearly, it suffices to show each of the above symbol bounds for ψ1 and ψ2. Given the

requisite bounds for ψ1, the bounds for ψ2 are clear. Therefore, we focus on ψ1. We begin

with the L∞ bound. By homogeneity of the bicharacteristic flow, it further suffices to show

that ∫
R
|B(xt, ξt)|dt ≲M C0. (3.6.17)

By homogeneity and a change of variables, we have∫
R
|B(xt, ξt)|dt =

∫
R
|ξ|−1|B(xtω, |ξ|ξtω)|dt,

where (xtω, ξ
t
ω) denote the bicharacteristics with data (x, ω) := (x, ξ|ξ|−1). Then, we use

Corollary 3.4.6 and the definition of the symbol B to obtain

|B(xtω, |ξ|ξtω)| ≤ C0|ξ||(bj<k0(0))(x
t
ω)|+ C0|ξ||(∇xA)(x

t
ω)|.

The estimate (3.6.17) then follows (after possibly relabelling C0) from Proposition 3.4.8,

using the fact that bj<k0(0),∇xA ∈ l1Hs0−1 with norm ≲M 1. This yields the L∞ bound for

ψ1. The higher order symbol bounds follow immediately from Proposition 3.4.7 and repeated

applications of the chain rule.

Now, we return to the proof of (3.6.8). From the above lemma and Proposition 3.2.6, we

have the L2 bound,

∥Ou∥L2 ≲ C0∥u∥L2 (3.6.18)
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for k1 large enough, with universal implicit constant. We next aim to establish the bound

∥u∥L2 ≲ C0∥Ou∥L2 . (3.6.19)

Using Proposition 3.2.5, we see that Op(e−ψ) is an approximate inverse for Op(eψ) in the

sense that we have

Op(e−ψ)Op(eψ) = 1 +Op(q),

where q ∈ S−1 with symbol bounds depending only on the symbol bounds for ψ. Therefore,

we have

u = S≥k1−4u = Op(e−ψ)S≥k1−4Ou+Op(q̃)u,

where q̃ ∈ S−1 with uniform in k1 symbol bounds. Hence, from Proposition 3.2.1 we obtain

∥u∥L2
x
≲ C0∥Ou∥L2

x
+ C1∥u∥H−1

x
,

where C0 depends only on M and g(0) and C1 depends on a finite collection of semi-norms

|O|(j)S0 . Since ∥u∥H−1
x

≲ 2−k1∥u∥L2
x
, we can take k1 large enough so that

∥u∥L2
x
≲ C0∥Ou∥L2 .

This gives (3.6.19). The Y 0 → Y 0 and X0 → X0 bounds for O follow from Proposition 3.2.7.

This establishes property (ii) of Proposition 3.6.6. The proof of property (iii) follows almost

identical reasoning to the proof of (ii), using the fact that ψ is even in ξ for |x| < R
8
. This

completes the proof of Proposition 3.6.6.

Proof of Proposition 3.6.1

Now, we complete the proof of Proposition 3.6.1. We will slightly abuse notation from here

on and write ≲M to mean that the implicit constant in the corresponding estimate depends

on M and C0 as above (but not on R). Moreover, we let R generically denote an error term

such that

∥R∥Y 0 ≤ C(M,L)(∥f∥Y σ + ∥v0∥Hσ) + ε∥v∥Xσ . (3.6.20)

We apply O := Op(O) from Proposition 3.6.6 to equation (3.6.5). Writing w := Ou, we
obtain

i∂tw + Pw +OB0
k0
u+ [O,P ]u+OB̃0

k0
u = R,
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where by the Y 0 → Y 0 bound forO (see (ii) in Proposition 3.6.6),R still satisfies the estimate

(3.6.20) as long as k1 is large enough. Performing similar frequency and time truncations as

before and commuting O with the first order terms, we obtain

i∂tw + Pw + i Im(B0
k0
)w + B̃0

k0
w + [O,P0

k0
]u+ χ<2RRe(B0

k0
)Ou = R̃,

where

R̃ = R− [O, B̃0
k0
]u− [O,B0

k0
]u− χ≥2RRe(B0

k0
)Ou+ B̃0

k0
(Ou−Ou) + [O, (P0

k0
− P)]u.

(3.6.21)

We next estimate R̃. To begin, note that the second and third terms in (3.6.21) are zeroth

order and can be estimated in L1
TL

2
x ⊂ Y 0, so that

∥[O, B̃0
k0
]u+ [O,B0

k0
]u∥Y 0 ≲M,L T∥v∥Xσ ,

which by taking T small can be controlled by ε∥v∥Xσ . To get a suitable error estimate for

the fourth term in (3.6.21), we first note that by property (ii) in Proposition 3.6.6, we have

∥Ou∥X0 ≲ C0∥u∥X0

if k1 is large enough. Here, we recall crucially that C0 is a R independent constant. Therefore,

it suffices to establish the bound

∥χ≥2RRe(B0
k0
)∥X0→Y 0 ≤ ε. (3.6.22)

Clearly, it suffices to work with the principal part of χ≥2RRe(B0
k0
) as the error term is

bounded from L1
TL

2
x → L1

TL
2
x. We can expand the principal part as

χ≥2RRe(b<k0(0))m1(D) + χ≥2R∇xAm2(D)

where m1,m2 ∈ S1 are suitable (matrix-valued) Fourier multipliers with symbol bounds

independent of M , L and R. We can replace the coefficients of m1 and m2 above with

the paradifferential operators Tχ≥2R Re(b<k0
(0)) and Tχ≥2R∇A, as the error is an operator which

maps L1
TL

2
x to L

1
TL

2
x with norm depending only onM and k0. Therefore, if T is small enough,

such an error term can be discarded. Using Proposition 3.2.13 and the asymptotic smallness

(3.5.4), the remaining term satisfies

∥Tχ≥2R Re(b<k0
(0))m1(D) + Tχ≥2R∇Am2(D)∥X0→Y 0 ≲M ε(∥m1(D)∥X0→X−1 + ∥m2(D)∥X0→X−1)

≲ ε.
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To deal with the fifth term in (3.6.21), we do a similar analysis. Using the definition of B̃0
k0

and property (iii) in Proposition 3.6.6, we can write

B̃0
k0
(Ou−Ou) = χ>R

8
b̃j<k0(0)∂j(Ou−Ou).

If û is supported at high enough frequency, we can estimate using (ii) in Proposition 3.6.6,

∥∂j(Ou−Ou)∥X−1 ≲M ∥u∥X0 .

Combining this with the smallness

∥χ>R
8
b̃<k0(0)∥l1Xs0−1 ≤ ε,

we can argue as with the previous term to obtain

∥B̃0
k0
(Ou−Ou)∥Y 0 ≲M ε∥v∥Xσ .

Now, we turn to the most tricky part, which is estimating the last term in (3.6.21). For this,

we have the following lemma.

Lemma 3.6.9 (Commutator bound). For k0 large enough and T sufficiently small, there

holds

∥[O, (P0
k0
− P)]u∥Y 0 ≤ ε∥v∥Xσ . (3.6.23)

Proof. Clearly, we can write

[O, (P − P0
k0
)] = [O, (T∂igij − ∂ig

ij
<k0

(0))∂j] + (Tgij − gij<k0(0))[O, ∂i∂j]
+ [O, (Tgij − gij<k0(0))]∂i∂j.

(3.6.24)

The first term is zeroth order and is bounded from L1
TL

2
x → L1

TL
2
x. Indeed, by taking T

small enough, it is a straightforward consequence of Proposition 3.2.5 and Proposition 3.2.10

that

∥[O, (T∂igij − ∂ig
ij
<k0

(0))∂j]∥L∞
T L2

x→Y 0 ≤ ε.

The second and third terms are first order, and, as usual, must be dealt with carefully to

extract the necessary smallness. We start with the second term which is a bit easier. Since

(Tgij<k0
(0) − gij<k0(0))[O, ∂i∂j] is bounded from L1

TL
2
x → L1

TL
2
x, we can replace Tgij − gij<k0(0)

with Tgij−gij<k0
(0). Then by Proposition 3.2.13 and Bernstein inequalities, we have

∥Tgij−gij<k0
(0)[O, ∂i∂j]u∥Y 0

≲ (∥S≥k0g
ij∥l1Xs0−1−δ + ∥gij<k0 − gij<k0(0)∥l1Xs0−1−δ)∥⟨∇⟩−1[O, ∂i∂j]u∥X0

≲M 2−(1+δ)k0∥⟨∇⟩−1[O, ∂i∂j]u∥X0 ,
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for some δ > 0. As ⟨∇⟩−1[O, ∂i∂j] ∈ OPS0, it suffices to consider its principal part when

estimating the last term. This is because the subprincipal part is (crudely) bounded from

L∞
T H

− 1
2

x to L∞
T H

1
2
x ⊂ X0, so we can control such terms by using the fact that u is localized

to frequencies ≳ 2k1 to gain a smallness factor 2−
k1
2 , and then take k1 sufficiently large. To

estimate the principal symbol cp for ⟨∇⟩−1[O, ∂i∂j], we can use that ∇gij(0), bj ∈ C1,δ and

Proposition 3.4.7 to obtain the bound

∥cp∥L∞ ≲ ∥∇xO∥L∞ ≲M,R,L 1,

with implicit constant independent of k0. Therefore, by taking k0 and k1 large enough and

applying Proposition 3.2.7, we obtain

2−(1+δ)k0∥Op(cp)u∥X0 ≲ 2−(1+δ)k0∥cp∥L∞∥u∥X0 ≤ ε∥v∥Xσ .

Consequently, the second term in (3.6.24) can be estimated by

∥(Tgij − gij<k0(0))[O, ∂i∂j]u∥Y 0 ≤ ε∥v∥Xσ .

It remains to estimate the third term in (3.6.24) which is the most delicate because the

commutator itself involves the metric gij at high frequencies. Our aim as above is to show

that

∥[O, (Tgij − gij<k0(0))]∂i∂ju∥Y 0 ≤ ε∥v∥Xσ .

Intuitively, this should be possible by taking k0 large enough. There are, however, two

complications in dealing with this. Firstly, the symbol bounds for O depend on k0. Secondly,

the coefficient in the paradifferential operator Tgij has limited regularity, so the standard

pseudodifferential calculus cannot be directly applied. Our strategy is to split this term into

three parts to separate the issues. We write

[O, (Tgij − gij<k0(0))]∂i∂ju = [O, (gij<m − gij<k0)]∂i∂ju

+ [O, (Tgij − gij<m)]∂i∂ju

+ [O, (gij<k0 − gij<k0(0))]∂i∂ju,

(3.6.25)

where m is some universal parameter with k0 ≪ m≪ k1. For the first term, we do not need

to worry about the presence of any functions of limited regularity, but we still need to worry

about the dependence of O on k0. For the second term, by taking m large enough, the k0

dependence in O should be a non-issue, which puts us in a position to use Proposition 3.2.16.

Control of the final term follows by taking T ≪ 2−2k0 and averaging in T .
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Let us begin by analyzing the first term. The principal symbol cp for [O, (gij<m− gij<k0)]∂i

is given by

cp = {O, (gij<m − gij<k0)}ξi.

Analogously to the principal part for the second term in (3.6.24), we have the bound

∥⟨ξ⟩∇ξO∥L∞ ≲M,R,L 1.

To estimate the full commutator, we then use Proposition 3.2.5 to write

[O, (gij<m − gij<k0)]∂i = ∇x(g
ij
<m − gij<k0) ·Op(∇ξOξi) +Op(r)

where r ∈ S0 (with symbol bounds depending on m). Arguing as in the estimate for the

second term in (3.6.24), it follows by using Proposition 3.2.13, then Proposition 3.2.7, then

taking k0 large enough and T small enough (depending on m, M , R and L) that

∥[O, (gij<m − gij<k0)]∂i∂ju∥Y 0 ≤ ε∥v∥Xσ .

This takes care of the first term in (3.6.25). For the second term, it suffices to estimate

[O, Tgij−gij<m
]∂i∂ju, as the error will be bounded from L1

TL
2
x → L1

TL
2
x. To estimate this term,

we simply use Proposition 3.2.16 to obtain

∥[O, Tgij−gij<m
]∂i∂ju∥Y 0 ≲M,L,R,k0 ∥g

ij
<m − gij∥l1Xs0−δ∥u∥X0 .

We then recall the smallness bound

∥gij<m − gij∥l1Xs0−δ ≲M 2−δm,

which tells us that if m is large enough relative to k0, R, L andM then we have the estimate

∥[O, Tgij−gij<m
]∂i∂ju∥Y 0 ≤ ε∥u∥X0 ≲ ε∥v∥Xσ .

Finally, by averaging in T and arguing similarly to the above, the last term in (3.6.25) can be

controlled by ε∥v∥Xσ by taking T small enough. This completes the proof of Lemma 3.6.9.

Using the above lemma and Proposition 3.6.6, we now arrive at the following equation

for w:

i∂tw + Pw + i Im(B0
k0
)w + B̃0

k0
w + [O,P0

k0
]u+ χ<2RRe(B0

k0
)Ou = R,
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where R is as in (3.6.20). To conclude, we make one final reduction. From Proposition 3.2.5,

O−1 := Op(e−ψ) is an approximate inverse for O in the sense that we have Op(O)Op(O−1) =

1+Op(q) for q ∈ S−1. Therefore, by estimating the error term generated by Op(q) in L1
TL

2
x,

we can write

i∂tw + Pw + i Im(B0
k0
)w + B̃0

k0
w + iA(x,D)O−1w = R,

where

A(x,D) := −i[O,P0
k0
]− iχ<2RRe(B0

k0
)O +Op(r)O,

and R is again of the form (3.6.21) (as long as T is small enough). By construction,

A(x,D)O−1 is a time-independent pseudodifferential operator of order 1 with non-negative

principal symbol in S1. Therefore, the above equation for w is now in the form (3.6.1) with

a source term R satisfying (3.6.20). Hence, Proposition 3.6.1 easily follows by applying

Lemma 3.6.2.

3.7 The local energy decay estimate

In this section, we complement the L2 estimate in the previous section with an estimate for

the local energy component of the norm ∥v∥Xσ for a solution v to (3.5.2). For every σ ≥ 0,

we denote the local energy component of Xσ by

∥v∥Xσ =

(∑
j≥0

22j(σ+
1
2
)∥Sju∥2X

) 1
2

.

We remark that we have the obvious embedding ∥v∥Xσ ≲ ∥v∥
L2
TH

σ+1
2

x

.

The local energy estimate

The local energy estimate we will need for (3.5.2) is given by the following proposition.

Proposition 3.7.1. Let σ ≥ 0 and let s0, g
ij, bj and b̃j be as in Theorem 3.5.1 with

parameters M and L. Suppose that v solves (3.5.2) and let ε > 0. There is T0 = T0(ε) > 0

such that for 0 ≤ T ≤ T0, we have the local energy bound

∥v∥Xσ ≤ C(M,L)(∥v∥L∞
T Hσ

x
+ ∥f∥Y σ) + ε∥v∥Xσ ,

where C(M,L) depends on M and on the parameter L within some fixed compact set

depending on ε.
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Fix δ > 0 to be some small parameter to be chosen. From (3.6.7) in the previous section,

we can choose k0 sufficiently large and T sufficiently small so that u := ⟨∇⟩σv solves the

equation

i∂tu+ Pu+ B0
k0
u+ B̃0

k0
u = R,

with the remainder estimate

∥R∥Y 0 ≲ ∥f∥Y σ + δ∥v∥Xσ .

Also, as in the previous section, we may assume that u is localized to frequencies ≳ 2k1 ,

where k1 is some sufficiently large parameter to be chosen. Unlike with the L2 estimate,

however, we will not need the added energy structure coming from the complex-conjugate

first order term. It is therefore convenient to write the equation as a system in u and u. In

doing this, we obtain the following compact form of the paradifferential linear equation:

∂tu+Pu+B0
k0
u = R,

where

P := i

(
−P 0

0 P

)
, B0

k0
:= i

(
−B0

k0
−B̃0

k0

B̃0
k0

B0
k0

)
, u :=

(
u

u

)
,

and R is a source term satisfying the bound

∥R∥Y 0 ≲ ∥f∥Y σ + δ∥v∥Xσ . (3.7.1)

We define analogously to before the truncated principal operatorP0
k0
by replacing the nonzero

entries in P with P0
k0

in the natural way.

By using Theorem 3.5.5 and arguing similarly to the proof of Lemma 3.5.7, for each

R > 0 large enough and T small enough, there holds

∥χ≥Ru∥X 0 ≤ C(M,R)(∥v∥L∞
T Hσ

x
+ ∥R∥Y 0 + ∥χ<2Ru∥

L2
TH

1
2
x

) + ε∥v∥Xσ .

Therefore, to prove Proposition 3.7.2, it suffices to establish the bound

∥χ<2Ru∥
L2
TH

1
2
x

≤ C(M,L)(∥v∥L∞
T Hσ

x
+ ∥R∥Y 0) + ε∥v∥Xσ . (3.7.2)

This latter estimate is where we will concentrate the bulk of our efforts in this section.
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Interior estimate

Now we turn to establishing the required interior estimate (3.7.2). The main construction

we will need is given by the following result, which can very loosely be thought of as a

spatially truncated version of Doi’s construction in [38]. Our method will work under far

less stringent decay assumptions, however. For similar reasons to the previous section, we

will again work with the principal symbol for the truncated operator P0
k0

in our analysis

rather than P directly (at the cost of estimating a term with the same flavor as (3.6.23)).

We will also write |B0
k0
| to denote the maximum of the absolute values of the entries of the

principal symbol for B0
k0
.

Proposition 3.7.2. Let C(M) > 1 be a constant depending on M to be chosen. Moreover,

let k0 be large enough so that gij<k0(0) is nontrapping with comparable parameters to gij(0)

(which is possible by Proposition 3.4.5). Define a := −gij<k0(0)ξiξj. Then for every R′ ≫ R

sufficiently large, there is a smooth, non-negative, time-independent S0 symbol q ≥ 1 with

the following properties:

(i) (Positive commutator in BR′(0) with small error). There exists r ∈ S1 such that if R′

and k1 are large enough and T is sufficiently small relative to R′ and k1, then we have

Haq + C(M)rq ≳ C(M)χ<R′ |B0
k0
|q, ∥Op(rq)S≥k1∥X0→Y 0 ≲

ε

C(M)
.

(ii) (Ellipticity in B2R(0)).

Haq + C(M)rq ≥ C(M)χ<2R|ξ|q,

where r is as in (i).

(iii) (Zeroth order symbol bound). There is a constant C0(M,R) depending on M and R

but not on R′ such that

|q| ≤ C0.

(iv) (First order symbol bound). There is a constant C1(M,R,R′) depending on M , R and

R′ such that

|ξ||∇ξq|+ |∇xq| ≤ C1.

(v) (Higher order symbol bounds). There is a constant C2(M,R,R′, k0) depending on M ,

R, R′ and k0 such that

⟨ξ⟩|α||∂αξ ∂βxq| ≲α,β C2, |α + β| ≥ 2.
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In the R and R′ dependent constants above, we also allow for dependence on L within

BR(0) and BR′(0), respectively. The first property will allow us to control the contribution of

the first-order terms in the equation within the larger compact set BR′(0), up to a small error

term, as long as u is localized at high enough frequency. The second property will give us

the required control of χ<2Ru in L2
TH

1
2
x up to a suitable error term. We importantly remark

that the zeroth order symbol bounds in (iii) for q depend only on M and R (more precisely,

L(R)). This will ensure that the Y 0 → Y 0 bound for Op(q) depends only on M and R as

long as u is at sufficiently high frequency, thanks to Proposition 3.2.7. As a consequence,

we may argue similarly to the previous section and treat the first-order terms in the region

outside of BR′(0) perturbatively as long as R′ is large enough relative to R. We note that

unlike in the construction in Proposition 3.6.6, this second parameter R′ is needed because

the uniform norm of the symbol q necessarily depends on the smaller radius R.

We emphasize that the first order symbol bounds in (iv) depend onM , R and R′ but not

on k0. The purpose of this will be to control an error term that is similar to the commutator

(3.6.23) from the previous section by taking k0 large relative to M , R, and R′. The higher

order symbol bounds in property (v) will ensure that q is a classical S0 symbol and will allow

us to estimate lower order error terms in L1
TL

2
x by taking T small depending on M , R, R′

and k0, similarly to the previous section.

Proof. We begin by defining a smooth function that will be suitable for controlling the size

of the first order coefficients within the larger compact set BR′(0). A reasonable choice is

the following:

ηR′ = χ<2R′

√
|b̃<k0(0)|2 + |b<k0(0)|2 + |∇xg

ij
<k0

(0)|2 + L(2R′)−2.

The term L(2R′)−2 is for technical convenience. It ensures that ηR′ is smooth and allows us

to invoke Proposition 3.4.8 to obtain uniform integrability along the bicharacteristic flow for

the truncated metric gij<k0(0) with a bound independent of R′. Precisely, we have∫
R
ηR′(xt, ξt)|ξt|dt ≤ C0 (3.7.3)

where C0 is as above. Moreover, for |x| ≤ R′, we clearly have |∇xg
ij
<k0

(0)||ξ|+ |B0
k0
| ≲ ηR′ |ξ|.

Now, we move to constructing the symbol q. We start by defining a preliminary symbol p1

via

p1(x, ξ) := −χ>1(|ξ|)χ<R′

∫ ∞

0

(χ<2R + ηR′)(xt, ξt)|ξt|dt,
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where similarly to the construction for O in Proposition 3.6.6, we localized the symbol in

space to BR′(0) so that it will ultimately belong to S0. As in Proposition 3.6.6, Hap1 will

generate an error term coming from the localization χ<R′ . To deal with this, we correct

p1 by another symbol p2. To define p2, we take our cue from the definition (3.6.12) in the

previous section. Using the same notation as in (3.6.12) with the parameter R′ replacing R

in all instances, we define

p2(x, ξ) := K ′χ>1(|ξ|)
(
ρR′φ<− 1

2
(cos(θ))− ρθφ>− 1

2
(cos(θ))

)
,

where K ′ := K ′(R,M) is a constant such that

K ′ ≫ sup
(x,ξ)∈R2d

χ>1(|ξ|)
∫ ∞

0

(χ<2R + ηR′)(xt, ξt)|ξt|dt. (3.7.4)

We note that thanks to the nontrapping assumption and (3.7.3), K ′ can be chosen to depend

only on R and M , but not on R′. We then define p := p1 + p2 and analogously to (3.6.14),

we define the remainder symbol r by

r(x, ξ) := −ξiξj∇ξp2 · ∇xg
ij
<k0

(0) +K ′′χ<2(|ξ|),

where K ′′ ≫ K ′ is some sufficiently large constant. We then define the required symbol q by

q := eC(M)p, (3.7.5)

for some sufficiently large constant C(M) > 0. Now, we turn to establishing each property

in Proposition 3.7.2. First, arguing similarly to the proof of the first property in Proposi-

tion 3.6.6, we compute directly that

Haq + C(M)rq ≥ C(M)(χ<2R + χ<R′ηR′)|ξ|q. (3.7.6)

From this, we immediately obtain the positive commutator bounds in (i) and (ii) in Propo-

sition 3.7.2. The X0 → Y 0 estimate for Op(rq)S≥k1 follows from properties (iii)-(v) (to be

established below), Proposition 3.2.7 and the fact that ∥χ>R′∇xg
ij
<k0

(0)∥L∞ → 0 as R′ → ∞.

Next, we verify the symbol bounds (iii)-(v). It clearly suffices to establish the analogous

symbol bounds for the symbol p1. To do this, we split

p1 := −χ>1(|ξ|)χ<R′

(∫ ∞

0

ηR′(xt, ξt)|ξt|dt+
∫ ∞

0

χ<2R(x
t, ξt)|ξt|dt

)
=: χ>1(|ξ|)χ<R′(a1+a2).

By a change of variables and homogeneity, we have for each ξ ̸= 0,

ai(x, ξ) = ai

(
x,

ξ

|ξ|

)
, i = 1, 2.



CHAPTER 3. ULTRAHYPERBOLIC SCHRÖDINGER EQUATIONS 243

By (3.7.3) and Corollary 3.4.6, we then easily verify property (iii) for χ>1(|ξ|)χ<R′a1. By

the nontrapping assumption, one may verify (iii) for the symbol χ>1(|ξ|)χ<R′a2 as well.

Properties (iv) and (v) for both χ>1(|ξ|)χ<R′a1 and χ>1(|ξ|)χ<R′a2 are a straightforward

consequence of Proposition 3.4.7. This completes the proof of Proposition 3.7.2.

Now, we turn to establishing the main estimate (3.7.2). We begin by defining the symbols

q and |q|:

q :=

(
q 0

0 −q

)
, |q| := qI2×2.

Define Q := 1
2
Op(q) + 1

2
Op(q)∗. Performing a similar calculation to Lemma 3.6.2, we note

that P is skew-adjoint up to a L2
x → L2

x bounded error. Therefore, it is a straightforward

algebraic manipulation to verify the inequality

Re⟨QPu,u⟩ ≥ 1

2
Re⟨[Q,P]u,u⟩ − C2∥v∥2L∞

T Hσ
x
,

where C2 is as in Proposition 3.7.2. We then obtain the basic preliminary energy estimate,

1

2
Re⟨Qu,u⟩(T ) +

∫ T

0

Re⟨(1
2
[Q,P0

k0
] +QB0

k0
)u,u⟩dt

≤1

2
Re⟨Qu,u⟩(0) + 1

2

∫ T

0

Re⟨[Q, (P0
k0
−P)]u,u⟩dt+

∫ T

0

Re⟨QR,u⟩dt+ C2∥u∥2L∞
T L2

x
.

(3.7.7)

Now, we estimate each term in (3.7.7). By Cauchy-Schwarz and Proposition 3.2.1, we have

|Re⟨Qu,u⟩(T )|+ |Re⟨Qu,u⟩(0)| ≤ C2∥u∥2L∞
T L2

x
.

Next, by Proposition 3.7.2, the principal symbol c(x, ξ) of [Q,P0
k0
] satisfies,

c(x, ξ) + C(M)rqI2×2 ≥
1

2
C(M)(χ<2R|ξ|q + χ<R′|B0

k0
|q)I2×2.

We can therefore choose C(M) large enough so that

c(x, ξ) + C(M)rqI2×2 − χ<2R|ξ|qI2×2 −
1

2
C(M)χ<R′q|B0

k0
|I2×2 ≥ 0.

Then, the classical G̊arding inequality Proposition 3.2.2 along with its matrix version (see

Remark 3.2.3) yields∫ T

0

Re⟨(1
2
[Q,P0

k0
] +QB0

k0
)u,u⟩dt ≳ ∥χ<2Ru∥2

L2
TH

1
2
x

− C2∥u∥2L∞
T L2

x

− C(M)∥Op(rq)u∥Y 0∥u∥X0 − ∥Qχ>R′B0
k0
u∥Y 0∥u∥X0 ,

(3.7.8)
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where we applied Hölder’s inequality in T to control the lower order error term in Re-

mark 3.2.3 by the L∞
T L

2
x norm of u and the Y ∗ = X duality to control the remaining first

order terms. To control the first Y 0 error term on the right, we use property (i) from

Proposition 3.7.2 to estimate

C(M)∥Op(rq)u∥Y 0∥u∥X0 ≲M ε∥v∥2Xσ ,

which holds as long as u is localized at high enough frequency (i.e. k1 is large enough). To

control the latter Y 0 error term, we first note that by Proposition 3.2.5, the embedding

L1
TL

2
x ⊂ Y 0 and Hölder in T , we have

∥Qχ>R′B0
k0
u∥Y 0 ≤ ∥χ>R′B0

k0
Qu∥Y 0 + C2∥u∥L∞

T L2
x
.

Then by using Proposition 3.2.13 and arguing as with the analogous terms in the previous

section, we have

∥χ>R′B0
k0
Qu∥Y 0 ≲ ∥χ>R′(b̃<k0(0), b<k0(0),∇xg

ij
<k0

(0))∥l1Xs0−1∥QS>k1−4∥X0→X0∥u∥X0

+ C2∥u∥L∞
T L2

x
.

Using the fact that the L∞ norm of the symbol q depends only on R and M and not on R′,

we can take k1 and R′ large enough so that Proposition 3.2.7 and (3.5.4) ensure that

∥χ>R′(b̃<k0(0), b<k0(0),∇xg
ij
<k0

(0))∥l1Xs0−1∥QS>k1−4∥X0→X0 ≤ ε.

It then follows by Cauchy-Schwarz and (3.7.8) that we have∫ T

0

Re⟨(1
2
[Q,P0

k0
] +QB0

k0
)u,u⟩dt ≳ ∥χ<2Ru∥2

L2
TH

1
2
x

− C2∥u∥2L∞
T L2

x
− ε∥v∥2Xσ .

Next, we estimate the contribution of the second term in the second line of (3.7.7). The

procedure here is essentially identical to the estimate in (3.6.23). Using the symbol bounds

for q in Proposition 3.7.2 (specifically, that the derivatives of q up to first order have uniform

in k0 bounds), we can estimate by taking k0 large enough and T small enough as in the proof

of Lemma 3.6.9 to obtain

∥[Q, (P0
k0
−Pk)]u∥Y 0 ≤ ε∥v∥Xσ .

To estimate the third term in the second line of (3.7.7), we use the Y ∗ = X duality and

Proposition 3.2.7 to obtain ∫ T

0

Re⟨QR,u⟩dt ≤ C0∥R∥Y 0∥v∥Xσ ,
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where the constant C0 depends only on M and R if k1 is large enough. Taking T small

enough in (3.7.1) and using Cauchy-Schwarz, we have∫ T

0

Re⟨QR,u⟩dt ≤ C0∥f∥2Y σ + ε2∥v∥2Xσ .

Putting the above estimates together, we obtain

∥χ<2Ru∥
L2
TH

1
2
x

≤ C2(∥v∥L∞
T Hσ

x
+ ∥f∥Y σ) + ε∥v∥Xσ .

This establishes (3.7.2), which completes the proof of Proposition 3.7.1.

3.8 Proof of the main linear estimate

In this short section, we complete the proof of Theorem 3.5.1 by combining Proposition 3.6.1

and Proposition 3.7.1. First, note that by Lemma 3.5.3, Lemma 3.5.4 and Lemma 3.5.7, it

suffices to establish for small enough T , the bound

∥v∥Xσ ≤ C(M,L)(∥v0∥Hσ + ∥f∥Y σ), σ ≥ 0, (3.8.1)

when v is a solution to (3.5.2) with v̂ supported at frequencies ≳ 2k1 for some arbitrarily

large (but fixed) parameter k1. Let ε > 0 be a small positive constant to be chosen. By

Proposition 3.6.1 and Proposition 3.7.1, we have the initial estimate

∥v∥L∞
T Hσ

x
+ ∥v∥Xσ ≤ C(M,L)(∥v0∥Hσ + ∥f∥Y σ) + ε∥v∥Xσ . (3.8.2)

We would like to strengthen this bound by replacing the left-hand side of (3.8.2) with ∥v∥Xσ ,

which would suffice to complete the proof. For this, we require control of the slightly stronger

(than the L∞
T H

σ
x ) norm

∥v∥Zσ :=

(∑
j≥0

22jσ∥Sjv∥2L∞
T L2

x

) 1
2

.

Clearly, (3.8.1) will follow from (3.8.2) and the following lemma, for ε small enough (depend-

ing on M and L).

Lemma 3.8.1. Under the above assumptions, v satisfies the following estimate in the space

Zσ:

∥v∥Zσ ≤ C(M,L)(∥v0∥Hσ + ∥f∥Y σ + ∥v∥Xσ) + ε∥v∥Xσ .
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Proof. We begin by defining vk := Skv for each k ≥ 0. We see that vk satisfies the equation i∂tvk + ∂jTgij∂ivk + Tbj∂jvk + Tb̃j∂jvk = Skf +Rk,

vk(0) = Skv0,
(3.8.3)

where

Rk := [Tgij , Sk]∂i∂jS̃kv + [T∂jgij , Sk]∂iS̃kv + [Tbj , Sk]∂jS̃kv + [Tb̃j , Sk]∂jS̃kv

and S̃k is a fattened version of the dyadic multiplier Sk. By dyadic summation and Propo-

sition 3.6.1, the proof of the lemma will be concluded if we can show that

∥Rk∥Y σ ≤ C(M)∥S̃kv∥Xσ + ε∥S̃kv∥Xσ (3.8.4)

for some ε > 0 sufficiently small. This is an easy consequence of Proposition 3.2.10 for the

latter three terms as we can estimate these in L1
TH

σ
x and take T small. To estimate the

remaining term, we first observe that

[Tgij , Sk]∂i∂jS̃kv = [TS<kgij , Sk]∂i∂jS̃kv = [S<kg
ij, Sk]∂i∂jS̃kv + [TS<kgij − S<kg

ij, Sk]∂i∂jS̃kv.

The latter term above can be estimated easily in L1
TH

σ
x by the right-hand side of (3.8.4) by

using paradifferential calculus and then by taking T small. For the remaining term, we use

that

[S<kg
ij, Sk]∂i∂jS̃kv = 2−kL(S<k∇xg

ij, ∂i∂jS̃kv),

where L is a translation invariant operator of the form

L(ϕ1, ϕ2)(x) =

∫
ϕ1(x+ y)ϕ2(x+ z)K(y, z)dydz, ∥K∥L1 ≲ 1.

See, for instance, [148]. As the spaces l1Xs0 and X σ are translation invariant (in that they

admit translation invariant equivalent norms), it follows from Proposition 3.2.12 that we

have

∥[S<kgij, Sk]∂i∂jS̃kv∥Y σ ≤ C(M)∥S̃kv∥Xσ .

This completes the proof of the lemma.

3.9 Well-posedness for the nonlinear flow

Now, we proceed with the proof of Theorem 3.1.3. By differentiating (3.1.1), we obtain an

equation for (u,∇u) of the form (3.1.11). Therefore, it suffices to prove the second part of
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the theorem for (3.1.11). Given the key estimate and well-posedness in Theorem 3.5.1, the

scheme for proving this follows a very similar path to [106, Section 7]. We only outline the

main results and procedure here for the convenience of the reader, and refer to the corre-

sponding parts of [106] where relevant. A fully detailed exposition of a simplified version of

the scheme that we employ below can be found in [71].

The starting point is to rewrite the equation i∂tu+ ∂jg
ij(u, u)∂iu = F (u, u,∇u,∇u),

u(0, x) = u0(x),
(3.9.1)

in the paradifferential form i∂tu+ ∂jTgij∂iu+ Tbj∂ju+ Tb̃j∂ju = G(u, u,∇u,∇u),

u(0, x) = u0(x),

where

b := −∂(∇u)F, b̃ := −∂(∇u)F

and

G(u, u,∇u,∇u) := (∂jTgij∂i − ∂jg
ij∂i)u+ F (u, u,∇u,∇u) + Tbj∂ju+ Tb̃j∂ju.

Existence of l1Xs solutions to the nonlinear equation

Our first aim is to establish existence of l1Xs solutions to the equation (3.1.11) for small

time. This is given by the following proposition.

Proposition 3.9.1. Let s > d
2
+2 and let u0 ∈ l1Hs with ∥u0∥l1Hs =M . Suppose that g(u0)

is a nontrapping, non-degenerate metric with parameters R0 and L. Then there is T0 > 0

depending on M , L(R0) and R0 such that for every T ≤ T0, there exists a solution u ∈ l1Xs

to (3.1.11) such that

(i) (l1Xs bound).

∥u∥l1Xs ≤ C(M,L)∥u0∥l1Hs .

(ii) (Smallness outside BR0).

∥χ>R0u∥l1Xs ≤ 2ε.
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(iii) (Comparable nontrapping parameter).

L(u) ≤ 2L(u0).

As in Section 7 of [106], for each n ≥ 0 we consider the following iteration scheme for the

paradifferential form of the nonlinear equation: i∂tu
n+1 + ∂iTgij(un)∂ju

n+1 + Tbj(un)∂ju
n+1 + Tb̃j(un)∂ju

n+1 = G(un),

un+1(0, x) = u0(x),
(3.9.2)

with initialization u0 = 0. Here, we are suppressing the dependence on derivatives of un and

its complex conjugate in bj, b̃j and G. It is clear that Proposition 3.9.1 will follow from our

next proposition, which addresses the convergence and bounds for the iteration scheme.

Proposition 3.9.2. Let s,M,L,R0, T0 and u0 be as in Proposition 3.9.1. Then there exists

a constant C(M,L) such that for every n ≥ 0 there exists a solution un to (3.9.2) on [0, T ]

such that

(i) (l1Xs bound).

∥un∥l1Xs ≤ C(M,L)∥u0∥l1Hs .

(ii) (Smallness outside BR0).

∥χ>R0u
n∥l1Xs ≤ 2ε.

(iii) (Comparable nontrapping parameter).

L(un) ≤ 2L(u0).

Moreover, there is a function u ∈ l1Xs satisfying the same bounds as above such that un

converges strongly to u in l1Xσ for every 0 ≤ σ < s.

Remark 3.9.3. For simplicity of presentation, we have omitted the parameter d
2
+2 < s0 < s

used in [106, Section 7] from the statements of the results in this section. This parameter

still needs to be taken into account in the (omitted) proofs to ensure that the bounds for

the low-frequency coefficients g, b, and b̃ stay under control in each iteration.

The proof of the above proposition follows from a virtually identical line of reasoning as

[106, Sections 7.1-7.3]. We simply use Proposition 3.4.5 and Theorem 3.5.1 in place of the

analogues in their proof. We omit the details.
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Uniqueness and the weak Lipschitz bound

In this subsection, we establish uniqueness of solutions in the class l1Xs when s > d
2
+ 2. In

fact, our uniqueness result follows as a corollary of a weak Lipschitz type bound as noted in

the following proposition.

Proposition 3.9.4. Let s > d
2
+2 and let u10 ∈ l1Hs. Assume that g(u10) is a non-degenerate,

nontrapping metric with parameters M, R0 and L as above. Suppose that u20 ∈ l1Hs is

another initial datum satisfying

∥u20∥l1Hs ≲M,

and suppose that u20 is close to u10 in the l1L2 topology in the sense that

∥u10 − u20∥l1L2 ≪M e−C(M)L(R0).

Then the following statements hold:

(i) g(u20) is nontrapping with comparable parameters to g(u10).

(ii) The solutions u1 and u2 generated by u10 and u20 exist on a time interval [0, T ] whose

length depends only on the parameters M , R0 and L(R0).

(iii) For 0 ≤ σ < s0 − 1, we have the following weak Lipschitz type bound:

∥u1 − u2∥l1Xσ ≤ C(M,L)∥u10 − u20∥l1Hσ .

Proof. The proof follows an identical line of reasoning as Section 7.4 in [106] except that we

use Proposition 3.4.5 in place of Proposition 5.2 in [106] to prove (i).

Frequency envelope bounds and continuous dependence

In this final subsection, our main objective is to establish continuous dependence for (3.9.1).

More precisely, for s > d
2
+ 2, we want to show that the data-to-solution map (given non-

trapping data) u0 7→ u is continuous from l1Hs to l1Xs. As in [106], the main ingredient is

the following frequency envelope bound for the solution u ∈ l1Xs in terms of the data.

Proposition 3.9.5. Let u ∈ l1Xs be a solution to (3.9.1) as in Proposition 3.9.1 with initial

data u0 ∈ l1Hs. Let ak be an admissible frequency envelope for u0 in l
1Hs. Then the solution

u satisfies the bound

∥Sku∥l1Xs ≤ akC(M,L)∥u0∥l1Hs .
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Proof. The proof follows identical reasoning as the proof of Proposition 7.5 in [106]. The only

difference is that we use Corollary 3.5.2 in place of the analogous bound in their proof.

Armed with Proposition 3.9.5, the proof of the continuity of the data-to-solution map in

Section 7.6 of [106] now applies verbatim to establish the same property in our setting.
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Chapter 4

Derivative nonlinear Schrödinger

equations

4.1 Introduction

In this final chapter, we consider the generalized derivative nonlinear Schrödinger equation: i∂tu+ ∂2xu = i|u|2σ∂xu,

u(0) = u0,
(gDNLS)

where u : R × R → C and σ > 0. We will be particularly interested in the case σ < 1, as

this is where Hs local well-posedness is most difficult. We begin with a brief history of this

family of equations, and some of its closely related analogues.

The (gDNLS) equations originate from the study of the so-called derivative nonlinear

Schrödinger equation:  i∂tu+ ∂2xu = i|u|2∂xu,

u(0) = u0,
(DNLS)

which corresponds to (gDNLS) with σ = 1. Physically, (DNLS) derives from the one-

dimensional compressible magneto-hydrodynamic equation in the presence of the Hall effect,

and the propagation of circular polarized nonlinear Alfvén waves in magnetized plasmas

[113, 118, 125]. It also appears as a model for ultrashort optical pulses [1, 119], as well as

in various other physical scenarios [22, 78, 135]. Mathematically, (DNLS) also has many

interesting features. For example, like the 1D cubic NLS, it is completely integrable [83].
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However, it scales like the 1D quintic NLS, which makes it L2 critical. Moreover, although

at first glance (DNLS) looks to be semilinear, it is known that uniform continuity of the

solution map fails in Hs as long as s < 1
2
(see [13, 143]). Therefore, this PDE has a clear

quasilinear flavour.

In recent years, the (gDNLS) family of equations has seen increasing interest, stemming

from the 2013 article of Liu, Simpson and Sulem [102]. One of the original motivations

of [102] was to shed light on the global well-posedness of (DNLS) in the energy space H1,

which was an important open problem. However, in an interesting turn of events, Bahouri

and Perelman [10] managed to prove global well-posedness for the (DNLS) equation before

the global well-posedness of (gDNLS) could be established for any σ ̸= 1. In this thesis

we make progress towards resolving one half of the program of Liu, Simpson and Sulem by

proving that (gDNLS) is globally well-posed in H1 for σ ∈ (
√
3
2
, 1). Note that, although

completed shortly after each other, our result for σ < 1 and the σ = 1 result of [10] are

completely independent, and the methods used differ quite dramatically. Indeed, for σ = 1,

local well-posedness in H1 has been known for a long time [65], and can be established

by employing a suitable gauge transformation, and standard Strichartz estimates. In fact,

the smoothing properties of the equation are suitable to lower the well-posedness threshold

to H
1
2 as in [144]. Global well-posedness, however, is considerably harder, as the problem

is L2 critical. For this reason, Bahouri and Perelman (as well as Harrop-Griffiths, Killip,

Ntekoume and Vişan [59, 58, 91] in their subsequent work) crucially rely on the complete

integrability of (DNLS). In the case σ < 1, the main difficulties are reversed. Establishing

local well-posedness is difficult because of the lack of decay and roughness of the nonlinear-

ity. On the other hand, one expects to be able to easily propagate any reasonable H1 local

well-posedness theory in time to obtain a global result. This is because when σ < 1 the

problem becomes L2 subcritical, and one expects to be able to use the conserved energy and

mass of the problem to control the H1 norm of a solution.

Another motivation for (gDNLS) is the rich family of soliton solutions, which is actually

where the majority of [102]’s efforts were focused. Assuming a suitable H1 well-posedness

theory, the authors of [102] were able to use the abstract theory of Grillakis, Shatah and

Strauss [49, 50] to investigate the orbital stability of the solitons. However, an H1 well-

posedness theory for σ < 1 had not been known until now.

When σ < 1, one can view (gDNLS) as a prototypical model for a quasilinear dispersive
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equation with a rough, low power nonlinearity (see [99] for a KdV analogue). Such non-

linearities in the context of semilinear NLS type equations are becoming increasingly well-

understood [21, 154], and at modest regularity local well-posedness can usually be proven by

a combination of regularization and perturbative arguments. However, the combination of

derivative and low power coefficient in the nonlinearity of (gDNLS) causes many interesting

technical issues, several of which are yet to be fully understood. One issue for low regularity

well-posedness is that the coefficient |u|2σ in the nonlinearity is less than quadratic in order.

Because of this, the smoothing properties of the linear part of the Schrödinger equation are

seemingly not strong enough to directly compensate for the apparent derivative loss which

occurs because of the ux term in the nonlinearity. Another tool to avoid derivative loss -

which has been successfully employed in the case σ > 1 in [57, 64] - is a gauge transforma-

tion. This technique allows one to re-normalize the equation to effectively remove the worst

interactions in the derivative nonlinearity. However, again, it seems one can only directly

apply this method when σ ≥ 1 (i.e. |u|2σ is of quadratic order or higher), as in the case σ < 1

negative powers of |u| eventually appear in the analysis. This is related to the roughness

of the nonlinearity, and will be elaborated on further when we outline the proof of our results.

To contrast, the Benjamin-Ono equation, ut +Huxx = uux,

u(0) = u0,
(4.1.1)

has a similar low power derivative nonlinearity uux, and as with (gDNLS), the linear part

of the equation does not have strong enough smoothing properties to directly compensate

for the derivative loss in the nonlinearity. Nevertheless, H1 well-posedness for this equation

was established several years ago in [149]. One should note, however, that the Benjamin-

Ono nonlinearity has a much nicer algebraic structure than that of (gDNLS) (it is smooth

and multilinear), which makes the equation more amenable to normal form type techniques

(such as cubic corrections or a gauge transformation). Moreover, Christ [26] showed that

Schrödinger’s equation with Benjamin-Ono’s nonlinearity is ill-posed in any reasonable sense,

so the analogies between these equations are at best heuristic. For (gDNLS), our solution to

the above difficulties will be to introduce a family of partial gauge transformation adapted

to each dyadic frequency scale and the corresponding paradifferential flow - which removes

the portion of the nonlinearity which is large in a pointwise sense, on a scale which is bal-

anced against the corresponding frequency localization scale of the nonlinearity. This will

then be combined with smoothing and maximal function type arguments to attain the H1
x
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well-posedness threshold.

Another novel issue in the study of (gDNLS) is that the nonlinearity has only a finite

degree of Hölder regularity, and so one does not expect to be able to construct smooth solu-

tions from regular data. In our case, the nonlinearity is only C1,2σ−1 Hölder continuous. We

expect therefore to only be able to differentiate the equation with respect to some parameter

“2σ times” to obtain estimates. To maximize the potential regularity of solutions, we note

that the scaling of the Schrödinger equation suggests that we can convert L2
x based estimates

for one time derivative of a solution to estimates for two spatial derivatives. Therefore, it is

advantageous to differentiate (gDNLS) in time rather than in space, and then convert time

derivative estimates into estimates for spatial derivatives of a solution. After a single time

differentiation, we are left with 2σ− 1 degrees of regularity on the nonlinearity. By working

with fractional space derivatives, one expects to be able to prove an energy estimate for the

H1+2σ
x norm of a solution. However, working with fractional time derivatives (after suitably

localizing in time), one expects to improve this further, and prove well-posedness in Hs
x up

to s = 2 · 1 + 2 · (2σ − 1) = 4σ. A similar heuristic argument applies to any dispersion gen-

eralized equation with rough nonlinearity, where one can convert time derivative estimates

into estimates on a certain number of spatial derivatives, perhaps modulo some perturbative

terms coming from the nonlinearity. In general, we expect this heuristic to give rather sharp

results, but this is not even known for semilinear NLS equations with rough nonlinearities

[21, 154], and is essentially unexplored in the quasilinear setting.

Finally, let u recall some basic symmetry properties of (gDNLS) as well as some conser-

vation laws, which we will use to propagate our local well-posedness result to a global one.

First, we have the scaling transformation

u(t, x) 7→ uλ(t, x) := λ
1
2σu(λ2t, λx), λ > 0,

which makes the critical Sobolev index sc = 1
2
− 1

2σ
. In particular, the problem is L2

subcritical when σ < 1. Moreover, (gDNLS) admits the following conserved quantities:

M(u) =
1

2

∫
R
|u|2dx, (4.1.2)

P (u) =
1

2
Re

∫
R
iuuxdx, (4.1.3)

E(u) =
1

2

∫
R
|ux|2dx+

1

2(σ + 1)
Re

∫
R
i|u|2σuuxdx, (4.1.4)
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which are the mass, momentum and energy, respectively. Unlike the standard NLS, (DNLS)

doesn’t enjoy the Galilean invariance nor the pseudo-conformal invariance symmetries, the

latter being relevant for avoiding blowup. We also note that a simple change of variables

allows us to change the sign of the nonlinearity in (gDNLS) and arrive at

i∂tu+ ∂2xu+ i|u|2σ∂xu = 0. (4.1.5)

This latter equation is more common in the study of the solitary waves of (gDNLS).

Results

The main result of this chapter is global well-posedness of (gDNLS) in Hs(R) when
√
3
2
<

σ < 1 and s ∈ [1, 4σ). However, we divide this theorem into a “low-regularity” part and a

“high-regularity” part, to maximize the range of σ. The high-regularity result is as follows:

Theorem 4.1.1. (High-Regularity) Let 1
2
< σ < 1 and let 2− σ < s < 4σ. Then (gDNLS)

is locally well-posed in Hs(R).

As mentioned, for a restricted range of σ, we can lower the well-posedness threshold down

to H1, where the conserved energy also gives global well-posedness:

Theorem 4.1.2. Let
√
3
2
< σ < 1 and let 1 ≤ s < 4σ. Then (gDNLS) is globally well-posed

in Hs(R).

Remark 4.1.3. As a special case, Theorem 4.1.1 shows in particular that we have local

well-posedness in Hs for 3
2
≤ s ≤ 2. Therefore, we recover the only previously known local

well-posedness results for (gDNLS) when σ < 1; namely, we recover the H2 result of [64] and

improve the result of [136], which used weighted Sobolev spaces.

Remark 4.1.4. In both Theorem 4.1.1 and Theorem 4.1.2, well-posedness is to be in-

terpreted in the usual quasilinear fashion, including existence, uniqueness and continuous

dependence on the data. More specifically, given an appropriate Sobolev index s and time

T > 0, we first build a function space Xs
T that continuously embeds into C([−T, T ];Hs

x). We

then show that for each u0 ∈ Hs
x there exists a unique solution u to (gDNLS) that lies in Xs

T

and satisfies u(t = 0) = u0. Finally, we show that the data to solution map is continuous,

even as a map from Hs
x to the stronger topology Xs

T .

Remark 4.1.5. Since (DNLS) is known to be globally well-posed in H
1
2 , one may wonder

why we only consider Hs well-posedness when s ≥ 1. This is, in fact, not necessary. For
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each σ ∈ (
√
3
2
, 1), we expect that technical modifications of our proof should establish Hs

well-posedness of (gDNLS) in a range s ∈ [l(σ), 4σ) with l(σ) < 1 and l(σ) → 1
2
as σ → 1.

We avoid doing this for the sake of simplicity. It remains an open problem to prove well/ill-

posedness in H
1
2 for any 1

2
< σ < 1, and to find the smallest σ ∈ (0, 1) such that (gDNLS)

is well-posed in H1.

History on well-posedness and solitons

There is a vast literature devoted to the well-posedness of (DNLS), as it took several decades

for the regularity to approach current thresholds, and for global results to emerge. We

begin our review with the work of Tsutsumi and Fukuda [152, 153] who studied the well-

posedness in Hs(R) for s > 3
2
by classical energy methods and parabolic regularization. The

well-posedness in H1(R) was reached by Hayashi [65] by applying a gauge transformation

to overcome the derivative loss, and Strichartz estimates to close a-priori estimates. The

H1(R)-solution was shown to be global by Hayashi and Ozawa [66], as long as the initial

data satisfies ∥u0∥2L2 < 2π. Later, Wu [162] improved this global result by relaxing the small-

ness condition to ∥u0∥2L2 < 4π, which is natural in view of the soliton structure.

Below the energy space, there are also many results for (DNLS). Takaoka [144] proved

local well-posedness in Hs(R) when s ≥ 1
2
by the Fourier restriction method. This was com-

plemented by a result of Biagioni and Linares [13] which notes that the solution map from

Hs(R) to C([−T, T ];Hs(R)) cannot be locally uniformly continuous when s < 1
2
. By using

the I-method, Colliander, Keel, Staffilani, Takaoka and Tao [31, 30] proved that the Hs(R)-
solution is global if s > 1

2
and ∥u0∥2L2 < 2π. Guo and Wu [54] were later able to strengthen

this result by proving that H
1
2 (R)-solutions are global if ∥u0∥2L2 < 4π. For an incomplete list

of well-posedness results for (DNLS) on the torus, see [63, 121] and references therein.

There are also many works that use the complete integrability of the (DNLS) equation.

The breakthrough result is [10], which establishes global well-posedness in H
1
2 (R). However,

[10] was preceded by many results - see, e.g., [77, 126, 127] - highlights of which include a

global well-posedness result in the weighted Sobolev space H2,2(R), and progress towards the

soliton resolution conjecture. Moreover, although H
1
2 regularity is necessary for uniform con-

tinuity of the solution map, [59, 58, 91] are able to lower the global well-posedness threshold

all the way to the critical Sobolev space L2, definitively resolving the well-posedness theory

for (DNLS) on the line. On the other hand, blowup for (DNLS) on non-standard domains
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(for example, the half-line with the Dirichlet boundary condition) is known to be possible

[146, 161].

For (gDNLS), the literature on well-posedness is also quite large, though the results are

far less definitive. As mentioned, (gDNLS) was popularized by [102], though well-posedness

was not considered in that article. Possibly the first well-posedness result was by Hao, who

in [57] was able to prove local well-posedness in H
1
2 (R) intersected with an appropriate

Strichartz space for σ ≥ 5
2
. Ambrose and Simpson [8] proved the existence and uniqueness

of solutions u ∈ C([0, T );H2(T)) and the existence of solutions u ∈ L∞([0, T ), H1(T)) for

σ ≥ 1. The uniqueness of H1(T)-solutions was left unresolved, as the proof uses a com-

pactness argument. Existence and uniqueness in H
1
2 (R) was proved by Santos in [136] for

σ > 1, by utilizing global smoothing and maximal function estimates. A result in weighted

Sobolev spaces was also proved in [136] for the case 1
2
< σ < 1, as adding weights helps

compensate for the low power in the nonlinearity. In terms of Hs(R) spaces, [64] proves

local well-posedness in H2 when σ ≥ 1
2
, local well-posedness in H1 when σ ≥ 1, existence

of weak solutions when σ < 1, and certain unconditional uniqueness results at high regular-

ity. See [120] for more on unconditional uniqueness. The (gDNLS) equation with extremely

rough nonlinearities 0 < σ < 1
2
is studied in [98, 100], but not in standard Sobolev spaces Hs.

We now turn to the history on stability of solitons. This is also a vast subject, and

(gDNLS) is not the only generalization of (DNLS) whose solitons have been considered. For

the sake of unification, therefore, let us consider the equation

i∂tu+ ∂2xu+ i|u|2σ∂xu+ b|u|4σu = 0, x ∈ R, (4.1.6)

which is just a Schrödinger equation with a scale-invariant combination of derivative and

power nonlinearities. Direct calculation verifies that the soliton solutions of (4.1.6) are given

by

uω,c(t, x) = eiωtϕω,c(x− ct)

where

ϕω,c(x) = Φω,c(x)e
iθω,c(x), θω,c(x) =

c

2
x− 1

2σ + 2

∫ x

−∞
Φω,c(y)

2σdy,

and, using the notation γ = 1 + (2σ+2)2

2σ+1
b, the real-valued function Φω,c is given by
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Φω,c(x)
2σ =



(σ + 1)(4ω − c2)√
c2 + γ(4ω − c2) cosh (σ

√
4ω − c2x)− c

γ > 0, −2
√
ω < c < 2

√
ω,

2(σ + 1)c

(σcx)2 + γ
γ > 0, c = 2

√
ω,

(σ + 1)(4ω − c2)√
c2 + γ(4ω − c2) cosh (σ

√
4ω − c2x)− c

γ ≤ 0,

− 2
√
ω < c < −2

√
−γ/(1− γ)

√
ω.

These solitons are, of course, related to the Hamiltonian structure of (4.1.6), as well as to

the conservation of mass, energy and momentum, which we leave to the reader to compute.

As expected, the story on soliton stability for (4.1.6) begins with the (DNLS) equation.

Indeed, in [51], Guo and Wu proved that the soliton solutions of (DNLS) are orbitally stable

when ω > c2

4
and c < 0 by applying the abstract theory of Grillakis, Shatah, and Strauss [49,

50]. Colin and Ohta [29] removed the condition c < 0 and proved that uω,c is orbitally stable

when ω > c2

4
by applying the variational characterization of solitons as in Shatah [138]. The

endpoint case c = 2
√
ω is only partially resolved; progress was made by Kwon and Wu in

[94], but with certain caveats, such as a non-standard definition of orbital stability. For the

study of periodic travelling waves, we refer to [23, 56, 60, 63] and references therein.

For (gDNLS), the story on soliton stability is much richer. In [102] it was shown that

the solitary waves uω,c are orbitally stable if −2
√
ω < c < 2z0

√
ω, and orbitally unstable if

2z0
√
ω < c < 2

√
ω when 1 < σ < 2. Here the constant z0 = z0(σ) ∈ (−1, 1) is the solution

to

Fσ(z) := (σ − 1)2
(∫ ∞

0

(cosh y − z)−
1
σ dy

)2

−
(∫ ∞

0

(cosh y − z)−
1
σ
−1(z cosh y − 1)dy

)2

= 0.

Moreover, [102] proves that all solitary waves with ω > c2

4
are orbitally unstable when σ ≥ 2

and orbitally stable when 0 < σ < 1. As mentioned previously, these results are conditional

on an appropriate well-posedness theory; there is also a minor numerical portion to the proof.

In the borderline case when c = 2z0
√
ω and 1 < σ < 2, Fukaya ([44], see also [53]) proved or-

bital instability of the solitons. This completes the study of orbital stability of the solitons of

(gDNLS), except in the case of the algebraic soliton, which requires special attention [52, 97].
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In the case σ = 1, b ̸= 0, there are also many works on soliton stability for (4.1.6),

e.g. [29, 45, 63, 62, 61, 122, 123, 124]. On the other hand, there are no results in the

case σ ̸= 1, b ̸= 0, as it seems the explicit formulas for the solitons were not previously

known. We also mention that from the point of view of low regularity well-posedness, the

additional term b|u|4σu in (4.1.6) is both perturbative and maintains scaling, so in our usual

range
√
3
2
< σ < 1 our proof can easily be modified to establish global well-posedness in

H1, regardless of the size or sign of b. To contrast, recall that the known proof of global

well-posedness in the case σ = 1, b = 0 is rather delicate; global well-posedness could, in

principle, fail to persist once the effect of the focusing NLS is added. For state of the art

global results when σ = 1, b ̸= 0 we mention [63], which establishes global well-posedness

below the soliton thresholds. In particular, (4.1.6) in the case σ = 1, b ≤ − 3
16

has been

known to be globally well-posed for some time now, as at this point the energy becomes

coercive, after a suitable gauge transformation.

Outline of the proofs

Here, we outline the key ideas in the proof of Theorem 4.1.1 and Theorem 4.1.2. We begin

with a discussion of the low-regularity argument. Before describing the proof, however, it

is instructive to discuss why the gauge transformation used in [64] combined with standard

Strichartz estimates will not work. The following discussion is mostly heuristic and for the

purpose of motivation only.

Firstly, by a standard energy estimate, one obtains for (regular enough) solutions to (gDNLS),

∥u∥L∞
T H1

x
≲ ∥u0∥H1

x
exp

(∫ T

0

∥u∥2σ−1
L∞
x

∥ux∥L∞
x

)
. (4.1.7)

Therefore, one expects to be able to prove suitable H1 bounds for solutions to (gDNLS)

as long as one can estimate the Strichartz norm, ∥ux∥L1
TL

∞
x
. However, applying Strichartz

estimates directly to (gDNLS) leads to a loss of a derivative. Therefore, one might näıvely

try to do some sort of gauge transformation to remove the |u|2σux term in the equation,

which is responsible for this loss. Indeed, if one (formally) defines

Φ(t, x) = −1

2

∫ x

−∞
|u|2σdy (4.1.8)

and then

w = eiΦu, (4.1.9)
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this leads to an equation for w of the form

iwt + ∂2xw = (−∂tΦ + i∂2xΦ− (∂xΦ)
2)w. (4.1.10)

At first glance, it looks like one can prove Strichartz estimates for wx without losing deriva-

tives, to obtain the corresponding bound for ∥ux∥L1
TL

∞
x
. Unfortunately, if we expand ∂tΦ, we

get

∂tΦ = −σ
∫ x

−∞
Re(|u|2σ−2uut)dy

= −σ
∫ x

−∞
Re(|u|2σ−2ui∂2xu)dy − σ

∫ x

−∞
Re(|u|4σ−2uux)dy.

(4.1.11)

The first term above is problematic. To avoid losing derivatives, we are forced to integrate

by parts off one derivative. However, since |u|2σ−2u is not C1 when σ < 1, this will inevitably

introduce negative powers of u, so this approach will not work.

While the above calculations are not particularly useful for closing low-regularity estimates,

they do clearly identify the main enemies in trying to close Strichartz estimates for the gauge

transformed equation. That is, the portion of u which is small or vanishes will prevent us

from closing Strichartz estimates for w. Therefore, it is natural to try to somehow perform a

gauge transformation which only removes some portion of the derivative nonlinearity |u|2σux,
which corresponds to a part of u for which u is bounded away from zero. Doing this is some-

what subtle. We can’t simply fix a universal constant ε > 0, and remove the portion of the

nonlinearity for which |u| > ε. This is because when the ux factor in |u|2σux is at very high

frequency (compared to ε), we will still lose derivatives in the Strichartz estimate. To work

around this issue, we perform a paradifferential expansion of the equation. That is, for each

j > 0, we project onto frequencies of size ∼ 2j and obtain

(i∂t + ∂2x)Pju = iP<j−4|u|2σPjux + gj (4.1.12)

where gj is a perturbative term. The idea now is to split the coefficient P<j−4|u|2σ =

P<j−4|us|2σ + P<j−4|ul|2σ, where ul corresponds to the portion of u which is bounded away

from zero (where the lower bound depends on the frequency parameter j), and us is the

remaining portion of u which is bounded above by some small j dependent parameter. We

then try to do a gauge transformation by defining

Φj = −1

2

∫ x

−∞
P<j−4|ul|2σdy (4.1.13)
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and

wj = eiΦjPju. (4.1.14)

This leads to an equation for wj of the form,

(i∂t + ∂2x)wj = (−∂tΦj + i∂2xΦj − (∂xΦj)
2)wj + eiΦjgj + ieiΦjP<j−4|us|2σPjux. (4.1.15)

The point now is that the negative powers of u that arise in the ∂tΦj term are bounded

above by some parameter depending on the frequency scale 2j. To avoid derivative loss, we

would like this parameter to be as small as possible (i.e. ul should be bounded below by a (j

dependent) constant which is as large as possible). However, we still have to contend with

the remainder of the original derivative nonlinearity, ieiΦjP<j−4|us|2σPjux, which is expected

to cause derivative loss unless us is sufficiently small (depending on j). Therefore, we have to

compromise between potential losses incurred by the ∂tΦj term, and the remaining derivative

nonlinearity. Unfortunately, by optimizing the appropriate splitting of u, it turns out that

we will still lose 1−σ derivatives in estimating the Strichartz norm ∥ux∥L1
TL

∞
x
, and therefore,

one only expects to be able to control ∥ux∥L1
TL

∞
x

by ∥u∥L∞
T H2−σ

x
. As mentioned, while this

is certainly an improvement over previous results [64, 136], this method is not quite robust

enough to get well-posedness down to the energy space.

To get H1 well-posedness, we combine this modified gauge transformation (and Strichartz

estimates) with smoothing and maximal function type estimates, as in Propositions 4.2.3

and 4.2.4. However, we modify these Strichartz and maximal function norms (see the defi-

nition of Y s
T below) to reflect the loss of 1− σ derivatives compared to the L∞

T H
1
x norm, as

mentioned above. That is, we build this deficiency into the function spaces where we con-

struct solutions. In particular, the Strichartz (L1
TL

∞
x ) component of the norm involves no

more than σ derivatives. Therefore, the energy estimate (4.1.7) described above is no longer

appropriate to close a priori estimates in H1. Hence, the energy estimate has to be modified

accordingly so that the control parameter (i.e. the Strichartz component) does not lead to a

loss of derivatives (in excess of the H1 norm) in the Strichartz/maximal function component

of the estimate. It is actually this part of the argument that leads to the restriction on σ,

which we will elaborate on later.

Next, we outline the proof of the high regularity well-posedness. As mentioned previously,

the C1,2σ−1 Hölder regularity of the function z 7→ |z|2σ effectively limits the number of times

one can differentiate the equation to obtain Hs estimates. A direct energy estimate, which
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involves differentiating the equation s times in the spatial variable (i.e. applying Ds
x to the

equation) limits the range for which one can obtain estimates to s ≤ 2σ. In [64], the authors

managed to bypass this issue in the case s = 2 by instead obtaining an L2
x energy estimate

for the time derivative ∂tu. The point is that doing this only requires one to differentiate the

nonlinearity a single time. Once an appropriate L2
x estimate is obtained, H2

x energy estimates

for the solution can then be obtained by observing that up to an error of size O(∥u∥2σ+1
L∞
T H1

x
),

the equation gives,

∥(∂2xu)(t)∥L2
x
∼ ∥(∂tu)(t)∥L2

x
. (4.1.16)

In this thesis, we generalize this approach to derivatives of fractional order. It turns out that

(after suitably localizing a solution in time), one can morally obtain an estimate (up to a

suitable error term) essentially of the form

∥D
s
2
t u∥L∞

T L2
x
∼ ∥Ds

xu∥L∞
T L2

x
(4.1.17)

where 1 < s < 4σ. The main idea for proving this estimate is a modulation type analysis.

Namely, when the space-time Fourier transform of a solution u (after suitably localizing in

time) is supported close to the characteristic hypersurface (or in the low modulation region),

τ = −ξ2, one expects to be able to directly compare D
s
2
t u and Ds

xu. On the other hand,

when the space-time Fourier transform is supported far away from the hypersurface (or in

the high modulation region), one expects to be able to control D
s
2
t u and Ds

xu in L2
x by a

lower order error term stemming from the nonlinearity of the equation. This latter high

modulation control can be loosely thought of as a space-time elliptic estimate.

With a method for suitably comparing space and time derivatives of a solution in hand,

it then essentially suffices to obtain an energy estimate for D
s
2
t u when u is localized near

the characteristic hypersurface (which is precisely where one expects to be able to compare

D
s
2
t u to Ds

xu). Therefore, in light of the C1,2σ−1 regularity of the nonlinearity, we should

be able to obtain Hs
x estimates for a solution as long as s

2
< 2σ. This explains the upper

threshold of 4σ for our result. As hinted at earlier, the lower threshold of 2− σ is explained

by the fact that such an energy estimate closes as long as one can control ∥ux∥L1
TL

∞
x
. Our

low regularity estimates allow us to control this term by the L∞
T H

s
x norm of u, as long as

s > 2 − σ, where σ lies in the full range (1
2
, 1). This should be contrasted with the H1

case where we employ a more complicated functional setting and only deal with a restricted

range of σ. For clarity, we have chosen to present our high regularity results in the simplest

possible functional setting, which is why the lower bound of 2−σ appears in Theorem 4.1.1,
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as it comes naturally from our previous estimates. Since 2 − σ < 3
2
when σ > 1

2
, this is

a reasonable lower threshold for the high regularity result (as it encompasses the range for

which ∥ux∥L1
TL

∞
x

can be controlled by Sobolev embedding). Nonetheless, we emphasize that

the main novelty in Theorem 4.1.1 is the upper threshold s < 4σ.

4.2 Preliminaries

In this section we settle notation and recall some standard tools.

Littlewood-Paley decomposition

First, we recall the standard Littlewood-Paley decomposition. For this, let ϕ0 be a radial

function in C∞
0 (R) that satisfies

0 ≤ ϕ0 ≤ 1, ϕ0(ξ) = 1 for |ξ| ≤ 1, ϕ0(ξ) = 0 for |ξ| ≥ 7

6
.

Let ϕ(ξ) := ϕ0(ξ)− ϕ0(2ξ). For j ∈ Z, define

P̂≤jf(ξ) = ϕ0(2
−jξ)f̂(ξ),

P̂jf(ξ) = ϕ(2−jξ)f̂(ξ).

We will denote P>j = I−P≤j, where I is the identity. Similarly, we define P[a,b] =
∑

a≤j≤b Pj.

We will also use the notation P̃j, P̃<j, P̃>j to denote a slightly enlarged or shrunken frequency

localization. For example, we may denote P[j−3,j+3] by P̃j.

Next, we recall a useful bookkeeping device. Following [73, 147], we denote by L(ϕ1, . . . , ϕn)

a translation invariant expression of the form

L(ϕ1, . . . , ϕn)(x) =

∫
K(y)ϕ1(x+ y1) · · ·ϕn(x+ yn)dy,

where K ∈ L1. Of interest is the following Leibniz type rule from [73, 147] which will make

certain commutator expressions simpler to estimate:

Lemma 4.2.1. (Leibniz rule for Pj). We have the commutator identity

[Pj, f ]g = L(∂xf, 2
−jg). (4.2.1)
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Frequency envelopes

One way we will employ the Littlewood-Paley projections is to define frequency envelopes,

which are another nice bookkeeping device introduced by Tao [147]. To define these, suppose

we are given a Sobolev type space X such that

∥P≤0u∥2X +
∞∑
j=1

∥Pju∥2X ∼ ∥u∥2X . (4.2.2)

A frequency envelope for u in X is a positive sequence (aj)j∈N0 such that

∥P≤0u∥X ≲ a0∥u∥X , ∥Pju∥X ≲ aj∥u∥X ,
∞∑
j=0

a2j ≲ 1. (4.2.3)

We say that a frequency envelope is admissible if a0 ≈ 1 and it is slowly varying, meaning

that

aj ≤ 2δ|j−k|ak, j, k ≥ 0, 0 < δ ≪ 1.

An admissible frequency envelope always exists, say by

aj = 2−δj + ∥u∥−1
X max

k≥0
2−δ|j−k|∥Pku∥X . (4.2.4)

In (4.2.4) - and in the definitions of the Xs
T and Hs

x frequency envelope formulas defined

later - there is a slight notational conflict, and P0u should really be interpreted as P≤0u.

Remark 4.2.2. Frequency envelopes will be particularly convenient for expediting the proof

of continuous dependence later on.

Strichartz and maximal function estimates

Next we recall some standard linear estimates for the Schrödinger equation on the line,

which will play a key role in our analysis. We begin with the relevant maximal function and

Strichartz estimates for the linear Schrödinger flow:

Proposition 4.2.3. (Homogeneous Strichartz and maximal function estimates) For v ∈
S(R), θ ∈ [0, 1] and T ∈ (0, 1), we have for j > 0

∥eit∂2xv∥
L

4
θ
T L

2
1−θ
x

≲ ∥v∥L2 ,

∥eit∂2xPjv∥
L

2
1−θ
x L

2
θ
T

≲ 2j(
1
2
−θ)∥v∥L2 .

(4.2.5)
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Proof. See [89, Lemma 3.1].

We will also need the inhomogeneous versions of these estimates. Here Ds
x := |∂x|s,

⟨Dx⟩s := (1 + |∂x|2)
s
2 , and |∂x| := H∂x where H is the Hilbert transform, Ĥu = −isgn(ξ)û.

We further note that both Propositions 4.2.3 and 4.2.4 hold for j = 0, with the interpretation

P0 = P≤0.

Proposition 4.2.4. (Inhomogeneous Strichartz and maximal function estimates) For f ∈
S(R2), θ ∈ [0, 1] and T ∈ (0, 1), we have for j > 0∥∥∥∥∫ t

0

ei(t−s)∂
2
xf(s)ds

∥∥∥∥
L

4
θ
T L

2
1−θ
x

≲ ∥f∥
L
( 4
θ
)′

T L
( 2
1−θ

)′
x

,∥∥∥∥⟨Dx⟩
θ
2

∫ t

0

ei(t−s)∂
2
xf(s)ds

∥∥∥∥
L∞
T L2

x

≲ ∥f∥
L
p(θ)
x L

q(θ)
T
,∥∥∥∥D 1+θ

2
x

∫ t

0

ei(t−s)∂
2
xf(s)ds

∥∥∥∥
L∞
x L2

T

≲ ∥f∥
L
p(θ)
x L

q(θ)
T
,∥∥∥∥⟨Dx⟩

θ
2

∫ t

0

ei(t−s)∂
2
xPjf(s)ds

∥∥∥∥
L2
xL

∞
T

≲ 2
j
2∥f∥

L
p(θ)
x L

q(θ)
T
,∥∥∥∥∫ t

0

ei(t−s)∂
2
xPjf(s)ds

∥∥∥∥
L

2
1−θ
x L

2
θ
T

≲ 2j(
1
2
−θ)∥f∥L1

TL
2
x
,

(4.2.6)

where

1

p(θ)
=

3 + θ

4
,

1

q(θ)
=

3− θ

4
. (4.2.7)

Proof. See [89, Lemma 3.4 and Remark 3.7].

The following fractional Leibniz rules will also be useful for some of the following esti-

mates:

Proposition 4.2.5. Let α ∈ (0, 1), α1, α2 ∈ [0, α], p, p1, p2, q, q1, q2 ∈ (1,∞) satisfy α1+α2 =

α and 1
p
= 1

p1
+ 1

p2
, 1
q
= 1

q1
+ 1

q2
. Then

∥Dα
x (fg)−Dα

xfg − fDα
xg∥Lp

xL
q
T
≲ ∥Dα1

x f∥Lp1
x L

q1
T
∥Dα2

x g∥Lp2
x L

q2
T
. (4.2.8)

The endpoint cases q1 = ∞, α1 = 0 as well as (p, q) = (1, 2) are also allowed.

Proof. See [85, Lemma 2.6] or [89, Lemma 3.8].

Another variant of the fractional Leibniz rule for Lpx spaces is as follows:
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Proposition 4.2.6. Let α ∈ (0, 1), α1, α2 ∈ (0, α) and p ∈ [1,∞), 1 < p1, p2 < ∞ satisfy

α1 + α2 = α and 1
p
= 1

p1
+ 1

p2
. Then

∥Dα
x (fg)−Dα

xfg − fDα
xg∥Lp

x
≲ ∥Dα1

x f∥Lp1
x
∥Dα2

x g∥Lp2
x
. (4.2.9)

The endpoint case α2 = 0, 1 < p2 ≤ ∞ is also allowed if p > 1.

Proof. See [85, Lemma 2.6].

Next, we need a vector-valued Moser type estimate which will be convenient when deriva-

tives fall on |u|2σ.

Proposition 4.2.7. Let F ∈ C1(C). Let α ∈ (0, 1), p, q, p1, p2, q2 ∈ (1,∞) and q1 ∈ (1,∞]

with
1

p
=

1

p1
+

1

p2
,

1

q
=

1

q1
+

1

q2
. (4.2.10)

Then

∥Dα
xF (u)∥Lp

xL
q
T
≲ ∥F ′(u)∥Lp1

x L
q1
T
∥Dα

xu∥Lp2
x L

q2
T
. (4.2.11)

Proof. See Theorem A.6 of [88].

We also recall the scalar version of the above estimate,

Proposition 4.2.8. Let F ∈ C1(C), u ∈ L∞(R), α ∈ (0, 1), 1 < p, q, r <∞, and 1
r
= 1

p
+ 1

q
.

Then

∥Dα
xF (u)∥Lr ≲ ∥F ′(u)∥Lp∥Dα

xu∥Lq . (4.2.12)

Proof. See [25], Proposition 3.1.

We will also make use of not only the standard Bernstein estimates (see, for example,

[150, (A.2)-(A.6), page 333]) but the following vector-valued version:

Proposition 4.2.9. Let 1 ≤ p, q ≤ ∞, j > 0 and s ∈ R. Then we have

∥Ds
xPju∥Lp

xL
q
T
∼ 2js∥Pju∥Lp

xL
q
T
. (4.2.13)

Proof. Let P̃j have corresponding multiplier ϕ̃j, where, as in the preliminaries on Littlewood-

Paley theory, we have ϕ̃j(ξ) = ϕ̃(2−jξ). Notice that

Ds
x(P̃jPju) = (Ds

xF−1ϕ̃j) ∗ Pju.
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For each x, we have the inequality

∥Ds
xPju∥Lq

T
≤ |Ds

xF−1ϕ̃j| ∗ ∥Pju∥Lq
T
.

Hence, applying Lpx and Young’s inequality, we have

∥Ds
xPju∥Lp

xL
q
T
≤ ∥Ds

xF−1ϕ̃j∥L1
x
∥Pju∥Lp

xL
q
T
≲ 2js∥Pju∥Lp

xL
q
T
.

On the other hand,

2js∥Pju∥Lp
xL

q
T
= 2js∥D−s

x Ds
xPju∥Lp

xL
q
T
≲ ∥Ds

xPju∥Lp
xL

q
T
.

A useful lemma

Finally, we need a Hölder estimate, which we will use to extract all of the C1,2σ−1-regularity

that our nonlinearity offers. We will use this lemma, e.g., when derivatives fall on |u|2σ−2u,

or more generally on terms with regularity C0,α for 0 < α < 1.

To set notation, for α ∈ (0, 1] and 1 ≤ p ≤ ∞ define the Hölder space Λ̇pα(R) by

∥u∥Λ̇p
α
:= sup

|h|>0

∥u(·+ h)− u(·)∥Lp

|h|α
. (4.2.14)

This is just the usual homogeneous Hölder space Ċ0,α when p = ∞.

Lemma 4.2.10. Suppose that F ∈ Ċ0,α(C). Then for every 0 < β < α < 1, p ∈ [1,∞] with

αp ≥ 1, we have

∥F (u)∥Λ̇p
β
≲ ∥F∥Ċ0,α∥u∥α

W
β
α ,pα

. (4.2.15)

Proof. We have

|F (u(x+ h))− F (u(x))|
|h|β

=
|F (u(x+ h))− F (u(x))|

|u(x+ h)− u(x)|α

(
|u(x+ h)− u(x)|

|h| βα

)α

≤ ∥F∥Ċ0,α

(
|u(x+ h)− u(x)|

|h| βα

)α

.

(4.2.16)
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Hence,

∥F (u)∥Λ̇p
β
≤ ∥F∥Ċ0,α sup

|h|>0

∥

(
|u(x+ h)− u(x)|

|h| βα

)α

∥Lp

≤ ∥F∥Ċ0,α∥u∥αΛ̇pα
β
α

≲ ∥F∥Ċ0,α∥u∥α
W

β
α ,pα

(4.2.17)

where the last line follows from a standard embedding (c.f. [150, Exercise A.21]).

We also have the following very useful corollary of the above lemma which we will use

extensively.

Corollary 4.2.11. Suppose that F ∈ Ċ0,α(C) with F (0) = 0. Then for every 0 < β < α < 1,

p ∈ [1,∞] with αp ≥ 1 and ε ∈ (0, α− β), we have

∥F (u)∥Wβ,p ≲ε ∥F∥Ċ0,α∥u∥α
W

β
α+ε,pα

. (4.2.18)

Proof. This follows from the embedding (c.f. [150, Exercise A.21]),

∥F (u)∥Wβ,p ≲ε ∥F (u)∥Lp + ∥F (u)∥Λ̇p
β+αε

(4.2.19)

and Lemma 4.2.10 as well as the fact that

∥F (u)∥Lp ≲ ∥F∥Ċ0,α∥u∥αLpα . (4.2.20)

Remark 4.2.12. It is easy to see that F (z) = z|z|2σ−2 meets the hypothesis of the above

corollary (c.f. [47, Lemma 2.4]). The price to pay when using Corollary 4.2.11 is that there

is a sort of “loss of regularity” when derivatives fall on F (u) in the sense that a derivative

of order 0 < s < 2σ − 1 will be amplified by a factor of 1
2σ−1

.

4.3 Low regularity estimates

Now, we proceed with the proof of Theorem 4.1.2. By the scaling symmetry uλ(t, x) :=

λ
1
2σu(λ2t, λx), we see that the L2

x norm is subcritical with respect to scaling. Hence, we will

assume without loss of generality throughout that for some small 0 < ε≪ 1 the initial data

satisfies ∥u0∥Hs
x
≤ ε. We then will obtain local well-posedness on the time interval [−T, T ]

where T ≲ 1 is fixed.
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Function spaces

We now define the spaces where we seek solutions. To begin, we define our baseline Strichartz

type space Y 0
T via

∥u∥Y 0
T
:=

(∑
j>0

∥PjDσ−1
x u∥2L4

TL
∞
x

) 1
2

+

(∑
j>0

∥PjD
σ− 1

2
x u∥2L∞

x L2
T

) 1
2

+

(∑
j>0

∥PjD
σ− 3

2
x u∥2L2

xL
∞
T

) 1
2

+ ∥P≤0u∥L2
xL

∞
T
.

(4.3.1)

Then we define the space X0
T by:

∥u∥X0
T
:=

(∑
j>0

∥Pju∥2L∞
T L2

x

) 1
2

+ ∥P≤0u∥L∞
T L2

x
+ ∥u∥Y 0

T
. (4.3.2)

For higher Sobolev indices, s ≥ 0, we define the spaces Xs
T and Y s

T by

∥u∥Y s
T
:= ∥⟨Dx⟩su∥Y 0

T
, ∥u∥Xs

T
:= ∥⟨Dx⟩su∥X0

T
. (4.3.3)

One should observe that we trivially have ∥u∥C([−T,T ];Hs
x) ≤ ∥u∥Xs

T
.

Remark 4.3.1. One might wonder why the above Y s
T space is not defined in a more standard

way, where one replaces σ with 1. Indeed, one can see from the proof of the following

estimates that by using this stronger norm, one will incur a loss of 1−σ derivatives in excess

of the L∞
T H

s
x norm. The function spaces defined above account for this loss.

Finally, it will be convenient to define the weaker norm SsT which just involves the purely

Strichartz components of the Xs
T norm. Namely,

∥u∥Ss
T
= ∥P≤0u∥L∞

T L2
x
+

(∑
j>0

∥Pj⟨Dx⟩su∥2L∞
T L2

x

) 1
2

+

(∑
j>0

∥Pj⟨Dx⟩s−1+σu∥2L4
TL

∞
x

) 1
2

. (4.3.4)

The behavior of the S1
T norm will be relevant for continuing a local solution to a global one

when σ ∈ (
√
3
2
, 1) in both the low and high regularity regimes.

Xs
T frequency envelopes

It is easy to see that for s ≥ 0, we have

∥P≤0u∥2Xs
T
+

∞∑
j=1

∥Pju∥2Xs
T
∼ ∥u∥2Xs

T
. (4.3.5)
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Hence, for u ∈ Xs
T , we use bj to denote the Xs

T frequency envelope for u defined by

bj = 2−δj + ∥u∥−1
Xs

T
max
k≥0

2−δ|j−k|∥Pku∥Xs
T

(4.3.6)

where δ is some small, but fixed, positive parameter. Similarly, for v ∈ Hs
x, we use aj to

denote the Hs
x frequency envelope for v defined by

aj = 2−δj + ∥v∥−1
Hs

x
max
k≥0

2−δ|j−k|∥Pkv∥Hs
x
. (4.3.7)

Unless otherwise stated, Xs
T and Hs

x frequency envelopes will always be defined by the above

formulae.

Remark 4.3.2. In an identical fashion, one can also define SsT frequency envelopes.

Next, we state a technical lemma which will be useful for tracking the contributions of

the rough part of the nonlinearity in (gDNLS) when derivatives fall on it.

Lemma 4.3.3. (Moser type estimate) Let s ∈ [1, 3
2
], σ ∈ (1

2
, 1), 0 < T ≲ 1 and let bj be a

Xs
T frequency envelope for u. Write α = s − 1 + σ < 2σ. For j > 0, we have the following

Moser type estimate,

∥Dα
xPj|u|2σ∥L2

TL
∞
x
≲ bj∥u∥2σ−1

S1
T

∥u∥Xs
T
. (4.3.8)

Proof. There are two cases to consider. First assume α > 1. We have

∥Dα
xPj(|u|2σ)∥L2

TL
∞
x
≲ ∥PjDα−1

x (|u|2σ−2uux)∥L2
TL

∞
x

≲ ∥PjDα−1
x (P<j−4(|u|2σ−2u)ux)∥L2

TL
∞
x

+ ∥PjDα−1
x (P≥j−4(|u|2σ−2u)ux)∥L2

TL
∞
x
.

(4.3.9)

For the first term, we have by Bernstein,

∥PjDα−1
x (P<j−4(|u|2σ−2u)ux)∥L2

TL
∞
x
= ∥PjDα−1

x (P<j−4(|u|2σ−2u)P̃jux)∥L2
TL

∞
x

≲ 2j(α−1)∥u∥2σ−1
L∞
T L∞

x
∥P̃jux∥L2

TL
∞
x

≲ ∥u∥2σ−1
S1
T

∥Dα
x P̃ju∥L2

TL
∞
x

≲ bj∥u∥2σ−1
S1
T

∥u∥Xs
T
.

(4.3.10)

For the second term, we have for δ > 0 small (under the additional assumption that

2−δj ≲ bj)

∥PjDα−1
x (P≥j−4(|u|2σ−2u)ux)∥L2

TL
∞
x
≲ 2j(α−1)∥P≥j−4(|u|2σ−2u)ux∥L2

TL
∞
x

≲ 2j(α−1)∥P≥j−4(|u|2σ−2u)∥L4
TL

∞
x
∥ux∥L4

TL
∞
x

≲ bj∥Dα−1+δ
x (|u|2σ−2u)∥L4

TL
∞
x
∥ux∥L4

TL
∞
x

≲ bj∥Dα−1+δ
x (|u|2σ−2u)∥L4

TL
∞
x
∥u∥Xs

T
.

(4.3.11)
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It now suffices to show that

∥Dα−1+δ
x (|u|2σ−2u)∥L4

TL
∞
x
≲ ∥u∥2σ−1

S1
T

.

For this we fix ε > 0 small and invoke Corollary 4.2.11 and the fact that 2σ − 1 < 1,

∥Dα−1+δ
x (|u|2σ−2u)∥L4

TL
∞
x
≲T ∥⟨Dx⟩

α−1+δ+ε
2σ−1 u∥2σ−1

L4
TL

∞
x

≲ ∥u∥2σ−1
S1
T

(4.3.12)

where in the last line we take ε, δ small enough and used that α−1
2σ−1

< σ when s ∈ [1, 3
2
] and

σ ∈ (1
2
, 1).

This handles the case α > 1. Next, we assume 0 < α ≤ 1. For this, we write

Pj|u|2σ = Pj|P<ju|2σ + Pj(|u|2σ − |P<ju|2σ). (4.3.13)

We have for the first term,

∥Dα
xPj|P<ju|2σ∥L∞

x
≲ 2j(α−1)∥Pj(|P<ju|2σ−2P<juP<jux)∥L∞

x

≲ 2j(α−1)∥Pj(P<j−4(|P<ju|2σ−2P<ju)P̃jux)∥L∞
x

+ 2j(α−1)∥Pj(P≥j−4(|P<ju|2σ−2P<ju)P<jux)∥L∞
x

≲ ∥u∥2σ−1
L∞
x

∥P̃jDα
xu∥L∞

x
+ 2−jδ∥D2δ

x (|P<ju|2σ−2P<ju)∥L∞
x
∥Dα−1−δ

x ux∥L∞
x
.

(4.3.14)

Hence, by taking δ small enough, using Corollary 4.2.11, and the fact that 2−jδ ≲ bj, we

obtain

∥Dα
xPj|P<ju|2σ∥L2

TL
∞
x
≲T bj∥u∥2σ−1

S1
T

∥u∥Xs
T
. (4.3.15)

Next, we estimate

∥PjDα
x (|u|2σ − |P<ju|2σ)∥L2

TL
∞
x
≲ 2jα∥u∥2σ−1

L∞
T L∞

x

∑
k≥j

∥Pku∥L2
TL

∞
x

≲ ∥u∥2σ−1
S1
T

∥u∥Xs
T

∑
k≥j

2−α|k−j|bk

≲ bj∥u∥2σ−1
S1
T

∥u∥Xs
T

(4.3.16)

where in the last line, we used the slowly varying property of bj. This completes the proof.
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Remark 4.3.4. By repeating the proof almost verbatim, and taking bj instead to be a SsT
frequency envelope for u, we can modify the conclusion of the lemma to

∥Dα
xPj|u|2σ∥L2

TL
∞
x
≲ bj∥u∥2σ−1

S1
T

∥u∥Ss
T
. (4.3.17)

Remark 4.3.5. The ∥u∥2σ−1
S1
T

coefficient in the estimate (4.3.8) could be optimized in terms

of the parameters s and σ. We do not pursue this, for the sake of simplicity and also because

it does not improve any of the later estimates in an important way.

Uniform bounds

In this subsection, we prove a priori estimates for solutions to (gDNLS). First, we prove

uniform Xs
T bounds:

Proposition 4.3.6. Let 0 < ε≪ 1, s ∈ [1, 3
2
], σ ∈ (

√
3
2
, 1) and let u0 ∈ Hs

x with ∥u0∥Hs
x
≤ ε.

Let T ≲ 1. Suppose u ∈ Xs
T solves the equation, (i∂t + ∂2x)u = i|u|2σ∂xu,

u(0) = u0.
(4.3.18)

Furthermore, let aj and bj be a Hs
x and Xs

T frequency envelope for u0 and u (on the time

interval [0, T ]), respectively, as defined in Section 4.3. Then we have the following Xs
T esti-

mates for j > 0,

a) (Frequency localized Xs
T bound)

∥Pju∥Xs
T
≲∥u∥

S1
T

aj∥u0∥Hs
x
+ T

1
2 bj(1 + ∥u∥4σS1

T
)∥u∥Xs

T
+ T

1−σ
2 bj∥u∥σX1

T
∥u∥Xs

T
. (4.3.19)

b) (Uniform Xs
T bound)

∥u∥Xs
T
≲∥u∥

X1
T

∥u0∥Hs
x
≤ ε. (4.3.20)

We will also need the following result:

Proposition 4.3.7. Let 0 < ε ≪ 1 and σ, T and s be as in Proposition 4.3.6. Suppose

v ∈ X0
T is a solution to the equation, (i∂t + ∂2x)v = i|w|2σ∂xv + g∂xav + g∂xav,

v(0) = v0,
(4.3.21)
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for some w ∈ X1
T solving (gDNLS) (with possibly different initial data), g ∈ Z := ZT :=

L
2

2σ−1
x L∞

T ∩L∞
T W

3
4σ

− 1
2
+ε,∞

x ∩L4
TW

3
2
−σ+ε,∞

x and a ∈ X1
T , all with sufficiently small norm ≪ 1.

Then v satisfies the bound

∥v∥X0
T
≲ ∥v0∥L2 . (4.3.22)

Remark 4.3.8. In practice g will correspond to terms which are of similar regularity to

the term |u|2σ−1. For such terms to lie in Z (specifically the latter two components of this

norm), we will need σ >
√
3
2
. This will be elaborated on later in the proof.

Remark 4.3.9. Proposition 4.3.7 will be useful for establishing difference estimates for

solutions in the weaker topology, X0
T . This will allow us to show uniqueness for X1

T solutions,

and to prove a weak Lipschitz type bound for the solution map.

We begin with the proof of Proposition 4.3.6. We divide the relevant estimates into two

parts. First, we control the Y s
T component of the norm. Then we do an energy type estimate

to control the L∞
T H

s
x component. For this purpose, we have the following lemmas:

Lemma 4.3.10. (Y s
T estimate) Let s ∈ [1, 3

2
], σ ∈ (1

2
, 1) and let u, T , aj and bj be as in

Proposition 4.3.6. Then for j > 0 we have

∥Pju∥Y s
T
≲∥u∥

S1
T

aj∥u0∥Hs
x
+ T

1
2 bj(1 + ∥u∥4σS1

T
)∥u∥Xs

T
. (4.3.23)

Lemma 4.3.11. (L∞
T H

s
x estimate) Let s, σ, T, aj, bj and u be as in Proposition 4.3.6. Then

for j > 0 we have

∥Pju∥L∞
T Hs

x
≲ aj∥u0∥Hs

x
+ T

1−σ
2 bj∥u∥σX1

T
∥u∥Xs

T
. (4.3.24)

Proof. We begin with the proof of Lemma 4.3.10. For this purpose, let us apply Pj to (4.3.18)

and write

(i∂t + ∂2x)uj = iP<j−4|u|2σ∂xuj + gj (4.3.25)

where

gj = iPj(P≥j−4|u|2σ∂xu) + i[Pj, P<j−4|u|2σ]∂xu. (4.3.26)

The term

iP<j−4|u|2σ∂xuj (4.3.27)

which corresponds to the worst interactions between ∂xu and |u|2σ is non-perturbative, and

can lead to loss of derivatives in the Y s
T estimates for uj. It is desirable to remove as much
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of this bad interaction as possible. As mentioned earlier, one might try to remove it entirely

with a gauge transformation, but this will not work, because the function z 7→ |z|2σ is not

smooth enough. Fortunately, in some sense, formally, the worst terms introduced by a gauge

transformation are only poorly behaved when u is small (i.e. sufficiently close to 0). On the

other hand, if u is sufficiently small (on a scale depending on j), then we expect to be able to

treat the associated part of the term (4.3.27) perturbatively. One then expects to be able to

remove the other part (in which u is bounded away from zero) with a gauge transformation,

and gain some mileage.

With this strategy in mind, let φ be a smooth compactly supported function on R with

φ = 1 on the unit interval and zero outside (−2, 2). Likewise, define χ = 1−φ. We want to

tailor these functions to a particular frequency, which we do by defining the rescaled func-

tions φj(x) = φ(2jx) and χj(x) = χ(2jx). Next, we further rewrite (4.3.25) as the following

equation,

(i∂t + ∂2x)uj = iP<j−4[χj(|u|2)|u|2σ]∂xuj + iP<j−4[φj(|u|2)|u|2σ]∂xuj + gj. (4.3.28)

Remark 4.3.12. One might wonder whether one can modify the 2j scale in the definition

of φj to 2jα for some α > 0. It turns out that α = 1 is the optimal choice, as one can

ascertain from repeating the estimates below with this new parameter α. This optimization

is obtained by balancing the contributions from the terms I1j and I3j in the below estimates.

Now, we do a partial gauge transformation to remove iP<j−4[χj(|u|2)|u|2σ]∂xuj, which
corresponds to the part of (4.3.27) for which the coefficient |u|2σ is bounded below by 2−jσ.

Indeed, define

Φj(t, x) := −1

2
P<j−4∂

−1
x [χj(|u|2)|u|2σ] (4.3.29)

where

(∂−1
x f)(x) :=

∫ x

−∞
f(y)dy (4.3.30)

and then define

wj := uje
iΦj . (4.3.31)

Before proceeding, we need the following technical estimate which relates uj to wj.

Lemma 4.3.13. Let S refer to any of the four spaces, L∞
T L

2
x, L

∞
x L

2
T , L

2
xL

∞
T , or L4

TL
∞
x . Let

β ∈ (−1, 1) and 0 < ε≪ 1. Then for j > 0, we have

∥⟨Dx⟩βuj∥S ≲ε (1 + ∥u∥S1
T
)2σ(∥⟨Dx⟩βP̃jwj∥S + ∥⟨Dx⟩β−εwj∥S). (4.3.32)
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Remark 4.3.14. As a brief remark, the range on β accounts for (more than) the greatest

range of derivatives allowed in any component of the X1−σ
T norm, which will correspond to

the situation in which we apply the estimate. Strictly speaking, this is overkill, but it lets

us avoid dealing with several individual cases. Also, the β − ε factor in the second term in

the above estimate is to compensate for terms in which wj is not frequency localized. In

particular, later when applying Proposition 4.2.4, the ε will allow us to sum up the individual

frequency dyadic contributions of wj.

Proof. We have using the fact that uj is frequency localized to frequency ∼ 2j,

∥⟨Dx⟩βuj∥S = ∥⟨Dx⟩βP̃j(e−iΦjwj)∥S
≲ ∥Dβ

x P̃j(P<j−2e
−iΦj P̃jwj)∥S + ∥Dβ

x P̃j(P≥j−2e
−iΦjwj)∥S.

(4.3.33)

For the first term, we have by the (vector-valued) Bernstein’s inequality

∥Dβ
x P̃j(P<j−2e

−iΦj P̃jwj)∥S ≲ ∥Dβ
x P̃jwj∥S. (4.3.34)

For the second term, we have from Bernstein’s inequality (and since j > 0),

∥Dβ
x P̃j(P≥j−2e

−iΦjwj)∥S ≲ 2jβ∥P̃j(P≥j−2e
−iΦjwj)∥S

≲ 2jβ∥P≥j−2e
−iΦj∥L∞

T L∞
x
∥P<j+2wj∥S

+ 2jβ
∑
k≥j

∥P̃ke−iΦj∥L∞
T L∞

x
∥P̃kwj∥S

≲ε ∥P≥j−2D
|β|+2ε
x e−iΦj∥L∞

T L∞
x
∥⟨Dx⟩β−εwj∥S

(4.3.35)

where ε > 0 is small enough so that for instance, |β|+ 2ε < 1. Then we have by Bernstein,

∥P≥j−2D
|β|+2ε
x e−iΦj∥L∞

T L∞
x
≲ ∥∂xP≥j−2e

−iΦj∥L∞
T L∞

x
≲ ∥u∥2σS1

T
. (4.3.36)

Combining the above estimates completes the proof.

Given Lemma 4.3.13, we are in a position to convert estimates for wj into estimates for

uj. A direct computation shows that wj satisfies the following equation:(i∂t + ∂2x)wj = ieiΦjP<j−4[φj(|u|2)|u|2σ]∂xuj + (−∂tΦj + i∂2xΦj − (∂xΦj)
2)wj + eiΦjgj,

wj(0) = eiΦjuj(0).

(4.3.37)

The goal is to prove a priori estimates for wj - and hence uj - in Y s
T . We observe a cou-

ple of useful facts. First, by Bernstein, we have ∥uj∥Y s
T
≲ 2j(σ+s−1)∥uj∥Y 1−σ

T
. Secondly, we



CHAPTER 4. DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS 276

obviously have ∥gwj∥L1
TL

2
x
= ∥guj∥L1

TL
2
x
for measurable functions, g. Using these observa-

tions, Lemma 4.3.13, the maximal function estimates and the usual Strichartz estimates

from Propositions 4.2.3 and 4.2.4 we have that

∥uj∥Y s
T

(1 + ∥u∥S1
T
)2σ

≲ ∥uj(0)∥Hs
x
+ 2j(σ+s−1)∥P<j−4[φj(|u|2)|u|2σ]∂xuj∥L1

TL
2
x
+ 2j(σ+s−1)∥gj∥L1

TL
2
x

+ 2j(σ+s−1)∥∂tΦjuj∥L1
TL

2
x
+ 2j(σ+s−1)∥∂2xΦjuj∥L1

TL
2
x

+ 2j(σ+s−1)∥(∂xΦj)
2uj∥L1

TL
2
x

:= ∥uj(0)∥Hs
x
+ Ij1 + Ij2 + Ij3 + Ij4 + Ij5 .

(4.3.38)

We now estimate each of the above terms.

Estimate for Ij1

By Bernstein and the fact that |u| ≲ 2−
j
2 on the support of φj,

2j(σ+s−1)∥P<j−4[φj(|u|2)|u|2σ]∂xuj∥L1
TL

2
x
≲ 2j(σ+s−1)∥φj(|u|2)|u|2σ∥L1

TL
∞
x
∥∂xuj∥L∞

T L2
x

≲ T∥uj∥L∞
T Hs

x

≲ Tbj∥u∥Xs
T
.

(4.3.39)

Estimate for Ij2

We have

gj = iPj(P≥j−4|u|2σ∂xu) + i[Pj, P<j−4|u|2σ]∂xP̃ju (4.3.40)

where P̃j is a “fattened” projection to frequency ∼ 2j. By the standard Littlewood-Paley

trichotomy, we write

Pj(P≥j−4|u|2σ∂xu) = Pj(P̃j|u|2σ∂xP̃<ju) + Pj(P̃j|u|2σP̃j∂xu)

+
∑
k>j

Pj(P̃k|u|2σP̃k∂xu). (4.3.41)

For the first term, we have by the Moser estimate (4.3.8) and Bernstein’s inequality,

2j(σ+s−1)∥Pj(P̃j|u|2σ∂xP̃<ju)∥L1
TL

2
x
≲ 2j(σ+s−1)∥P̃j|u|2σ∥L1

TL
∞
x
∥∂xu∥L∞

T L2
x

≲ ∥P̃jDσ+s−1
x |u|2σ∥L1

TL
∞
x
∥∂xu∥L∞

T L2
x

≲ T
1
2 bj∥u∥2σS1

T
∥u∥Xs

T
.

(4.3.42)
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The second term is dealt with similarly. For the third term, we have by Bernstein’s

inequality

2j(σ+s−1)∥
∑
k>j

Pj(P̃k|u|2σP̃k∂xu)∥L1
TL

2
x

≲ T
3
4

∑
k>j

∥P̃ku∥L4
TL

∞
x
2j(σ+s−1)2k∥P̃k|u|2σ∥L∞

T L2
x

≲ T
3
4

∑
k>j

2(j−k)(σ+s−1)∥Dσ+s−1
x P̃ku∥L4

TL
∞
x
∥P̃k∂x|u|2σ∥L∞

T L2
x

≲ T
3
4∥u∥2σS1

T
∥u∥Xs

T

∑
k>j

2−(σ+s−1)|k−j|bk

≲ T
3
4 bj∥u∥Xs

T
∥u∥2σS1

T

∑
k>j

2−(σ+s−1−δ)|k−j|

≲ T
3
4 bj∥u∥Xs

T
∥u∥2σS1

T
.

(4.3.43)

For the commutator term, we have by Lemma 4.2.1

2j(σ+s−1)[Pj, P<j−4|u|2σ]∂xP̃ju = 2j(σ+s−2)L(∂xP<j−4|u|2σ, P̃j∂xu) (4.3.44)

for some appropriate translation invariant expression L.

This term is easily estimated by

2j(σ+s−2)∥L(∂xP<j−4|u|2σ, P̃j∂xu)∥L1
TL

2
x
≲ 2j(σ+s−2)∥∂xP<j−4|u|2σ∥L∞

T L2
x
∥P̃j∂xu∥L1

TL
∞
x

≲ ∥u∥2σ−1
L∞
T L∞

x
∥∂xu∥L∞

T L2
x
∥P̃jDσ+s−1

x u∥L1
TL

∞
x

≲ bjT
3
4∥u∥2σS1

T
∥u∥Xs

T
.

(4.3.45)

Hence, we have

Ij2 ≲ T
1
2 bj∥u∥Xs

T
∥u∥2σS1

T
. (4.3.46)

Estimate for Ij3

We expand

∂tΦj = −1

2
P<j−4∂

−1
x [2jχ′(2j|u|2)∂t|u|2|u|2σ]−

1

2
P<j−4∂

−1
x [χj(|u|2)∂t|u|2σ] =: J1 + J2.

(4.3.47)
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We have

J1 = −1

2
P<j−4∂

−1
x [2jχ′(2j|u|2)∂t|u|2|u|2σ]

= −P<j−4∂
−1
x [2jχ′(2j|u|2)Re(uut)|u|2σ]

= −P<j−4∂
−1
x [2jχ′(2j|u|2)Re(iuuxx)|u|2σ]− P<j−4∂

−1
x [2jχ′(2j|u|2)Re(u|u|2σux)|u|2σ]

= −P<j−4∂
−1
x [2jχ′(2j|u|2)∂xRe(iuux)|u|2σ]− P<j−4∂

−1
x [2jχ′(2j|u|2)Re(u|u|2σux)|u|2σ]

:= K1 +K2.

(4.3.48)

For the first term, K1, in (4.3.48) we write

−P<j−4∂
−1
x [2jχ′(2j|u|2)∂xRe(iuux)|u|2σ] = −P<j−4[2

jχ′(2j|u|2)Re(iuux)|u|2σ]
+ P<j−4∂

−1
x [22jχ′′(2j|u|2)∂x|u|2Re(iuux)|u|2σ]

+ P<j−4∂
−1
x [2jχ′(2j|u|2)Re(iuux)∂x|u|2σ].

(4.3.49)

We have for the first term in (4.3.49)

∥P<j−4[2
jχ′(2j|u|2)Re(iuux)|u|2σ]∥L∞

T L2
x
≲ 2j∥χ′(2j|u|2)Re(iuux)|u|2σ∥L∞

T L2
x

≲ ∥u∥2σ−1
L∞
T L∞

x
∥ux∥L∞

T L2
x

(4.3.50)

where we used the fact that

∥χ′(2j|u|2)|u|2σ+1∥L∞
T L∞

x
= ∥φ′(2j|u|2)|u|2σ+1∥L∞

T L∞
x
≲ 2−j∥u∥2σ−1

L∞
T L∞

x
. (4.3.51)

Now, for the second term in (4.3.49), we have

22j∥P<j−4∂
−1
x [χ′′(2j|u|2)∂x|u|2Re(iuux)|u|2σ]∥L∞

T L∞
x

≲ 22j∥χ′′(2j|u|2)∂x|u|2Re(iuux)|u|2σ∥L∞
T L1

x

≲ 22j∥φ′′(2j|u|2)Re(uux)Re(iuux)|u|2σ∥L∞
T L1

x

≲ 2j(1−σ)∥ux∥2L∞
T L2

x
.

(4.3.52)

The third term in (4.3.49) is estimated similarly to the second term.

Hence, we obtain

2j(σ+s−1)∥K1uj∥L1
TL

2
x
≲ 2j(σ+s−1)2j(1−σ)T∥ux∥2L∞

T L2
x
∥uj∥L∞

T L2
x

+ 2j(σ+s−1)∥u∥2σ−1
L∞
T L∞

x
T

3
4∥ux∥L∞

T L2
x
∥uj∥L4

TL
∞
x

≲ T∥ux∥2L∞
T L2

x
∥Ds

xuj∥L∞
T L2

x

+ T
3
4∥u∥2σ−1

L∞
T L∞

x
∥ux∥L∞

T L2
x
∥Dσ+s−1

x uj∥L4
TL

∞
x
.

(4.3.53)
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Next, we estimate K2. We have by Cauchy Schwarz, and Sobolev embedding,

∥P<j−4∂
−1
x [2jχ′(2j|u|2)Re(u|u|2σux)|u|2σ]∥L∞

T L∞
x
≲ 2j∥φ′(2j|u|2)Re(u|u|2σux)|u|2σ∥L∞

T L1
x

≲ 2j(
1
2
−σ)∥u∥2σL∞

T L4σ
x
∥ux∥L∞

T L2
x

≲ 2j(
1
2
−σ)∥u∥2σS1

T
∥ux∥L∞

T L2
x

≲ ∥u∥2σS1
T
∥ux∥L∞

T L2
x

(4.3.54)

where we used the fact that σ ≥ 1
2
.

Hence, we finally obtain the estimate,

2j(σ+s−1)∥ujJ1∥L1
TL

2
x
≲ T∥ux∥2L∞

T L2
x
∥Ds

xuj∥L∞
T L2

x
+ T

3
4∥u∥2σ−1

L∞
T L∞

x
∥ux∥L∞

T L2
x
∥Dσ+s−1

x uj∥L4
TL

∞
x

+ T∥u∥2σS1
T
∥ux∥L∞

T L2
x
∥Dσ+s−1

x uj∥L∞
T L2

x

≲ T
3
4 (1 + ∥u∥4σS1

T
)∥uj∥Xs

T
.

(4.3.55)

Next, we turn to the estimate for J2. We have

J2 = −1

2
P<j−4∂

−1
x [χj(|u|2)∂t|u|2σ]

= −σP<j−4∂
−1
x [χj(|u|2)|u|2σ−2Re(uut)]

= −σP<j−4∂
−1
x [χj(|u|2)|u|2σ−2Re(iuuxx)]− σP<j−4∂

−1
x [χj(|u|2)|u|2σ−2Re(u|u|2σux)]

:= K3 +K4.

(4.3.56)

For the first term, we have

K3 = −σP<j−4[χj(|u|2)|u|2σ−2Re(iuux)] + σP<j−4∂
−1
x [χj(|u|2)∂x|u|2σ−2Re(iuux)]

− 2jσP<j−4∂
−1
x [φ′(2j|u|2)∂x|u|2|u|2σ−2Re(iuux)]

= K3,1 +K3,2 +K3,3.

(4.3.57)

We now must estimate each of the above terms. For the first two terms, we have

∥K3,1∥L∞
T L2

x
≲ ∥u∥2σ−1

L∞
T L∞

x
∥ux∥L∞

T L2
x

(4.3.58)

and

∥K3,2∥L∞
T L∞

x
≲ ∥χj(|u|2)∂x|u|2σ−2Re(iuux)∥L∞

T L1
x

≲ ∥χj(|u|2)|u|2σ−4Re(uux)Re(iuux)∥L∞
T L1

x

≲ 2j(1−σ)∥ux∥2L∞
T L2

x

(4.3.59)
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where we used the fact that

χj(|u|2)|u|2σ−2 ≲ 2j(1−σ). (4.3.60)

Remark 4.3.15. It should be emphasized that the main point of the partial gauge trans-

formation is to be able to estimate the term K3,2 above, which involves negative powers of

|u|.

Now, we turn to the estimate for K3,3. We have

∥K3,3∥L∞
T L∞

x
≲ 2j∥φ′(2j|u|2)|u|2σ−2Re(uux)Re(iuux)∥L∞

T L1
x

≲ 2j(1−σ)∥ux∥2L∞
T L2

x
.

(4.3.61)

Hence, we have

2j(σ+s−1)∥K3uj∥L1
TL

2
x
≲ T

3
4∥u∥2σ−1

L∞
T L∞

x
∥ux∥L∞

T L2
x
∥Dσ+s−1

x uj∥L4
TL

∞
x
+ T∥ux∥2L∞

T L2
x
∥Ds

xuj∥L∞
T L2

x
.

(4.3.62)

Finally, we estimate K4. We have

∥K4∥L∞
T L∞

x
≲ ∥P<j−4∂

−1
x [χj(|u|2)|u|2σ−2Re(u|u|2σux)]∥L∞

T L∞
x

≲ ∥χj(|u|2)|u|2σ−2Re(u|u|2σux)∥L∞
T L1

x

≲ ∥u∥4σ−2
L∞
T L∞

x
∥ux∥L∞

T L2
x
∥u∥L∞

T L2
x
.

(4.3.63)

Hence, combining with the estimate for K3, we obtain

2j(σ+s−1)∥ujJ2∥L1
TL

2
x
≲ T

3
4∥u∥2σ−1

L∞
T L∞

x
∥ux∥L∞

T L2
x
∥Dσ+s−1

x uj∥L4
TL

∞
x
+ T∥ux∥2L∞

T L2
x
∥Ds

xuj∥L∞
T L2

x

+ T∥u∥4σ−2
L∞
T L∞

x
∥ux∥L∞

T L2
x
∥u∥L∞

T L2
x
∥Dσ+s−1

x uj∥L∞
T L2

x

≲T T
3
4 (1 + ∥u∥4σS1

T
)∥uj∥Xs

T
.

(4.3.64)

Now combining this with the estimate for J1 finally yields the desired estimate for Ij3 . Namely,

we have

Ij3 ≲ T
3
4 (1 + ∥u∥4σS1

T
)∥uj∥Xs

T

≲ T
3
4 bj(1 + ∥u∥4σS1

T
)∥u∥Xs

T
.

(4.3.65)

Estimate for Ij4

This term is straightforward to deal with. Indeed, after expanding ∂2xΦj we have

∥∂2xΦj∥L∞
T L2

x
≲ 2j∥φ′(2j|u|2)Re(uux)|u|2σ∥L∞

T L2
x
+ ∥χj(|u|2)Re(|u|2σ−2uux)∥L∞

T L2
x

≲ ∥u∥2σ−1
L∞
T L∞

x
∥ux∥L∞

T L2
x
.

(4.3.66)
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Hence,

Ij4 ≲ T
3
4∥u∥2σ−1

L∞
T L∞

x
∥ux∥L∞

T L2
x
∥Dσ+s−1

x uj∥L4
TL

∞
x

≲ T
3
4∥u∥2σS1

T
∥uj∥Xs

T

≲ T
3
4 bj∥u∥2σS1

T
∥u∥Xs

T
.

(4.3.67)

Estimate for Ij5

The estimate for Ij5 is also straightforward as it doesn’t involve any differentiated terms.

Indeed, we have

∥∂xΦj∥2L∞
T L∞

x
≲ ∥u∥4σL∞

T L∞
x
. (4.3.68)

Hence, by Sobolev embedding,

Ij5 ≲ T∥u∥4σL∞
T L∞

x
∥Dσ+s−1

x uj∥L∞
T L2

x

≲ T∥u∥4σS1
T
∥uj∥Xs

T

≲ Tbj∥u∥4σS1
T
∥u∥Xs

T
.

(4.3.69)

Now, combining all the estimates above completes the proof of Lemma 4.3.10.

Remark 4.3.16. By taking bj to instead be a SsT frequency envelope for u, and repeating

the proof almost verbatim with Remark 4.3.4 in place of (4.3.8), we instead obtain

∥Pju∥Y s
T
≲∥u∥

S1
T

aj∥u0∥Hs
x
+ T

1
2 bj(1 + ∥u∥4σS1

T
)∥u∥Ss

T
. (4.3.70)

This will be relevant for when we later establish local well-posedness in the high regularity

regime 2 − σ < s < 4σ for the full range of 1
2
< σ < 1. Specifically, this will be important

for establishing a priori bounds in the range 2 − σ < s ≤ 3
2
when Sobolev embedding is

not suitable for controlling the term ∥ux∥L4
TL

∞
x
. The reason the proof of (4.3.70) is almost

identical to the current proof is that we have not yet used the maximal function part of the

norm of Xs
T ; we will begin using this part of the norm in the proof of Lemma 4.3.11.

Remark 4.3.17. As a second important remark, the estimate (4.3.70) also holds for T ≲

1 if the nonlinearity i|u|2σux is replaced by the spatially regularized and time-truncated

nonlinearity iηP<k|u|2σux, where k ∈ N and η = η(t) is a time-dependent cutoff function

supported in (−2, 2) and equal to 1 on [−1, 1]. This fact won’t be relevant for the low

regularity construction, but will be important for the high regularity construction in Sections

5 and 6 where the cutoff η is needed for estimating (fractional order) time derivatives of a
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solution u to (gDNLS). Since the proof of this estimate is nearly identical to Lemma 4.3.10,

we omit the details. Nevertheless, for the sake of completeness, we state this observation in

the following lemma.

Lemma 4.3.18. Let k ∈ N, σ ∈ (1
2
, 1), s ∈ [1, 3

2
], and T ≲ 1. Let η be a time-dependent

cutoff function supported in (−2, 2) with η = 1 on [−1, 1]. Let v, w ∈ SsT with ∥v∥Ss
T
,

∥w∥Ss
T
≲ 1. Assume that u, v ∈ SsT solve the equations (i∂t + ∂2x)u = iηP<k|v|2σ∂xu,

u(0) = u0,
(4.3.71)

and  (i∂t + ∂2x)v = iηP<k|w|2σ∂xv,

v(0) = u0,
(4.3.72)

respectively. Then u satisfies the estimate

∥u∥Y s
T
≲ ∥u0∥Hs

x
+ T

1
2∥u∥Ss

T
. (4.3.73)

As mentioned, the proof of Lemma 4.3.18 proceeds in a nearly identical fashion to

Lemma 4.3.10, so we omit the details. The main difference is that Φj is replaced by

Φj = −1

2
η(t)P<j−4P<k∂

−1
x [χj(|v|2)|v|2σ]. (4.3.74)

The requirement (4.3.72) that v solves an additional (gDNLS) type equation is merely rel-

evant for the Ij3 estimate when time derivatives fall on Φj, and hence on v. In practice,

Lemma 4.3.18 will be used in the construction of solutions at high regularity in Sections 5,

6 and 7.

Next, we turn to proving Lemma 4.3.11.

Proof. Again, we begin by writing the equation in a paradifferential fashion,

i∂tuj + ∂2xuj = iP<j−4|u|2σ∂xuj + iPj(P≥j−4|u|2σ∂xu) + i[Pj, P<j−4|u|2σ]∂xu. (4.3.75)
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A simple energy estimate (i.e. multiplying by −i22jsuj, taking real part and integrating),

and Bernstein’s inequality gives

∥uj∥2L∞
T Hs

x
≲ ∥uj(0)∥2Hs

x
+ 22js

∫ T

0

∣∣∣∣∫
R
P<j−4|u|2σ∂x|uj|2

∣∣∣∣+ 22js
∫ T

0

∣∣∣∣∫
R
ujPj(P≥j−4|u|2σ∂xu)

∣∣∣∣
+ 22js

∫ T

0

∣∣∣∣∫
R
uj[Pj, P<j−4|u|2σ]∂xu

∣∣∣∣
:= ∥uj(0)∥2Hs

x
+ Ij1 + Ij2 + Ij3 .

(4.3.76)

Estimate for Ij1

For the first term, we integrate by parts and estimate using standard interpolation inequal-

ities, Bernstein’s inequality, Hölder’s inequality and Proposition 4.2.7

22js
∫ T

0

∣∣∣∣∫
R
|uj|2P<j−4∂x|u|2σ

∣∣∣∣
≲ 22js∥P<j−4∂x|u|2σ|uj|2(1−σ)∥

L1
xL

1
1−σ
T

∥uj∥2σL∞
x L2

T

≲ 22js∥P<j−4∂x|u|2σ∥
L

1
σ
x L

1
ε(1−σ)
T

∥uj∥2(1−σ)
L2
xL

2
1−ε
T

∥uj∥2σL∞
x L2

T

≲ ∥P<j−4(D
σ− 1

2
x |u|2σ)∥

L
1
σ
x L

1
ε(1−σ)
T

∥Ds−c1ε
x uj∥2(1−σ)

L2
xL

2
1−ε
T

∥Ds+ 3
4σ

− 1
2
+c2ε

x uj∥2σL∞
x L2

T

≲ T (1−σ)(1−ε)∥P<j−4(D
σ− 1

2
−ε

x |u|2σ)∥
L

1
σ
x L

1
ε(1−σ)
T

∥uj∥2Xs
T

≲ T 1−σ∥u∥2σ−1
L2
xL

∞
T
∥Dσ− 1

2
−ε

x u∥L2
xL

∞
T
∥uj∥2Xs

T

≲ T 1−σ∥u∥2σY 1
T
∥uj∥2Xs

T

≲ T 1−σb2j∥u∥2σY 1
T
∥u∥2Xs

T
,

(4.3.77)

where c1, c2 are fixed positive constants, and ε > 0 is sufficiently small. Observe that going

from line 3 to line 4 uses the fact that σ >
√
3
2
since s+ 3

4σ
− 1

2
< s+σ− 1

2
precisely when σ >

√
3
2
.

Estimate for Ij2

We have by the Littlewood-Paley trichotomy

22js
∫
R
Pj(P≥j−4|u|2σ∂xu)uj = 22js

∫
R
P̃j(|u|2σ)P̃<j∂xuuj + 22js

∑
k>j

∫
R
ujPj(P̃k(|u|2σ)P̃k∂xu)

(4.3.78)



CHAPTER 4. DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS 284

for appropriate “fattened” Littlewood-Paley projections P̃j. For the first term, using Bern-

stein’s inequality and Hölder’s inequality, and that 2−δj ≲ bj we have,

22js
∫ T

0

∣∣∣∣∫
R
P̃j(|u|2σ)P̃<j∂xuuj

∣∣∣∣
≲ 2j(

5
2
−σ+s)∥P̃j|u|2σ∥

L
2

2σ−1
x L2

T

∥P̃ju∥2σ−1
L∞
x L2

T
∥P̃ju∥2(1−σ)L2

xL
2
T
∥P̃<jD

σ+s− 3
2

x u∥L2
xL

∞
T

≲ T 1−σ∥D2+σ−2σ2+δ
x P̃j(|u|2σ)∥

L
2

2σ−1
x L2

T

∥P̃ju∥Xs
T
∥u∥Xs

T

≲ T 1−σbj∥D2+σ−2σ2+2δ
x P̃j(|u|2σ)∥

L
2

2σ−1
x L2

T

∥P̃ju∥Xs
T
∥u∥Xs

T
.

(4.3.79)

Note that the first line follows since s ∈ [1, 3
2
]. Now, we estimate ∥D2+σ−2σ2+2δ

x P̃j(|u|2σ)∥
L

2
2σ−1
x L2

T

.

For notational convenience, write 2 + σ − 2σ2 + 2δ = α. We employ the Littlewood-Paley

trichotomy and then Hölder’s and Bernstein’s inequality to obtain

∥Dα
x P̃j(|u|2σ)∥

L
2

2σ−1
x L2

T

≲ ∥Dα−1
x P̃j(|u|2σ−2uux)∥

L
2

2σ−1
x L2

T

≲ ∥Dα−1
x P̃j(P̃<j(|u|2σ−2u)P̃jux)∥

L
2

2σ−1
x L2

T

+ ∥Dα−1
x P̃j(P̃>j(|u|2σ−2u)ux)∥

L
2

2σ−1
x L2

T

≲ ∥u∥2σ−1
L2
xL

∞
T
∥Dα

x P̃ju∥L∞
x L2

T
+ ∥Dα−1

x (|u|2σ−2u)∥L∞
T L∞

x
∥ux∥

L
2

2σ−1
x L2

T

.

(4.3.80)

Observe that ∥Dα
xu∥L∞

x L2
T
≲ ∥u∥Y 1

T
since α < σ + 1

2
when σ >

√
3
2
. Furthermore, by Corol-

lary 4.2.11 and Sobolev embedding, we have

∥Dα−1
x (|u|2σ−2u)∥L∞

T L∞
x
≲ ∥⟨Dx⟩

α−1+ε
2σ−1 u∥2σ−1

L∞
T L∞

x
≲ ∥u∥2σ−1

S1
T

(4.3.81)

where the last inequality again follows because σ >
√
3
2
. Furthermore, by interpolating

∥ux∥
L

2
2σ−1
x L2

T

between L2
xL

2
T and L∞

x L
2
T , we see that ∥ux∥

L
2

2σ−1
x L2

T

≲ ∥u∥X1
T
. Hence, we can

control (4.3.79) by

T 1−σb2j∥u∥2σX1
T
∥u∥2Xs

T
. (4.3.82)
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For the other term in (4.3.78), we have

22js
∫ T

0

∣∣∣∣∣∑
k>j

∫
R
ujPj(P̃k(|u|2σ)P̃k∂xu)

∣∣∣∣∣
≲ 2jsT (1−σ)∥Ds

xuj∥
2(1−σ)
L∞
T L2

x
∥Ds

xuj∥2σ−1
L∞
x L2

T

∑
k>j

2k∥P̃k(|u|2σ)∥
L

2
2σ−1
x L2

T

∥P̃ku∥L2
xL

∞
T

≲ 2j(s−
1
2
(1−2σ)2)T (1−σ)∥uj∥Xs

T

∑
k>j

2k∥P̃k(|u|2σ)∥
L

2
2σ−1
x L2

T

∥P̃ku∥L2
xL

∞
T

≲ 2j(s−
1
2
(1−2σ)2)T (1−σ)∥uj∥Xs

T

∑
k>j

2k(
3
2
−σ−s+1)∥P̃k(|u|2σ)∥

L
2

2σ−1
x L2

T

∥P̃kD
s+σ− 3

2
x u∥L2

xL
∞
T

≲ T (1−σ)∥uj∥Xs
T

∑
k>j

2(j−k)(s−
1
2
(1−2σ)2)∥P̃k(D2+σ−2σ2

x |u|2σ)∥
L

2
2σ−1
x L2

T

∥P̃kD
s+σ− 3

2
x u∥L2

xL
∞
T

≲ T (1−σ)b2j∥u∥2Xs
T
∥u∥2σX1

T

∑
k>j

2(j−k)((s−
1
2
(1−2σ)2)−δ)

≲ T (1−σ)b2j∥u∥2Xs
T
∥u∥2σX1

T

(4.3.83)

where we estimated ∥P̃k(D2+σ−2σ2

x |u|2σ)∥
L

2
2σ−1
x L2

T

in essentially the same way as we did with

the previous term.

Estimate for Ij3

We have

[Pj, P<j−4|u|2σ]∂xu = [Pj, P<j−4|u|2σ]∂xP̃ju

= 2−j
∫
R2

K(y)∂xP<j−4|u|2σ(x+ y1)∂xP̃ju(x+ y2)dy
(4.3.84)

for some kernel K ∈ L1 with ∥K∥L1 ≲ 1 (with a bound independent of j), see Lemma 4.2.1.

Hence,∫ T

0

∣∣∣∣∫
R
uj[Pj, P<j−4|u|2σ]∂xP̃ju

∣∣∣∣ ≲ 2−j sup
y∈R2

∫ T

0

∫
R
|∂xP<j−4|u|2σ(x+ y1)||∂xP̃ju(x+ y2)||uj|.

(4.3.85)

This is estimated analogously to I1j . Indeed, we obtain by Cauchy Schwarz, Bernstein’s
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inequality and Proposition 4.2.7,

22js
∫ T

0

∣∣∣∣∫
R
uj[Pj, P<j−4|u|2σ]∂xP̃ju

∣∣∣∣
≲ 22js∥P̃jD

3
4σ

− 1
2
+c1ε

x u∥2σL∞
x L2

T
∥P̃ju∥2(1−σ)L2

TL
2
x
∥u∥2σ−1

L2
xL

∞
T
∥Dσ− 1

2
−c2ε

x u∥L2
xL

∞
T

≲ T (1−σ)∥u∥2σY 1
T
∥P̃ju∥2Xs

T

≲ T (1−σ)b2j∥u∥2σY 1
T
∥u∥2Xs

T
,

(4.3.86)

where c1, c2 are positive constants depending on σ, s. The second line follows from the fact

that 3
4σ

− 1
2
< σ − 1

2
as long as σ >

√
3
2
.

Hence, we obtain

∥Pju∥L∞
T Hs

x
≲ aj∥u0∥Hs

x
+ T

1−σ
2 bj∥u∥σX1

T
∥u∥Xs

T
, (4.3.87)

thus completing the proof of the L∞
T H

s
x estimate.

Proof of Proposition 4.3.6

We combine the energy estimate and the Y s estimate to obtain

∥Pju∥Xs
T
≲∥u∥

S1
T

aj∥u0∥Hs
x
+ T

1
2 bj(1 + ∥u∥4σS1

T
)∥u∥Xs

T
+ T

1−σ
2 bj∥u∥σX1

T
∥u∥Xs

T
. (4.3.88)

This proves part a) of Proposition 4.3.6.

Now we move to part b). Let us first assume T ≪ 1 (but independent of ε). There are

two components to consider. For high frequency, square summing over j > 0 shows

∥P>0u∥Xs
T
≲∥u∥

S1
T

∥u0∥Hs
x
+ T

1
2 (1 + ∥u∥4σS1

T
)∥u∥Xs

T
+ T

1−σ
2 ∥u∥σX1

T
∥u∥Xs

T
. (4.3.89)

On the other hand, directly applying the maximal function/Strichartz estimates in Proposi-

tion 4.2.3 and Proposition 4.2.4 and Bernstein’s inequality to P≤0u, we easily obtain

∥P≤0u∥Xs
T
≲ ∥u0∥L2

x
+ ∥P≤0(|u|2σux)∥L1

TL
2
x
≲ ∥u0∥L2

x
+ T∥u∥2σ+1

S1
T

. (4.3.90)

From the above bounds, we see that the Xs
T norm of u converges to the H1

x norm of the

initial data as T → 0+. Let us now make the bootstrap assumption ∥u∥X1
T
≤ ε

1
2 . We then

obtain from the above estimates,

∥u∥Xs
T
≲∥u∥

X1
T

∥u0∥Hs
x
≤ ε (4.3.91)
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where T ≪ 1 (but independent of ε) and 1 ≤ s ≤ 3
2
. To obtain the estimate for T ∼ 1, we

iterate the above procedure O(T−1) many times (after suitable translating the initial data).

This proves part b) of Proposition 4.3.6.

Next, we turn to the proof of Proposition 4.3.7. We proceed in a similar manner to Proposi-

tion 4.3.6, and prove separate estimates for the Y 0
T and L∞

T L
2
x components of the X0

T norm.

For this purpose, we have the following two lemmas:

Lemma 4.3.19. (Y 0
T estimate) Let v, σ, T , w, g and a be as in Proposition 4.3.7. Then we

have the Y 0
T estimate,

∥v∥Y 0
T
≲ ∥v0∥L2

x
+ T

1
2 (1 + ∥w∥4σX1

T
)∥v∥X0

T
+ T 1−σ∥g∥Z∥a∥X1

T
∥v∥X0

T
. (4.3.92)

Lemma 4.3.20. (L∞
T L

2
x estimate) Let v, σ, T , w, g and a be as in Proposition 4.3.7. Then

we have the estimate,

∥Pjv∥2l2jL∞
T L2

x
≲ ∥v0∥2L2

x
+ T 1−σ∥g∥Z∥a∥X1

T
∥v∥2X0

T
+ T 1−σ∥w∥2σX1

T
∥v∥2X0

T
. (4.3.93)

We begin with Lemma 4.3.19. The proof is almost the same as Lemma 4.3.10 with a

couple of small differences. As in (4.3.28), we consider a similar paradifferential truncation

of (4.3.21),

(i∂t + ∂2x)vj = iP<j−4(χj(|w|2)|w|2σ)∂xvj + iP<j−4(φj(|w|2)|w|2σ)∂xvj + fj + gj (4.3.94)

where φj and χj are as in (4.3.28) and

fj := iPj(P≥j−4|w|2σ∂xv) + i[Pj, P<j−4|w|2σ]∂xv, (4.3.95)

gj := 2Pj(∂xaRe(gv)). (4.3.96)

Analogously to the proof of Proposition 4.3.6, we define

Ψj(x) = −1

2
P<j−4∂

−1
x [χj(|w|2)|w|2σ] (4.3.97)

and consider the new variable

ṽj := vje
iΨj . (4.3.98)

By direct computation, ṽj solves the equation,
(i∂t + ∂2x)ṽj = ieiΨjP<j−4[φj(|w|2)|w|2σ]∂xvj + (−∂tΨj + i∂2xΨj − (∂xΨj)

2)ṽj

+2eiΨjPj(∂xaRe(gv)) + eiΨjfj,

ṽj(0) = eiΨjvj(0).

(4.3.99)
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Now, Proposition 4.2.3, Proposition 4.2.4 and a similar argument to Proposition 4.3.6 yields

the estimate

∥v∥Y 0
T
≲T ∥v0∥L2

x
+ T

1
2 [1 + ∥w∥X1

T
]4σ∥v∥X0

T

+

(∑
j>0

∥⟨Dx⟩σ−1Pj(g∂xav)∥2L1
TL

2
x

) 1
2

.
(4.3.100)

It remains to control the last term. Indeed, we have by Bernstein and Sobolev embedding,

∥⟨Dx⟩σ−1Pj(g∂xav)∥L1
TL

2
x
≲ 2j(σ−1)∥Pj(g∂xav)∥L1

TL
2
x

≲ 2j(σ−1)∥P<j−4(∂xag)P̃jv∥L1
TL

2
x
+ ∥Pj(P≥j−4(∂xag)v)∥

L1
TL

2
3−2σ
x

.

(4.3.101)

For the first term, we have by Bernstein’s inequality,

2j(σ−1)∥P<j−4(∂xag)P̃jv∥L1
TL

2
x
≲ T

3
4∥∂xa∥L∞

T L2
x
∥g∥L∞

T L∞
x
∥P̃jDσ−1

x v∥L4
TL

∞
x

≲ T
3
4∥a∥X1

T
∥g∥Z∥P̃jDσ−1

x v∥L4
TL

∞
x
.

(4.3.102)

For the second term, we have by the usual Littlewood-Paley trichotomy,

∥Pj(P≥j−4(∂xag)v)∥
L1
TL

2
3−2σ
x

≲ ∥Pj(P̃j(∂xag)P<jv)∥
L1
TL

2
3−2σ
x

+
∑
k≥j

∥Pj(P̃k(∂xag)P̃kv)∥
L1
TL

2
3−2σ
x

:= Kj
1 +Kj

2 .

(4.3.103)

To estimate Kj
1 , we have

∥Pj(P̃j(∂xag)P<jv)∥
L1
TL

2
3−2σ
x

≲ ∥P̃j(∂xag)∥L2
TL

2
x
∥P<jv∥

L2
TL

1
1−σ
x

≲ ∥D(1−σ+ε)(2σ−1)
x P̃j(g∂xa)∥L2

TL
2
x
∥P<jv∥2(1−σ)L2

TL
2
x
∥P<jDσ−1−ε

x v∥2σ−1
L2
TL

∞
x

≲ T 1−σ∥D(1−σ+ε)(2σ−1)
x P̃j(g∂xa)∥L2

TL
2
x
∥v∥X0

T

(4.3.104)

where in the last line we used the fact that by Sobolev embedding,

∥P<jDσ−1−ε
x v∥L2

TL
∞
x
≲ ∥v∥L∞

T L2
x
+ ∥P>0v∥X0

T
≲ ∥v∥X0

T
(4.3.105)

as well as ∥P<jv∥L2
TL

2
x
≲ T

1
2∥v∥X0

T
. Now, setting α = (1 − σ + ε)(2σ − 1), we have by

Bernstein’s inequality, and a simple application of the Littlewood-Paley trichotomy,

∥Dα
x P̃j(g∂xa)∥L2

TL
2
x
≲ 2−jε∥Dα+ε

x P̃j(g∂xa)∥L2
TL

2
x

≲ 2−jε∥Dα+ε
x ∂xa∥

L
1

1−σ
x L2

T

∥g∥
L

2
2σ−1
x L∞

T

+ 2−jε∥∂xa∥L∞
T L2

x
∥Dα+ε

x g∥L2
TL

∞
x
.

(4.3.106)
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Next, by interpolating ∥Dα+ε
x ∂xa∥

L
1

1−σ
x L2

T

between D
α+2ε
2σ−1
x a in L∞

x L
2
T and ∂xa in L2

xL
2
T , we

see that for ε small enough, ∥Dα+ε
x ∂xa∥

L
1

1−σ
x L2

T

≲ ∥a∥X1
T
as long as σ > 3

4
(because this

corresponds to when α
2σ−1

< σ − 1
2
). Furthermore, clearly ∥Dα+ε

x g∥L2
TL

∞
x
≲ ∥g∥Z . Hence,

∥Dα
x P̃j(g∂xa)∥L2

TL
2
x
≲ 2−jε∥g∥Z∥a∥X1

T
. (4.3.107)

It is easy to see that a similar analysis works for Kj
2 . Hence, we ultimately deduce that

Kj
1 +Kj

2 ≲ 2−jεT 1−σ∥g∥Z∥a∥X1
T
∥v∥X0

T
. (4.3.108)

Square summing now gives(∑
j>0

∥⟨Dx⟩σ−1Pj(g∂xav)∥2L1
TL

2
x

) 1
2

≲ T 1−σ∥g∥Z∥a∥X1
T
∥v∥X0

T
. (4.3.109)

Next, we turn to the energy type L∞
T L

2
x estimate in Lemma 4.3.20. First, it is straight-

forward to verify by a simple energy estimate that P≤0v is controlled in L∞
T L

2
x by the right

hand side of (4.3.93). Hence, let us restrict to controlling P>0v.

Proof. Let j > 0. Projecting (4.3.21) onto frequency 2j, multiplying by −iPjv, taking real

part and integrating from 0 to T gives

∥Pjv∥2L∞
T L2

x
≲ ∥Pjv0∥2L2

x
+

∫ T

0

∣∣∣∣∫
R
Pj(g∂xav)vj + Pj(g∂xav)vj

∣∣∣∣+ ∫ T

0

∣∣∣∣∫
R
Pj(|w|2σ∂xv)vj

∣∣∣∣
:= ∥Pjv0∥2L2

x
+ Ij1 + Ij2 .

(4.3.110)

Estimate for Ij1

For simplicity, we show how to deal with the first term,∫
R
Pj(g∂xav)vj (4.3.111)

as the other term (involving the complex conjugate of gv) is essentially identical.

We have by the Littlewood-Paley trichotomy,∫
R
Pj(g∂xav)vj =

∫
R
Pj(P≥j−4(g∂xa)v)vj +

∫
R
P̃<j(g∂xa)P̃jvP̃jv. (4.3.112)
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We expand the first term as

Pj(P≥j−4(g∂xa)v) = Pj(P̃j(g∂xa)P̃<jv) +
∑
k≥j

Pj(P̃k(g∂xa)P̃kv). (4.3.113)

We obtain by Bernstein’s inequality, Hölder and a simple application of the Littlewood-Paley

trichotomy,∫ T

0

∣∣∣∣∫
R
Pj(P̃j(g∂xa)P̃<jv)vj
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xL
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∞
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2
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L

2
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T
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2
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T
∥∂xa∥

L
2

2σ−1
x L2

T

+ ∥g∥
L

2
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T
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3
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2
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x ∂xa∥L∞
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T
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T
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T
∥v∥2X0

T

(4.3.114)

where in the last line, we used the assumption σ >
√
3
2
. The second term in (4.3.113) is

similarly estimated by 2−jεT 1−σ∥g∥Z∥a∥X1
T
∥v∥2

X0
T
. Hence,

∥Pj(P≥j−4(g∂xa)v)vj∥L1
TL

1
x
≲ 2−jεT 1−σ∥g∥Z∥a∥X1

T
∥v∥2X0

T
. (4.3.115)

For the remaining term, we have

−g∂xa = gDxHa

= D
3
2
−σ+ε

x (gD
σ− 1

2
−ε

x Ha)−D
3
2
−σ+ε

x gD
σ− 1
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−ε

x Ha

−D
3
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−σ+ε

x (gD
σ− 1

2
−ε

x Ha) +D
3
2
−σ+ε

x gD
σ− 1

2
−ε

x Ha+ gDxHa.

(4.3.116)

Now, we estimate each term, thinking of the second line as a single term for which we will

apply fractional Leibniz. For the first term in (4.3.116), we have by Hölder and Bernstein

inequalities, ∫ T

0

∣∣∣∣∫
R
P̃<jD

3
2
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x (gD
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2
−ε

x Ha)P̃jvP̃jv
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2
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σ
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∞
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2
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L
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∞
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∞
T
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T
,

(4.3.117)
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where going from the second to the third line uses the fact that σ >
√
3
2
.

Next, we estimate the second term in (4.3.116),∫ T

0

∣∣∣∣∫
R
P̃<j(D

3
2
−σ+ε

x gD
σ− 1

2
−ε

x Ha)P̃jvP̃jv

∣∣∣∣ ≲ ∥P̃jv∥2L∞
T L2

x
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3
2
−σ+ε

x g∥L2
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∞
x
∥Dσ− 1

2
−ε

x Ha∥L2
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∞
x

≲ T
1
2∥g∥Z∥a∥X1

T
∥P̃jv∥2L∞

T L2
x
.

(4.3.118)

Using Sobolev embedding and the fractional Leibniz rule, the third term is estimated anal-

ogously to the second term.

Combining the estimates and square summing then shows

∥Ij1∥l1j (N) ≲ T 1−σ∥g∥Z∥a∥X1
T
∥v∥2X0

T
. (4.3.119)

Estimate for Ij2 . A similar argument to Lemma 4.3.11 shows that

∥Ij2∥l1j (N) ≲ T 1−σ∥|w|2σ−1∥Z∥w∥X1
T
∥v∥2X0

T
. (4.3.120)

We now use the fact that for σ >
√
3
2
, we have

∥|w|2σ−1∥Z ≲ ∥w∥2σ−1
X1

T
. (4.3.121)

To see (4.3.121), first note that the L
2

2σ−1
x L∞

T component is controlled by

∥|w|2σ−1∥
L

2
2σ−1
x L∞

T

≲ ∥w∥2σ−1
L2
TL

∞
x
≲ ∥w∥2σ−1

X1
T
. (4.3.122)

For the L∞
T W

3
4σ

− 1
2
+ε,∞

x component, we have by Corollary 4.2.11, Sobolev embedding, and

the fact that
( 3
4σ

− 1
2
)

2σ−1
< 1

2
,

∥D
3
4σ

− 1
2
+ε

x |w|2σ−1∥L∞
T L∞

x
≲ ∥w∥2σ−1

L∞
T H1

x
≲ ∥w∥2σ−1

X1
T
. (4.3.123)

This easily gives

∥|w|2σ−1∥
L∞
T W

3
4σ− 1

2+ε,∞
x

≲ ∥w∥2σ−1
X1

T
. (4.3.124)

Finally, for the L4
TW

3
2
−σ+ε,∞

x component, we have by Corollary 4.2.11 and the fact that
3
2
−σ

2σ−1
< σ,

∥D
3
2
−σ+ε

x |w|2σ−1∥L4
TL

∞
x
≲ ∥w∥2σ−1

L4
TW

σ,∞
x

≲ ∥w∥2σ−1
X1

T
(4.3.125)
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which clearly gives

∥|w|2σ−1∥
L4
TW

3
2−σ+ε
x

≲ ∥w∥2σ−1
X1

T
. (4.3.126)

Combining the above three estimates gives (4.3.121).

Combining (4.3.121) and (4.3.120) gives

∥Ij2∥l1j (N) ≲ T 1−σ∥w∥2σX1
T
∥v∥2X0

T
. (4.3.127)

Combining the above estimates for I1j and I2j completes the proof of Lemma 4.3.20.

Proof of Proposition 4.3.7. Now we complete the proof of Proposition 4.3.7.

Proof. Combining Lemma 4.3.19 and Lemma 4.3.20 with an argument similar to what was

done in Proposition 4.3.6 gives for T ∼ 1 and ∥g∥Z , ∥w∥X1
T
, ∥a∥X1

T
≪ 1,

∥v∥X0
T
≲ ∥v0∥L2

x
. (4.3.128)

4.4 Well-posedness at low regularity

In this section, we aim to prove local well-posedness in Hs
x for s ∈ [1, 3

2
] and σ >

√
3
2

assuming

the conclusion of Theorem 4.1.2 when 3
2
< s < 4σ, which will be justified in a later section

when we prove high-regularity estimates. Given the estimates established in the previous

section, the scheme to prove well-posedness is relatively standard. We essentially follow the

approach of [105]. See also the recent preprint [71] for a more detailed overview.

Frequency envelope bounds

Proposition 4.4.1. Let
√
3
2
< σ < 1 and let u be as in Proposition 4.3.6. If aj is an

admissible frequency envelope for u0 in Hs
x, then aj is an admissible frequency envelope for

u in Xs
T .

Indeed, let bj be a Xs
T frequency envelope for the solution u. Obviously b0 ≲ a0, so let

us consider j > 0. By Proposition 4.3.6 a), we have

∥Pju∥Xs
T
≲T aj∥u0∥Hs

x
+ T

1
2 bj(1 + ∥u∥4σS1

T
)∥u∥Xs

T
+ T

1−σ
2 bj∥u∥σX1

T
∥u∥Xs

T
. (4.4.1)
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Hence, by definition we have

bj ≲ aj(1 + ∥u0∥Hs
x
∥u∥−1

Xs
T
) + T

1−σ
2 bj∥u∥σX1

T
+ T

1
2 bj(1 + ∥u∥4σX1

T
). (4.4.2)

For T small enough, it follows from Proposition 4.3.6 that

bj ≲ aj. (4.4.3)

Iterating this procedure O(T−1) many times shows that this is true for T ≲ 1. This completes

the proof.

Existence of Hs solutions

Now, we construct local Hs solutions to (gDNLS) for 1 ≤ s ≤ 3
2
as limits of more regular

solutions.

Indeed, let u0 ∈ Hs. Let u(n) be the globally well-posed Cloc(R;H3
x) solution (to be con-

structed in a later section) to the equation, (i∂t + ∂2x)u
(n) = i|u(n)|2σ∂xu(n),

u
(n)
0 = P<nu0.

(4.4.4)

Let n > m. We see that v(m,n) := u(n) − u(m) satisfies the equation (i∂t + ∂2x)v
(m,n) = i|u(n)|2σ∂xv(m,n) + iG(n,m)∂xu

(m)v(m,n),

v(m,n)(0) = Pm≤·<nu0,
(4.4.5)

where

G(n,m) :=
(|u(n)|2σ − |u(m)|2σ)

u(n) − u(m)
. (4.4.6)

Using Corollary 4.2.11, Sobolev embedding, the fact that σ >
√
3
2

and Proposition 4.3.6, one

easily verifies that G(n,m) satisfies the conditions of Proposition 4.3.7 with ∥G(n,m)∥Z ≲∥u0∥Hs
x

1 (with the implicit constant independent of n and m). One likewise checks using Proposi-

tion 4.3.6 that u(n) satisfies ∥u(n)∥X1
T
≲∥u0∥Hs

x
1 uniformly in n. Hence, by Proposition 4.3.7,

we obtain for T small enough (depending on the size of the Hs
x norm of u0),

∥v(m,n)∥X0
T
≲ ∥Pm≤·<nu0∥L2

x
. (4.4.7)
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Hence, u(n) is Cauchy in X0
T and thus converges to some u ∈ X0

T . We show that in fact

u(n) → u in Xs
T .

To see this, we let anj and aj be admissable frequency envelopes for P<nu0 and u0 respec-

tively, in Hs
x. Clearly (anj ) → (aj) in l2j (N0) as n → ∞. Now let ε > 0. Then thanks to

Proposition 4.4.1, we have

∥P>ju(n)∥Xs
T
≲ ∥(anj )N>j∥l2N (N)∥u0∥Hs

x
. (4.4.8)

Hence, for n ≥ n0(ε) large enough, we obtain the bound,

∥P>ju(n)∥Xs
T
≲ (ε+ ∥(aj)N>j∥l2N (N))∥u0∥Hs

x
(4.4.9)

where the implicit constant is independent of j and n. Hence, there is j = j(ε) such that for

every n > n0, we have

∥P>ju(n)∥Xs
T
≲ ε. (4.4.10)

On the other hand, since u(n) converges in X0
T , it follows that for m,n > n0 large enough

that

∥u(n) − u(m)∥Xs
T
≲ 2js∥u(n) − u(m)∥X0

T
+ ∥P≥ju

(n)∥Xs
T
+ ∥P≥ju

(m)∥Xs
T
≲ ε. (4.4.11)

Hence, u(n) is Cauchy in Xs
T and thus converges to u. It is clear at this regularity that u

solves the equation (gDNLS) in the sense of distributions. This shows existence.

Uniqueness and Lipschitz dependence in X0

Here, we aim to show that solutions in X1
T (and thus, also in Xs

T for s > 1) are unique and

that they satisfy a weak Lipschitz type bound in X0
T . For this, consider the difference of two

solutions u1 and u2, v := u1 − u2. We see that v solves the equation, (i∂t + ∂2x)v = i|u1|2σ∂xv + iG∂xu
2v,

v(0) = u1(0)− u2(0),
(4.4.12)

where

G =
|u1|2σ − |u2|2σ

u1 − u2
. (4.4.13)

We see that Proposition 4.3.7 applies, and we obtain the weak Lipschitz bound

∥u1 − u2∥X0
T
≲ ∥u1(0)− u2(0)∥L2

x
. (4.4.14)

In particular, this shows uniqueness.
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Continuous dependence in Hs

Here, we aim to show that the solution map is continuous inHs. Specifically, we show that for

each R > 0, there is T = T (R) > 0 such that the solution map from {u0 : ∥u0∥Hs < R} to the
corresponding Xs

T space is continuous. By rescaling the data and restricting to small enough

time, we may assume without loss of generality that the conditions of Proposition 4.4.1 are

satisfied.

Now, let u
(n)
0 be a sequence in Hs

x converging to u0 in Hs
x. Let aj and a

(n)
j be the asso-

ciated frequency envelopes for u0 and u
(n)
0 given by (4.3.7). We have (a

(n)
j ) → (aj) in l2.

Now, let ε > 0. Let N = N(ε) be such that ∥a(n)j>N∥l2j ≲ ε. Using Proposition 4.4.1, we

have ∥P>Nu(n)∥Xs
T
≲ ε for all n. On the other hand, using the Lipschitz dependence at low

frequency, we have

∥P<N(u(n) − u)∥Xs
T
≲ 2sN∥u(n)0 − u0∥L2 . (4.4.15)

Now, for n(N) large enough, we have

∥P<Nu(n) − P<Nu∥Xs
T
≲ ε. (4.4.16)

Hence, for such n, we have

∥u(n) − u∥Xs
T
≲ ∥P<N(u(n) − u)∥Xs

T
+ ∥P≥Nu

(n)∥Xs
T
+ ∥P≥Nu∥Xs

T
≲ ε. (4.4.17)

It follows that

lim sup
n→∞

∥u(n) − u∥Xs
T
≲ ε. (4.4.18)

Taking ε→ 0 then yields

lim
n→∞

∥u(n) − u∥Xs
T
= 0 (4.4.19)

as desired. This completes the proof of continuous dependence and also concludes the local

well-posedness portion of the proof of Theorem 4.1.2 when s ≤ 3
2
.

Further discussion of the proofs

We now provide a brief discussion on how one can, in principle, go below the H1
x well-

posedness threshold, as well as justify some of the choices made in the proof.

It is instructive to discuss a version of this gauge transformation method which was suc-

cessfully implemented in Tao’s article [149] which established local well-posedness of the
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Benjamin-Ono equation,  ut +Huxx = uux,

u(0) = u0,
(4.4.20)

in H1
x. The idea in Tao’s paper was to do a type of gauge transformation by defining

essentially,

w = P+hi(e
−iF ) (4.4.21)

where F (t, x) is a suitable spatial primitive of u(t, x) and P+hi is a projection onto large

positive frequencies. Then one proves a priori H2
x estimates for w (which can be translated

into H1
x estimates for u). While the coefficient u in the nonlinearity in Benjamin-Ono is

only of linear order (and so one might at first näıvely suspect that this equation behaves

similarly to (gDNLS) when σ = 1
2
), the spatial primitive F still essentially solves a linear

Schrödinger equation (up to a perturbative error). A refinement of this gauge transformation

idea appeared in [73] in which L2
x well-posedness (among other results) for Benjamin-Ono

was proven. Loosely speaking, in this latter paper, the authors performed a gauge trans-

formation on each frequency scale to remove the leading order paradifferential part of the

nonlinearity and then performed a quadratic normal form correction to remove the milder

terms in the nonlinearity. Our so-called partial gauge transformation is more analogous to

what was done in that paper. Specifically, the analogue of F in our proof is essentially the

family of functions Φj as defined in (4.3.29), which in addition to the frequency localization

scale, takes into account the pointwise size of u relative to the frequency scale. However, in

our case, there is no obvious cancellation arising in the term (i∂tΦj + ∂2xΦj), which forces

us to estimate each term ∂tΦj and ∂
2
xΦj separately. This is one of the major sources for the

losses in our low regularity estimates.

This issue actually also adds technical difficulty when trying to lower the local well-posedness

threshold below H1
x. For instance, when estimating ∂tΦj in Proposition 4.3.6, there are ex-

pressions essentially of the form

P<j∂
−1
x (gv1v2) (4.4.22)

that we bound in L1
TL

∞
x , where g is some bounded function and v1 and v2 are linear ex-

pressions in ux or ux. Unfortunately, in these expressions, it doesn’t seem that typically

the output frequency of the product gv1v2 is comparable to the frequencies of the individ-

ual terms v1 and v2, and so the ∂−1
x can’t be “distributed” amongst these factors to obtain

expressions with lower order derivatives in place of ux. One workaround to this issue could
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be to place any factors of ux arising in such an expression in an appropriate maximal func-

tion/smoothing space as in Proposition 4.2.4. Proceeding this way will likely lead to losses

worse than the 1 − σ derivatives already observed in the current low regularity estimates.

However, this should work in principle to lower the well-posedness threshold below H1
x when

σ is close to 1. We decided not to do this for the sake of simplicity, as our preliminary

calculations suggested that the dependence of the well-posedness threshold on σ would be

rather complicated when s < 1, at least without introducing some new tools.

4.5 High regularity estimates

In this section, we aim to prove a priori H2s
x -type bounds for a global solution u to a family

of regularizations of (gDNLS), i∂tu+ ∂2xu = iηP<k|v|2σux,

u(0) = P<ku0,
(4.5.1)

where k ∈ N, v ∈ C2(R;H∞
x ), 2s is in the range 2 − σ < 2s < 4σ, η is a suitable time-

dependent cutoff function which is equal to 1 on the unit time interval [−1, 1] and supported

within (−2, 2), and u0 ∈ H2s
x has sufficiently small norm. The key difficulty here is to ob-

tain estimates independent of the regularization parameter k. As mentioned earlier, this is

somewhat subtle because the nonlinearity is too rough to directly obtain an energy estimate

by simply applying D2s
x to the equation. Our overarching idea, morally, is to instead obtain

suitable estimates for time derivatives, Ds
tu, of order s < 2σ for solutions to (4.5.1). This

is one of the key technical reasons for truncating the nonlinearity with the time-dependent

cutoff η and working with global in-time solutions to (4.5.1). For small enough data, one

expects to be able to construct a solution u to this equation on the time interval [−2, 2], and

then extend it to a global solution using the fact that u should solve the linear Schrödinger

equation for |t| > 2. The idea of truncating the nonlinearity with a time-dependent cutoff

in order to obtain global in time solutions (to facilitate use of Fourier analysis in the time

variable) is not a new idea. See for instance, [15] and [16].

Before outlining our strategy in more detail, we give an overview of the functional setting

and relevant notation for this problem.
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Function spaces and notation

Here, we fix some basic notation and describe the function spaces used in our construction

of solutions at high regularity.

We will use Sk, S<k and S≥k to denote the temporal variants of the spatial Littlewood-

Paley projections Pk, P<k and P≥k as defined in Section 4.2. We write ϕ(2−jξ) to denote the

spatial Fourier multiplier for Pj and ψ(2
−kτ) to denote the temporal Fourier multiplier for Sk.

We will also need to sometimes distinguish between a compact time interval and the whole

space in our estimates. For this purpose, let us denote for a Banach space X, LptX :=

Lp(R;X) (that is, we use a lowercase t to emphasize when the underlying time interval is

R). For T > 0, we use LpTX := Lp([−T, T ];X) when we want to emphasize that the time

interval is compact.

Next, for the range of 2s ∈ (2 − σ, 4σ) we are considering, the smoothing and maximal

function type norms from the low regularity estimates are not needed. We modify our

function spaces accordingly and only use standard L2
x based Sobolev spaces and standard

Strichartz spaces (see below). Since both spatial and temporal regularity will be relevant in

our analysis, we make the convention from here on that a real number s will correspond to

the Sobolev regularity of a function in the time variable. In light of the scaling of the linear

Schrödinger equation, it is natural to use 2s to denote the corresponding spatial regularity.

With this in mind, for s ≥ 0 and T > 0, we denote the relevant Strichartz type space by

S2s
T := L4

TW
2s,∞
x ∩ L∞

T H
2s
x . We also define the energy type space X 2s

T by the norm,

∥u∥X 2s
T

:= ∥P≤0u∥L∞
T H2s

x
+

(∑
j>0

∥Pju∥2L∞
T H2s

x

) 1
2

. (4.5.2)

Clearly this controls the C([−T, T ];H2s
x ) norm. The reason we opt for this slightly stronger

norm (as opposed to just ∥u∥L∞
T H2s

x
) is because it will be slightly more convenient for proving

frequency envelope bounds. Furthermore, we have the trivial embedding

X2s
T ⊆ X 2s

T . (4.5.3)

Finally, since estimates for time derivatives will play a key role in our analysis, it will

also be convenient to introduce the auxiliary norm

∥u∥Zs
p,q

:= ∥⟨Dt⟩su∥Lp
tL

q
x
+ ∥⟨Dx⟩2su∥Lp

tL
q
x
. (4.5.4)
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When q = 2, we will simply abbreviate this by Zs
p .

The reader should keep in mind that although we will often time-localize u (or the non-

linearity) to be compactly supported in time, some mild care must be taken in the estimates

when nonlocal operators such as Ds
t are involved. This is especially relevant when comparing

LtX and LTX type norms.

A frequency localized H2s
x bound

The key result for this section is the following frequency localized H2s
x a priori bound for

(4.5.1).

Proposition 4.5.1. Let 2−σ < 2s < 4σ, T = 2 and u0 ∈ H2s
x . Suppose that u ∈ C2(R;H∞

x )

solves (4.5.1). Furthermore, let aj be a H2s
x frequency envelope for u0 and let b1j and b2j be

X 2s
T frequency envelopes for u and v, respectively. Let bj := max{b1j , b2j}. Furthermore, let

0 < ε≪ 1 and assume that for each 0 < δ ≪ 1

∥v∥S1+δ
T

+ ∥(i∂t + ∂2x)v∥Zs−1+δ
∞ ∩Sδ

T
≲δ ε. (4.5.5)

Then Pju satisfies the estimate,

∥Pju∥2X 2s
T

≲ a2j∥u0∥2H2s
x
+ b2jε

2σ(∥u∥2X 2s
T

+ ∥u∥2S1
T
) + b2jε

2σ−1∥u∥S1
T
∥u∥X 2s

T
∥v∥X 2s

T

+ b2jε
4σ−2∥u∥2S1

T
∥v∥2X 2s

T
.

(4.5.6)

Furthermore, by square summing, we also have

∥u∥2X 2s
T

≲ ∥u0∥2H2s
x
+ ε2σ(∥u∥2X 2s

T
+ ∥u∥2S1

T
) + ε2σ−1∥u∥S1

T
∥u∥X 2s

T
∥v∥X 2s

T
+ ε4σ−2∥u∥2S1

T
∥v∥2X 2s

T
.

(4.5.7)

Remark 4.5.2. Crucially, it should be noted that the implied constant in the bound above

does not depend on the regularization parameter k.

Remark 4.5.3. The reader should carefully observe the restriction T = 2 and not T ≤ 2

in Proposition 4.5.1. This is because η is localized in time to a unit scale. More work is

required to show that we have suitable bounds for T ≤ 2. This will be studied further in

Section 4.6.

Next, we give a brief outline for how we will obtain such an estimate. As mentioned

above, to minimize the number of derivatives which fall on the rough part of the inhomoge-

neous term, |v|2σ, we will prove what is essentially an energy type estimate for Ds
tu instead
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of D2s
x u and use the bounds for Ds

tu to estimate D2s
x u. This is consistent with the scaling

symmetry of (gDNLS). There is one technical caveat however. Namely, one expects to be

able to convert estimates for Ds
tu to estimates for D2s

x u when the time frequency τ of a

solution u to (4.5.1) is close to −ξ2 where ξ is the spatial frequency (i.e. in the so-called

low modulation region). However, this is not guaranteed due to the presence of the inho-

mogeneous term in the equation. Therefore, we need a suitable way of controlling D2s
x u

for the portion of u which has space-time Fourier support far away from the characteristic

hypersurface τ = −ξ2. In other words, we also need an estimate for u in the so-called high

modulation region.

With this in mind, we split our analysis into two parts. First, we prove an elliptic type

estimate in the high modulation region for solutions to (4.5.1) which will allow us to suitably

control D2s
x u in terms of the portion of D2s

x u localized near the characteristic hypersurface,

as well as a lower order term stemming from the nonlinearity. To control D2s
x u in the low

modulation region, we essentially obtain an energy type estimate for Ds
tu (the benefit being

that we only have to differentiate the nonlinearity s times in the time variable as opposed to

2s times in the spatial variable). When u is localized near the characteristic hypersurface,

this is precisely the regime in which we expect to be able to suitably control D2s
x u by Ds

tu.

Proposition 4.5.1 will then follow from combining the low and high modulation analysis.

The high modulation estimate

We begin with the high modulation estimate, Lemma 4.5.4. This will be useful for estimating

the portion of a (time-localized) solution to (4.5.1) which has space-time Fourier support

away from the characteristic hypersurface. This can also be thought of as an elliptic space-

time estimate.

Lemma 4.5.4. Let u0 ∈ H∞
x and suppose u ∈ C1(R;H∞

x ) solves the equation, (i∂t + ∂2x)u = f,

u(0) = u0.
(4.5.8)

Let 0 ≤ s ≤ 1, j, k > 0, p, q ∈ [1,∞] and suppose |k − 2j| > 4. Then PjSku satisfies the

estimate,

∥PjSk⟨Dx⟩2su∥Lp
tL

q
x
+ ∥PjSk⟨Dt⟩su∥Lp

tL
q
x
≲ ∥P̃jS̃k⟨Dt⟩s−1f∥Lp

tL
q
x
. (4.5.9)

The result also holds for k = 0, when S0 is replaced by S≤0.
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Proof. We prove the estimate for ⟨Dx⟩2su. The estimate for ⟨Dt⟩su is similar. Notice that

[Ft,x(⟨Dx⟩2sSkPju)](τ, ξ) = ⟨ξ⟩2sψ(2−kτ)ϕ(2−jξ)[Ft,x(S̃kP̃ju)](τ, ξ)

= − ⟨ξ⟩2s

τ + ξ2
ψ(2−kτ)ϕ(2−jξ)[Ft,xS̃kP̃j(i∂t + ∂2x)u](τ, ξ).

(4.5.10)

Hence, by Young’s inequality and (4.5.8), we have (using that ψ(2−kτ)ϕ(2−jξ) is supported

away from τ + ξ2 = 0),

∥⟨Dx⟩2sSkPju∥Lp
tL

q
x
≲ ∥F−1

t,x [
⟨ξ⟩2s

τ + ξ2
ψ(2−kτ)ϕ(2−jξ)]∥L1

tL
1
x
∥(i∂t + ∂2x)S̃kP̃ju∥Lp

tL
q
x

≲ ∥F−1
t,x [

⟨ξ⟩2s

τ + ξ2
ψ(2−kτ)ϕ(2−jξ)]∥L1

tL
1
x
∥S̃kP̃jf∥Lp

tL
q
x
.

(4.5.11)

It remains then to show that

∥F−1
t,x [

⟨ξ⟩2s

τ + ξ2
ψ(2−kτ)ϕ(2−jξ)]∥L1

tL
1
x
≲ 2−k(1−s). (4.5.12)

A simple change of variables shows that

∥F−1
t,x [

⟨ξ⟩2s

τ + ξ2
ψ(2−kτ)ϕ(2−jξ)]∥L1

tL
1
x
= ∥F−1

t,x [
⟨2jξ⟩2s

2kτ + 22jξ2
ψ(τ)ϕ(ξ)]∥L1

tL
1
x
. (4.5.13)

Then we have

⟨2jξ⟩2s

2kτ + 22jξ2
ψ(τ)ϕ(ξ) = 2k(s−1) (2

−k + 22j−kξ2)s

τ + 22j−kξ2
ψ(τ)ϕ(ξ) := 2k(s−1)Fj,k(τ, ξ). (4.5.14)

It is easy to see that for multi-indices 0 ≤ |α| ≤ 3,

|∂ατ,ξFj,k| ≲ 1 (4.5.15)

so that (since ϕψ is supported on [−2, 2]× [−2, 2])

∥∂ατ,ξFj,k∥L1
τ,ξ

≲ 1 (4.5.16)

with bound independent of j and k. It follows that

∥F−1
t,x [

⟨2jξ⟩2s

2kτ + 22jξ2
ψ(τ)ϕ(ξ)]∥L1

tL
1
x
≲ 2k(s−1)∥(1 + |x|+ |t|)−3∥L1

tL
1
x
≲ 2k(s−1) (4.5.17)

which is what we wanted to show. The case for ⟨Dt⟩su is similar.



CHAPTER 4. DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS 302

From this lemma, we obtain a very useful corollary which will allow us to control deriva-

tives of u in the high modulation region with convenience and reduce matters to proving a

suitable low modulation bound.

Corollary 4.5.5. Let u ∈ C2(R;H∞
x ), and let the notation be as in Lemma 4.5.4. Then for

every δ > 0 and j > 0, we have

a) If 0 ≤ s < 1,

∥Pj⟨Dx⟩2su∥Lp
tL

q
x
+ ∥Pj⟨Dt⟩su∥Lp

tL
q
x
≲δ ∥S̃2jPj⟨Dx⟩2su∥Lp

tL
q
x
+ ∥P̃j⟨Dt⟩s−1+δf∥Lp

tL
q
x

(4.5.18)

and

b) If 1 ≤ s < 2σ,

∥Pj⟨Dx⟩2su∥Lp
tL

2
x
+ ∥Pj∂t⟨Dt⟩s−1u∥Lp

tL
2
x
≲δ ∥S̃2jPj⟨Dx⟩2su∥Lp

tL
2
x
+ ∥P̃jf∥Zs−1+δ

p,2
(4.5.19)

where S̃2j = S[2j−4,2j+4].

Proof. For a), this follows from the Bernstein type estimate

∥D2s
x S̃2jPju∥Lp

tL
q
x
∼ ∥Ds

t S̃2jPju∥Lp
tL

q
x
and from Lemma 4.5.4 by summing over k > 0, |k −

2j| > 4 (which is where the requirement of having δ > 0 comes in to play). Then b)

follows from part a) with u replaced by ∂tu and s replaced by s− 1, and then by expanding

∂tD
2s−2
x Pju = i∂2xD

2s−2
x Pju− iD2s−2

x Pjf .

Remark 4.5.6. We remark that in part b), if f takes the form of f = iηP<k|u|2σux as in

(4.5.1) then if δ is sufficiently small, we expect to be able to control the last term on the

right as long as 2s − 2 < 2σ which is satisfied automatically, because 2s < 4σ < 2σ + 2 in

the range 1
2
< σ < 1. If we were looking at the case σ > 1, this would present a new limiting

threshold for which we expect to obtain estimates for u, c.f. [154].

In light of the above remark, one should observe at this point that the high modulation

estimate above essentially reduces proving Proposition 4.5.1 to obtaining an estimate for the

L∞
T H

2s
x norm of a solution u to (4.5.1) in the low modulation region, as well as controlling

an essentially perturbative source term stemming from the nonlinearity in (4.5.1). With this

in mind, we now turn to the low modulation estimate, which is essentially the heart of the

matter.



CHAPTER 4. DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS 303

Low modulation estimates

Next we prove suitable bounds for the L∞
T H

2s
x norm of a solution u to (4.5.1) in the low

modulation region. Specifically, we prove the following energy type bound to control the

portion of u which is localized near the characteristic hypersurface.

Lemma 4.5.7. Let u0 ∈ H2s
x and suppose that u ∈ C2(R;H∞

x ) solves (4.5.1). Let T = 2,

2 − σ < 2s < 4σ, aj be an admissible H2s
x frequency envelope for u0, and b1j , b

2
j be X 2s

T

frequency envelopes for u and v, respectively. Take bj := max{b1j , b2j}. Let 0 < ε ≪ 1 and

suppose v satisfies the estimates,

∥v∥S1+δ
T

+ ∥(i∂t + ∂2x)v∥Zs−1+δ
∞ ∩Sδ

T
≲δ ε (4.5.20)

for each 0 < δ ≪ 1. Then for every j ≥ 0, we have

∥S̃2jPjD
2s
x u∥2L∞

T L2
x
≲δ a

2
j∥u0∥2H2s

x
+ b2jε

2σ(∥u∥2X 2s
T

+ ∥u∥2S1
T
) + b2jε

2σ−1∥u∥S1
T
∥u∥X 2s

T
∥v∥X 2s

T

+ b2jε
4σ−2∥u∥2S1

T
∥v∥2X 2s

T
.

(4.5.21)

Remark 4.5.8. As a brief but important remark, it should be noted that for α ≥ 0 there is

no need to distinguish between ∥u∥L∞
t Hα

x
and ∥u∥L∞

T Hα
x
. This is because outside of [−2, 2], u

solves a linear Schrödinger equation, and so the Hα
x norms are constant on both (−∞,−2]

and [2,∞).

It will also be convenient to introduce the notation ṽ := η̃v where η̃ is a time-dependent

cutoff supported in (−2, 2) which is equal to 1 on the support of η. For notational conve-

nience, we also write |v|2σ<k to denote P<k|v|2σ. Now, we begin with the proof of the energy

type bound in Lemma 4.5.7.

Proof. Note that we can write η|v|2σ<k = η|ṽ|2σ<k. Next, we apply S̃2jPj := S[2j−4,2j+4]Pj to the

equation and see that S̃2jPju solves the equation,

(i∂t + ∂2x)S̃2jPju = iS̃2jPj(η|ṽ|2σ<kux), (4.5.22)

with initial data (S̃2jPju)(0). Next, we do a paradifferential expansion of the “nonlinear”

term iS̃2jPj(η|ṽ|2σ<kux), in both the space and time variable, which splits this term into five

interactions. Indeed, first by commuting the spatial projection Pj, we have

S̃2jPj(iη|ṽ|2σ<kux) = S̃2j(iηP<j−4|ṽ|2σ<k∂xPju) + S̃2j(iη[Pj, P<j−4|ṽ|2σ<k]∂xu)
+ S̃2jPj(iηP≥j−4|ṽ|2σ<k∂xu).

(4.5.23)
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Then by commuting the temporal projection S̃2j in the first term, we obtain

S̃2jPj(iη|ṽ|2σ<kux) = S<2j−8(iηP<j−4|ṽ|2σ<k)∂xPjS̃2ju+ [S̃2j, S<2j−8(iηP<j−4|ṽ|2σ<k)]∂xPju
+ S̃2j(S≥2j−8(iηP<j−4|ṽ|2σ<k)∂xPju) + S̃2j(iη[Pj, P<j−4|ṽ|2σ<k]∂xu)
+ iS̃2jPj(ηP≥j−4|ṽ|2σ<k∂xu).

(4.5.24)

We label these terms in the order they appear above as A1, . . . , A5.

We make a brief remark about each of the above interactions before proceeding with the

estimates. The first term, A1, which corresponds to the low-high interaction (in spatial

frequency) between the coefficient iη|ṽ|2σ<k and ∂xu reacts well to a standard energy type

estimate for PjS̃2ju since the single spatial derivative ∂x on PjS̃2ju can be integrated by

parts onto the coefficient iη|ṽ|2σ<k. The terms A2, A3 and A4 are expected to be treated per-

turbatively. These in a very loose sense correspond to more balanced frequency interactions

for which (space or time) derivatives can be distributed somewhat evenly between the terms

∂xu and iη|ṽ|2σ<k. The most serious issue comes from A5, which is the situation in which the

coefficient iη|ṽ|2σ<k is at high spatial frequency compared to ∂xu. Some care must be taken

here to ensure that this term is not “differentiated” 2s times in the spatial variable, but

instead “differentiated” at most only s times in the time variable.

Now, we continue with the proof. We begin with a standard energy type estimate. In-

deed, multiplying (4.5.22) by −i24jsS̃2jPju, taking real part and integrating over R in the

spatial variable and from 0 to T with |T | ≤ 2 gives,

∥D2s
x S̃2jPju∥2L∞

T L2
x
≲ 24js∥(S̃2jPju)(0)∥2L2

x
+

5∑
k=1

Ikj (4.5.25)

where

Ikj := 24js
∫ T

−T

∣∣Re∫
R
−iAkS̃2jPju

∣∣. (4.5.26)

Now, we estimate each term. We need to deal with both the initial data term 24js∥(S̃2jPju)(0)∥2L2
x

and the Ikj terms for k = 1, ..., 5. First we deal with the latter terms.

Estimate for I1j



CHAPTER 4. DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS 305

We integrate by parts and use Bernstein’s inequality to obtain

I1j = 24js
∫ T

−T

∣∣Re∫
R
S<2j−8(ηP<j−4|ṽ|2σ<k)∂xS̃2jPjuS̃2jPju

∣∣
≲ 24js

∫ T

−T

∣∣Re∫
R
S<2j−8∂x(ηP<j−4|ṽ|2σ<k)|S̃2jPju|2

∣∣
≲ 24js∥v∥2σ−1

L∞
T L∞

x
∥vx∥L1

TL
∞
x
∥Pju∥2L∞

T L2
x

≲ ∥v∥2σS1
T
∥D2s

x Pju∥2L∞
T L2

x

≲ b2j∥v∥2σS1
T
∥u∥2X 2s

T

≲ b2jε
2σ∥u∥2X 2s

T
.

(4.5.27)

Estimate for I2j

As mentioned above, this term can be treated perturbatively. For simplicity, we denote

g := iηP<j−4|ṽ|2σ<k. Then Lemma 4.2.1 gives

[S̃2j, S<2j−8(iηP<j−4|ṽ|2σ<k)]∂xPju = 2−2j

∫
R2

K(s)[∂tS<2j−8g](t+ s1, x)[∂xPju](t+ s2, x)ds

(4.5.28)

for some K ∈ L1(R2). Hölder’s inequality, Minkowski’s inequality, Bernstein’s inequality

and the fact that ∥Pju∥L∞
t L2

x
= ∥Pju∥L∞

T L2
x
then gives

I2j ≲ 2−2j24js
∫
R2

|K(s)|
∫ T

−T

∫
R
|[∂tS<2j−8g](t+ s1, x)[∂xPju](t+ s2, x)||(S̃2jPju)(t, x)|dxdtds

≲ 2−j24js∥∂tS<2j−8g∥L2
tL

∞
x
∥Pju∥2L∞

T L2
x

≲ 2(ε0−1)j24js∥∂tS<2j−8g∥
L2
tL

1
ε0
x

∥Pju∥2L∞
T L2

x

≲ ∥D
1
2
+

ε0
2

t (ηP<j−4|ṽ|2σ<k)∥
L2
tL

1
ε0
x

∥PjD2s
x u∥2L∞

T L2
x
,

(4.5.29)

where ε0 < δ is some small positive constant. From the fractional Leibniz rule and then the

vector valued Moser bound Proposition 4.2.7, Sobolev embedding and then Corollary 4.5.5,

we obtain

∥D
1
2
+

ε0
2

t (ηP<j−4|ṽ|2σ<k)∥
L2
tL

1
ε0
x

≲ ∥ṽ∥2σS1
T
+ ∥ṽ∥2σ−1

L∞
t L∞

x
∥D

1
2
+

ε0
2

t ṽ∥
L4
tL

1
ε0
x

≲ ε2σ.

(4.5.30)
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Hence,

I2j ≲ b2jε
2σ∥u∥2X 2s

T
. (4.5.31)

Estimate for I3j

This term can also be dealt with perturbatively. Indeed, we can use Hölder and then Bern-

stein’s inequality to shift a factor of D
1
2
t onto the rough part of the nonlinearity,

I3j ≲ 24js∥S̃2j(S≥2j−8(ηP<j−4|ṽ|2σ<k)∂xPju)∥L2
tL

2
x
∥Pju∥L2

TL
2
x

≲ 2j∥S≥2j−8(ηP<j−4|ṽ|2σ<k)∥L2
tL

∞
x
∥PjD2s

x u∥2L∞
T L2

x

≲ ∥S≥2j−8D
1
2
t (ηP<j−4|ṽ|2σ<k)∥L2

tL
∞
x
∥PjD2s

x u∥2L∞
T L2

x

≲ b2j∥D
1
2
+

ε0
2

t (ηP<j−4|ṽ|2σ<k)∥
L2
tL

1
ε0
x

∥u∥2X 2s
T
.

(4.5.32)

By a similar argument to the estimate for I2j , we then obtain,

I3j ≲ b2jε
2σ∥u∥2X 2s

T
. (4.5.33)

Estimate for I4j

This term is also straightforward to deal with directly. The estimate is somewhat analo-

gous to I2j . We have by Lemma 4.2.1,

[Pj, P<j−4|ṽ|2σ<k]∂xu = 2−j
∫
R2

K(y)[P<j−4∂x|ṽ|2σ<k](x+ y1)[P̃j∂xu](x+ y2)dy (4.5.34)

for some integrable kernelK ∈ L1(R2). Hence, by Minkowski’s inequality, Hölder’s inequality

and Bernstein’s inequality,

I4j ≲ ∥∂x|ṽ|2σ<k∥L1
TL

∞
x
∥D2s

x P̃ju∥2L∞
T L2

x

≲ b2jε
2σ∥u∥2X 2s

T
.

(4.5.35)

Estimate for I5j

As remarked on earlier, this is the most troublesome term to deal with since the rough

coefficient |ṽ|2σ<k is at high spatial frequency. To deal with this, first write w = ηu. We

expand using the Littlewood-Paley trichotomy,

S̃2jPj(ηP≥j−4|ṽ|2σ<k∂xu) =
∑
m≥j

S̃2jPj(P̃m|ṽ|2σ<k∂xP̃mw) + S̃2jPj(P̃j|ṽ|2σ<k∂xP̃<jw). (4.5.36)
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The first term above, where the frequency interactions between ∂xw and |ṽ|2σ<k are balanced,
is relatively straightforward to estimate. Indeed,

24js
∫ T

−T
|
∫
R
S̃2jPju

∑
m≥j

S̃2jPj(P̃m|ṽ|2σ<k∂xP̃mw)|

≲ ∥D2s
x S̃2jPju∥L∞

T L2
x
22js∥

∑
m≥j

S̃2jPj(P̃m|ṽ|2σ<k∂xP̃mw)∥L1
TL

2
x

≲ ∥D2s
x S̃2jPju∥L∞

T L2
x

∑
m≥j

22js∥P̃m|ṽ|2σ<k∂xP̃mw∥L1
tL

2
x

≲ bj∥u∥X 2s
T

∑
m≥j

22js∥P̃m|ṽ|2σ<k∂xP̃mw∥L1
tL

2
x

≲ bj∥∂x|ṽ|2σ<k∥L1
TL

∞
x
∥u∥X 2s

T

∑
m≥j

22(j−m)s∥P̃mD2s
x u∥L∞

T L2
x

≲ bjε
2σ∥u∥2X 2s

T

∑
m≥j

22(j−m)sbm

≲ b2jε
2σ∥u∥2X 2s

T

(4.5.37)

where in the last line we used the slowly varying property of bj.

For the second term in (4.5.36), we distribute the temporal projection to obtain

S̃2jPj(P̃j|ṽ|2σ<k∂xP̃<jw) = S̃2jPj(P̃j|ṽ|2σ<k∂xP̃<jS≥2j−8w) + S̃2jPj(P̃jS̃2j|ṽ|2σ<k∂xP<jS<2j−8w).

(4.5.38)

For the first term in (4.5.38), we use Bernstein’s inequality and then Corollary 4.5.5, which

yields

22js∥S̃2jPj(P̃j|ṽ|2σ<k∂xP̃<jS≥2j−8w)∥L1
TL

2
x
≲ 2−jε0∥D1+ε0

x |v|2σ∥L1
TL

∞
x
∥S≥2j−8D

s
tw∥L∞

t L2
x

≲ 2−jε0∥D1+ε0
x |v|2σ∥L1

TL
∞
x
∥P≤0S≥2j−8D

s
tw∥L∞

t L2
x

+ 2−jε0∥D1+ε0
x |v|2σ∥L1

TL
∞
x

(∑
m>0

∥PmDs
tw∥2L∞

t L2
x

) 1
2

≲ 2−jε0∥D1+ε0
x |v|2σ∥L1

TL
∞
x
(∥u∥X 2s

T
+ ∥g∥Zs−1+δ

∞
)

(4.5.39)

where g := (i∂t + ∂2x)w and 0 < ε0 ≪ δ is some small positive constant. If ε0 is small

enough, then Corollary 4.2.11 gives ∥D1+ε0
x |v|2σ∥L1

TL
∞
x

≲ ∥v∥2σS1+δ
T

≲ ε2σ. Then finally by
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taking 2−jε0 ≲ bj, it follows that

22js∥S̃2jPj(P̃j|ṽ|2σ<k∂xP̃<jS≥2j−8w)∥L1
TL

2
x
≲ bjε

2σ(∥u∥X 2s
T

+ ∥g∥Zs−1+δ
∞

). (4.5.40)

Now we look at controlling the second term in (4.5.38). We use Bernstein’s inequality and

the fact that w = ηu is time-localized to obtain

22js∥S̃2jPj(P̃jS̃2j|ṽ|2σ<k∂xP<jS<2j−8w)∥L1
TL

2
x
≲ 22js∥P̃jS̃2j|ṽ|2σ<k∂xP<jS<2j−8w∥L1

tL
2
x

≲ ∥u∥S1
T
∥Ds

t P̃jS̃2j|ṽ|2σ∥L2
tL

2
x
.

(4.5.41)

Here we crucially ensured that the time derivative Ds
t , rather than the spatial derivative D2s

x

fell on the rough part of the nonlinearity.

To control ∥Ds
t P̃jS̃2j|ṽ|2σ∥L2

tL
2
x
we will need the following low modulation Moser type es-

timate.

Lemma 4.5.9. Given the conditions of Lemma 4.5.7, the following estimate holds:

∥P̃jS̃2jD
s
t |ṽ|2σ∥L2

tL
2
x
≲ bjε

2σ−1(ε+ ∥v∥X 2s
T
). (4.5.42)

We will postpone the proof of this technical lemma until the end of the section.

Combining Lemma 4.5.9 and the estimate (4.5.37) allows us to estimate I5j by

I5j ≲ b2jε
2σ(∥u∥2X 2s

T
+ ∥u∥2S1

T
+ ∥g∥2

Zs−1+δ
∞

) + b2jε
2σ−1∥u∥S1

T
∥u∥X 2s

T
∥v∥X 2s

T
. (4.5.43)

Finally, combining the estimates for I1j , . . . , I
5
j now yields

∥D2s
x S̃2jPju∥2L∞

T L2
x
≲ 24js∥(S̃2jPju)(0)∥2L2

x
+ b2jε

2σ(∥u∥2X 2s
T

+ ∥u∥2S1
T
+ ∥g∥2

Zs−1+δ
∞

)

+ b2jε
2σ−1∥u∥S1

T
∥u∥X 2s

T
∥v∥X 2s

T
.

(4.5.44)

Next, we need to control (S̃2jPju)(0) in terms of Pju0. To accomplish this, we use the high

modulation estimate Lemma 4.5.4. Namely,

22js∥(S̃2jPju)(0)∥L2
x
≲ ∥D2s

x Pju0∥L2
x
+ ∥(1− S̃2j)PjD

2s
x u∥L∞

t L2
x

≲ ∥D2s
x Pju0∥L2

x
+ ∥S≤0PjD

2s
x u∥L∞

t L2
x
+

∑
m>0,|m−2j|>4

∥PjSmD2s
x u∥L∞

t L2
x

≲ ∥D2s
x Pju0∥L2

x
+ ∥⟨Dt⟩s−1+δP̃j(η|ṽ|2σ<kux)∥L∞

t L2
x
.

(4.5.45)
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In light of (4.5.44) and (4.5.45), to complete the proof of Lemma 4.5.7 it remains to estimate

the latter term on the right hand side of (4.5.45) as well as ∥g∥Zs−1+δ
∞

. This is done in the

following lemma.

Lemma 4.5.10. Let s, σ, T, u0, u, aj and bj be as in Proposition 4.5.1. Let v also be as in

Proposition 4.5.1, but with (4.5.5) replaced by the weaker assumption that for all 0 < ε≪ 1

and 0 < δ ≪ 1,

∥v∥S1+δ
T

+ ∥(i∂t + ∂2x)v∥
Z

s− 3
2+δ

∞
≲δ ε. (4.5.46)

Then we have

∥P̃j(η|ṽ|2σ<kux)∥Zs−1+δ
∞

≲ bjε
2σ(∥u∥S1

T
+ ∥u∥X 2s−1+cδ

T
) + bjε

2σ−1∥u∥S1
T
∥v∥X 2s−1+cδ

T
(4.5.47)

and

∥(i∂t + ∂2x)w∥Zs−1+δ
∞

:= ∥g∥Zs−1+δ
∞

≲ ∥u∥X 2s−1+cδ
T

+ ∥u∥S1
T
+ ∥u∥S1

T
∥v∥X 2s−1+cδ

T
, (4.5.48)

for some constant c > 0.

Remark 4.5.11. The reader may wonder why we estimate the full Zs−1+δ
∞ norm in the

above lemma. Although the argument up until this point only requires us to estimate the

component of the Zs−1+δ
∞ norm involving the time derivative, we will need to also estimate the

component involving spatial derivatives in the next section when we establish well-posedness

for the full equation in X 2s
T .

Proof. We begin with (4.5.47). For the purpose of not having to track all the factors of δ

that appear throughout the proof, we will denote by c > 0 some positive constant which is

allowed to grow from line to line. First we study the component of the Zs−1+δ
∞ norm which

involves the time derivative. By considering separately temporal frequencies larger than 22j

and smaller than 22j, we obtain (using the vector valued Bernstein inequality),

∥P̃j⟨Dt⟩s−1+δ(η|ṽ|2σ<kux)∥L∞
t L2

x
≲ 2−2jδ∥P̃j⟨Dx⟩2s−2+cδ(η|ṽ|2σ<kux)∥L∞

t L2
x

+ 2−2jδ∥P̃jS>2j⟨Dt⟩s−1+cδ(η|ṽ|2σ<kux)∥L∞
t L2

x
.

(4.5.49)

Hence,

∥P̃j(η|ṽ|2σ<kux)∥Zs−1+δ
∞

≲ 2−2jδ∥P̃j⟨Dx⟩2s−2+cδ(η|ṽ|2σ<kux)∥L∞
t L2

x

+ 2−2jδ∥P̃jS>2j⟨Dt⟩s−1+cδ(η|ṽ|2σ<kux)∥L∞
t L2

x
.

(4.5.50)

We now look at the first term in (4.5.50). The bound

2−2jδ∥P̃j⟨Dx⟩2s−2+cδ(η|ṽ|2σ<kux)∥L∞
t L2

x
≲ bjε

2σ∥u∥X 2s−1+cδ
T

+ bjε
2σ−1∥u∥S1

T
∥v∥X 2s−1+cδ

T
(4.5.51)
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is a straightforward consequence of 2−2jδ ≲ bj and the fractional Leibniz rule if 2s− 2 < 1.

If 2s− 2 ≥ 1, then for the homogeneous component, we have

∥D2s−2+cδ
x (iηP<k|v|2σux)∥L∞

t L2
x
≲ ∥D2s−3+cδ

x (iηP<k|v|2σuxx)∥L∞
t L2

x

+ ∥ηD2s−3+cδ
x (ReP<k(|v|2σ−2vvx)ux)∥L∞

t L2
x
.

(4.5.52)

By the fractional Leibniz rule and Sobolev embedding, clearly the first term above can be

controlled by ε2σ∥u∥X 2s−1+cδ
T

. Using the fact that 2s− 3 < 2σ− 1 and applying the fractional

Leibniz rule, Corollary 4.2.11 (when D2s−3+cδ
x falls on |v|2σ−2v) and interpolation, we can

control the second term by

ε2σ∥u∥X 2s−1+cδ
T

+ ε2σ−1∥u∥S1
T
∥v∥X 2s−1+cδ

T
(4.5.53)

to obtain the desired bound (4.5.51).

Now, to estimate the second term on the right hand side of (4.5.50), we use that 2−2jδ ≲ bj

and estimate

2−2jδ∥P̃jS>2j⟨Dt⟩s−1+cδ(η|ṽ|2σ<kux)∥L∞
t L2

x

≲ bj∥P̃jS>2j⟨Dt⟩s−1+cδ(η|ṽ|2σ<kux)∥L∞
t L2

x

≲ bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−1+cδ(η|ṽ|2σ<kux)∥L∞
t L2

x

≲ bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−1+cδ(S<m−4(η|ṽ|2σ<k)S̃mux)∥L∞
t L2

x

+ bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−1+cδ(S≥m−4(η|ṽ|2σ<k)ux)∥L∞
t L2

x
.

(4.5.54)

For the first term in (4.5.54), we have by Bernstein’s inequality,

bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−1+cδ(S<m−4(η|ṽ|2σ<k)S̃mux)∥L∞
t L2

x

≲ bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−
1
2
+cδ(S<m−4(η|ṽ|2σ<k)S̃mu)∥L∞

t L2
x

+ bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−1+cδ(S<m−4(η∂x|ṽ|2σ<k)S̃mu)∥L∞
t L2

x
.

(4.5.55)
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Using Bernstein’s inequality and Corollary 4.5.5, we may control the first term by

bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−
1
2
+cδ(S<m−4(η|ṽ|2σ<k)S̃mu)∥L∞

t L2
x

≲ bj∥v∥2σS1
T
∥⟨Dt⟩s−

1
2
+cδu∥L∞

t L2
x

≲ bjε
2σ∥⟨Dt⟩s−

1
2
+cδu∥L∞

t L2
x

≲ bjε
2σ(∥u∥X 2s−1+cδ

T
+ ∥η|v|2σ<kux∥

Z
s− 3

2+cδ
∞

).

(4.5.56)

For the second term in (4.5.55), we obtain also

bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−1+cδ(S<m−4(η∂x|ṽ|2σ<k)S̃mu)∥L∞
t L2

x

≲ bj∥|ṽ|2σ∥L∞
t H1

x
∥⟨Dt⟩s−1+cδu∥L∞

t L∞
x

≲ bj∥|ṽ|2σ∥L∞
t H1

x
∥⟨Dt⟩s−1+cδ⟨Dx⟩

1
2
+δu∥L∞

t L2
x

≲ bjε
2σ(∥⟨Dt⟩s−

1
2
+cδu∥L∞

t L2
x
+ ∥⟨Dx⟩s−

1
2
+cδu∥L∞

t L2
x
)

≲ bjε
2σ(∥u∥X 2s−1+cδ

T
+ ∥η|v|2σ<kux∥

Z
s− 3

2+cδ
∞

).

(4.5.57)

For the second term in (4.5.54), we obtain

bj
∑
m≥2j

∥P̃jSm⟨Dt⟩s−1+cδ(S≥m−4(η|ṽ|2σ<k)ux)∥L∞
t L2

x
≲ bj∥ux∥L∞

T L2
x
∥⟨Dt⟩s−1+cδ(η|ṽ|2σ<k)∥L∞

t L∞
x

≲ bj∥u∥S1
T
∥⟨Dt⟩s−1+cδ(η|ṽ|2σ<k)∥L∞

t L∞
x
.

(4.5.58)

We have by Sobolev embedding, the fractional Leibniz rule and the Moser bound Proposi-

tion 4.2.8,

∥⟨Dt⟩s−1+cδ(η|ṽ|2σ<k)∥L∞
t L∞

x

≲ ∥⟨Dt⟩s−1+cδ(η|ṽ|2σ<k)∥
L∞
x L

1
δ
t

≲ ∥|ṽ|2σ∥
L∞
x L

2
δ
t

+ ∥⟨Dt⟩s−1+cδ|ṽ|2σ<k∥
L∞
x L

2
δ
t

≲ ∥|ṽ|2σ∥
L

2
δ
t L

∞
x

+ ∥|ṽ|2σ−1∥
L∞
x L

4
δ
t

∥⟨Dt⟩s−1+cδṽ∥
L∞
x L

4
δ
t

≲ ε2σ + ∥|ṽ|2σ−1∥
L

4
δ
t L

∞
x

∥⟨Dt⟩s−1+cδṽ∥
L

4
δ
t L

∞
x

≲ ε2σ + ∥v∥2σ−1
S1
T

∥⟨Dt⟩s−1+cδṽ∥
L

4
δ
t L

∞
x

.

(4.5.59)
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Now, notice that by Corollary 4.5.5,

∥⟨Dt⟩s−1+cδṽ∥
L

4
δ
t L

∞
x

≲
∑
j≥0

∥⟨Dt⟩s−1+cδPj ṽ∥
L

4
δ
t L

∞
x

≲
∑
j≥0

∥⟨Dt⟩s−1+cδ⟨Dx⟩
1
2Pj ṽ∥

L
4
δ
t L

2
x

≲
∑
j≥0

∥⟨Dx⟩s−
1
2
+cδPj ṽ∥

L
4
δ
t L

2
x

+
∑
j≥0

∥⟨Dt⟩s−
1
2
+cδPj ṽ∥

L
4
δ
t L

2
x

≲ ∥ṽ∥X 2s−1+cδ
T

+
∑
j≥0

(
∥⟨Dx⟩2s−1+cδPj ṽ∥

L
4
δ
t L

2
x

+ ∥P̃j⟨Dt⟩s−
3
2
+cδ(i∂t + ∂2x)ṽ∥

L
4
δ
t L

2
x

)
≲ ∥v∥X 2s−1+cδ

T
+
∑
j≥0

∥P̃j⟨Dt⟩s−
3
2
+cδ(i∂t + ∂2x)ṽ∥

L
4
δ
t L

2
x

.

(4.5.60)

To control the latter term above, there are two cases. If s − 3
2
< 0, then this term can be

easily controlled by ε by commuting (i∂t + ∂2x) with η̃ and applying Hölder’s inequality. If

s− 3
2
≥ 0, then we have (after possibly enlarging cδ)∑
j≥0

∥P̃j⟨Dt⟩s−
3
2
+cδ(i∂t + ∂2x)ṽ∥

L
4
δ
t L

2
x

≲ ∥⟨Dt⟩s−
3
2
+cδ(η(i∂t + ∂2x)v)∥

L
4
δ
t L

2
x

+ ∥⟨Dt⟩s−
3
2
+cδ(∂tη̃v)∥

L
4
δ
t L

2
x

≲
∑
k≥0

∥⟨Dt⟩s−
3
2
+cδSk(η(i∂t + ∂2x)v)∥

L
4
δ
t L

2
x

+ ∥⟨Dt⟩s−
3
2
+cδSk(∂tη̃v)∥

L
4
δ
t L

2
x

.

(4.5.61)

By doing a paraproduct expansion of Sk(η(i∂t+∂
2
x)v) = Sk(S<k−4η(i∂t+∂

2
x)S̃kv)+Sk(S≥k−4η(i∂t+

∂2x)v), using Bernstein and Hölder’s inequality, summing over k, and possibly enlarging the

factor of cδ, we obtain∑
k≥0

∥⟨Dt⟩s−
3
2
+cδSk(η(i∂t + ∂2x)v)∥

L
4
δ
t L

2
x

≲ ∥(i∂t + ∂2x)v∥
Z

s− 3
2+cδ

∞
≲ ε. (4.5.62)

A similar argument involving a paraproduct expansion of Sk(∂tηv) can be used to show

∥⟨Dt⟩s−
3
2
+cδSk(∂tηv)∥

L
4
δ
t L

2
x

≲ ε. (4.5.63)

Therefore, the second term in (4.5.54) can be controlled by

bjε
2σ∥u∥S1

T
+ bjε

2σ−1∥u∥S1
T
∥v∥X 2s−1+cδ

T
. (4.5.64)



CHAPTER 4. DERIVATIVE NONLINEAR SCHRÖDINGER EQUATIONS 313

Combining this and (4.5.55) with (4.5.51) yields the estimate,

∥P̃j(η|ṽ|2σ<kux)∥Zs−1+δ
∞

≲ bjε
2σ(∥u∥X 2s−1+cδ

T
+ ∥u∥S1

T
+ ∥η|v|2σ<kux∥

Z
s− 3

2+cδ
∞

)

+ bjε
2σ−1∥u∥S1

T
∥v∥X 2s−1+cδ

T
.

(4.5.65)

By square summing (4.5.65) and applying (4.5.65) with s− 1 replaced by s− 3
2
, we obtain

∥η|v|2σ<kux∥
Z

s− 3
2+cδ

∞
≲ ε2σ(∥u∥X 2s−1+cδ

T
+ ∥u∥S1

T
+ ∥η|v|2σ<kux∥Zs−2+cδ

∞
)

+ ε2σ−1∥u∥S1
T
∥v∥X 2s−1+cδ

T

(4.5.66)

and since s < 2, it follows that if δ is small enough, then

∥η|v|2σ<kux∥Zs−2+cδ
∞

≲ ε2σ∥u∥X 2s−1+cδ
T

. (4.5.67)

Therefore, the bound

∥P̃j(η|ṽ|2σ<kux)∥Zs−1+δ
∞

≲ bjε
2σ(∥u∥X 2s−1+cδ

T
+ ∥u∥S1

T
) + bjε

2σ−1∥u∥S1
T
∥v∥X 2s−1+cδ

T
(4.5.68)

follows.

For the estimate (4.5.48), we have

∥g∥Zs−1+δ
∞

≲ ∥∂tηu∥Zs−1+δ
∞

+ ∥ηP<k|v|2σux∥Zs−1+δ
∞

. (4.5.69)

The first term above is controlled using Corollary 4.5.5 by

∥∂tηu∥Zs−1+δ
∞

≲ ∥u∥X 2s−1+cδ
T

+ ∥⟨Dt⟩s−1+δ(∂tηu)∥L∞
t L2

x

≲ ∥u∥X 2s−1+cδ
T

+ ∥∂2t ηu∥Zs−2+cδ
∞

+ ∥∂tη(ηP<k|v|2σux)∥Zs−2+cδ
∞

≲ ∥u∥X 2s−1+cδ
T

(4.5.70)

where in the last line, we used that s < 2. The second term in (4.5.69) can be estimated by

square summing (4.5.68). This completes the proof of Lemma 4.5.10.

Finally, we complete the proof of Lemma 4.5.7. This simply follows by combining

Lemma 4.5.10 with the estimates (4.5.44) and (4.5.45).
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Proof of Proposition 4.5.1

Finally, we prove the main estimate of the section, Proposition 4.5.1.

Proof. Let 0 < δ ≪ 1. From Corollary 4.5.5, we have

∥Pju∥2L∞
T H2s

x
≲δ ∥S̃2jPju∥2L∞

T H2s
x
+ ∥P̃j(η|ṽ|2σ<kux)∥2Zs−1+δ

∞
. (4.5.71)

By Lemma 4.5.7, we have

∥S̃2jPju∥2L∞
T H2s

x
≲δ a

2
j∥u0∥2H2s

x
+ b2jε

2σ(∥u∥2X 2s
T

+ ∥u∥2S1
T
) + b2jε

2σ−1∥u∥S1
T
∥u∥X 2s

T
∥v∥X 2s

T

+ b2jε
4σ−2∥u∥2S1

T
∥v∥2X 2s

T
.

(4.5.72)

Furthermore, by Lemma 4.5.10, we have

∥P̃j(η|ṽ|2σ<kux)∥2Zs−1+δ
∞

≲ b2jε
4σ(∥u∥2X 2s

T
+ ∥u∥2S1

T
) + b2jε

4σ−2∥u∥2S1
T
∥v∥2X 2s

T

≲ b2jε
2σ(∥u∥2X 2s

T
+ ∥u∥2S1

T
) + b2jε

4σ−2∥u∥2S1
T
∥v∥2X 2s

T
.

(4.5.73)

This completes the proof.

Proof of Lemma 4.5.9

It remains to prove the technical estimate Lemma 4.5.9. This will follow from the slightly

more general estimate:

Lemma 4.5.12. Let T = 2, 1
2
< σ < 1 and u be a C2(R;H∞

x ) solution to the inhomogeneous

Schrödinger equation,

(i∂t + ∂2x)u = f (4.5.74)

supported in the time interval [−2, 2]. Furthermore, let bj be an admissible X 2s
T frequency

envelope for u (here we don’t assume that the formula is necessarily given explicitly by

(4.2.4)). Then for j > 0 we have,

a) If 0 < s < 1, then

∥P̃jS̃2jD
s
t (|u|2σ)∥L2

tL
2
x
≲ bj∥u∥2σ−1

S1
T

(∥u∥X 2s
T

+ ∥f∥S0
T
). (4.5.75)

b) If 1 ≤ s < 2σ and 0 < δ ≪ 1, then

∥P̃jS̃2jD
s
t (|u|2σ)∥L2

tL
2
x
≲δ bjΛ(∥u∥X 2s

T
+ ∥f∥S0

T
+ ∥f∥Zs−1+δ

∞
) (4.5.76)
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where

Λ := (∥u∥S1+δ
T

+ ∥f∥Sδ
T
)2σ−1Λ0 (4.5.77)

and Λ0 is some polynomial in ∥u∥S1+δ
T

+ ∥f∥Sδ
T
.

Remark 4.5.13. We only prove the above estimate for P̃jS̃2jD
s
t (|u|2σ) in L2

tL
2
x. Although

the estimate is almost certainly true for a suitable range of p ≥ 1 in LptL
2
x, we do not pursue

this here, so as not to further complicate the argument (specifically, the proof of b)).

Remark 4.5.14. We do not claim that the factors of ∥f∥S0
T
, ∥f∥Zs−1+δ

∞
and Λ that appear in

the estimate are in any way optimal (in fact, in many instances in the below estimates, they

arise in relatively crude ways). We opted not to carefully optimize the inequality because

it will not affect the range of s for which Lemma 4.5.7 holds, and also because the current

form of Lemma 4.5.12 can be more easily applied to establish Proposition 4.5.1.

Proof. a) For notational convenience, we will sometimes write F (z) = |z|2σ−2z and P<ju =

u<j. Now, for each j > 0, we write

Ds
t S̃2jPj|u|2σ = Ds

t S̃2jPj|P<ju|2σ −Ds
t S̃2jPj(|P<ju|2σ − |u|2σ)

= Ds
t S̃2jPj|P<ju|2σ + 2σRe

∫ 1

0

PjS̃2jD
s
t (F (y(θ))P≥ju)dθ

(4.5.78)

where

y(θ) := θu+ (1− θ)P<ju. (4.5.79)

For the first term, interpolating gives

∥Ds
t S̃2jPj|P<ju|2σ∥L2

tL
2
x
≲ ∥S̃2jPj|P<ju|2σ∥1−sL2

tL
2
x
∥S̃2jPj(F (u<j)P<jut)∥sL2

tL
2
x
. (4.5.80)

By expanding ut in the second factor, we obtain

∥S̃2jPj(F (u<j)P<jut)∥L2
tL

2
x
≲ ∥S̃2jPj(F (u<j)P<juxx)∥L2

tL
2
x

+ ∥S̃2jPj(F (u<j)P<jf)∥L2
tL

2
x
.

(4.5.81)

We expand the first term in (4.5.81) using the Littlewood-Paley trichotomy. Then Bernstein’s

inequality and Corollary 4.2.11 yields

∥S̃2jPj(F (u<j)P<juxx)∥L2
tL

2
x

≲ ∥P<j−4F (u<j)P̃juxx∥L2
tL

2
x
+ ∥P≥j−4F (u<j)P<juxx∥L2

tL
2
x

≲ bj2
2j(1−s)∥u∥2σ−1

S1
T

∥u∥X 2s
T

+ 22j(1−s)2−δj∥Dδ
xF (u<j)∥L∞

t L∞
x
∥D2s

x u∥L∞
t L2

x

≲ bj2
2j(1−s)∥u∥2σ−1

S1
T

∥u∥X 2s
T
.

(4.5.82)
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For the second term in (4.5.81), we obtain (by taking 22j(s−1) ≲ bj)

∥S̃2jPj(F (u<j)P<jf)∥L2
tL

2
x
≲ bj2

2j(1−s)∥u∥2σ−1
S1
T

∥f∥L∞
t L2

x
(4.5.83)

and so by Bernstein, the estimate (4.5.80) becomes

∥Ds
t S̃2jPj|P<ju|2σ∥L2

tL
2
x

≲ 22js(1−s)[bj∥u∥2σ−1
S1
T

∥u∥X 2s
T

+ bj∥u∥2σ−1
S1
T

∥f∥L∞
t L2

x
]s∥S̃2jPj|P<ju|2σ∥1−sL2

tL
2
x

≲ [bj∥u∥2σ−1
S1
T

∥u∥X 2s
T

+ bj∥u∥2σ−1
S1
T

∥f∥L∞
t L2

x
]s∥Ds

t S̃2jPj|P<ju|2σ∥1−sL2
tL

2
x
.

(4.5.84)

Hence,

∥Ds
t S̃2jPj|P<ju|2σ∥L2

tL
2
x
≲ bj∥u∥2σ−1

S1
T

∥u∥X 2s
T

+ bj∥u∥2σ−1
S1
T

∥f∥L∞
t L2

x
. (4.5.85)

For the second term in (4.5.78), using that 22js∥P≥ju∥L2
tL

2
x
≲ ∥D2s

x P≥ju∥L2
tL

2
x
and Corol-

lary 4.2.11 leads to the estimate,

∥PjS̃2jD
s
t (F (y(θ))P≥ju)∥L2

tL
2
x

≲ 22js∥Pj(F (y(θ))P≥ju)∥L2
tL

2
x

≲ bj∥⟨Dx⟩δF (y(θ))∥L∞
t L∞

x
∥u∥X 2s

T

≲ bj∥u∥2σ−1
S1
T

∥u∥X 2s
T
.

(4.5.86)

Hence, by Minkowski’s inequality,

2σ∥Re
∫ 1

0

PjS̃2jD
s
t (F (y(θ))P≥ju)dθ∥L2

tL
2
x
≲ bj∥u∥2σ−1

S1
T

∥u∥X 2s
T
. (4.5.87)

Combining everything shows that

∥Ds
t S̃2jPj|u|2σ∥L2

tL
2
x
≲ bj∥u∥2σ−1

S1
T

∥u∥X 2s
T

+ bj∥u∥2σ−1
S1
T

∥f∥L∞
t L2

x
. (4.5.88)

This proves part a).

Next, we prove part b). By commuting through the temporal projection, we obtain

∥S̃2jPjD
s
t (|u|2σ)∥L2

tL
2
x
≲ ∥S̃2jD

s−1
t (S̃<2j(|u|2σ−2u)∂tS̃2ju)∥L2

tL
2
x

+ ∥S̃2jD
s−1
t (S̃≥2j(|u|2σ−2u)∂tu)∥L2

tL
2
x
.

(4.5.89)

The first term in (4.5.89) can be estimated by Bernstein’s inequality to obtain

∥S̃2jD
s−1
t (S̃<2j(|u|2σ−2u)∂tS̃2ju)∥L2

tL
2
x
≲ ∥u∥2σ−1

S1
T

∥Ds−1
t ∂tS̃2ju∥L2

tL
2
x
. (4.5.90)
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Then writing

∥Ds−1
t ∂tS̃2ju∥L2

tL
2
x
∼ ∥Ds−1

t ∂tS̃2jP≤0u∥L2
tL

2
x
+

(∑
k>0

∥Ds−1
t ∂tS̃2jPku∥2L2

tL
2
x

) 1
2

(4.5.91)

and requiring bj ≥ 2−jδ, applying Lemma 4.5.4 and then square summing over k yields

∥Ds−1
t ∂tS̃2ju∥L2

tL
2
x
≲ ∥D2s

x S̃2jPju∥L2
tL

2
x
+ 2−jδ∥⟨Dt⟩s−1+δS̃2jf∥L2

tL
2
x

≲ bj∥u∥X 2s
T

+ bj∥f∥Zs−1+δ
∞

.
(4.5.92)

To estimate the second term in (4.5.89), we have two cases:

If 1 ≤ s ≤ σ + 1
2
, we obtain from the equation,

∥S̃2jD
s−1
t (S̃≥2j(|u|2σ−2u)∂tu)∥L2

tL
2
x

≲ ∥S̃2jD
s−1
t (S̃≥2j(|u|2σ−2u)∂2xu)∥L2

tL
2
x
+ ∥S̃2jD

s−1
t (S̃≥2j(|u|2σ−2u)f)∥L2

tL
2
x
.

(4.5.93)

By Hölder and Bernstein’s inequality, Sobolev embedding and Corollary 4.2.11, the first term

can be estimated by

∥S̃2jD
s−1
t (S̃≥2j(|u|2σ−2u)∂2xu)∥L2

tL
2
x
≲ 2−jδ∥Ds−1+ δ

2
t (|u|2σ−2u)∥

L
1

s−1
t L

1
s−1
x

∥∂2xu∥
L∞
t L

2
3−2s
x

≲ 2−jδ∥⟨Dt⟩
s−1+δ
2σ−1 u∥2σ−1

L
2σ−1
s−1

t L
2σ−1
s−1

x

∥∂2xu∥
L∞
t L

2
3−2s
x

≲ 2−jδ∥⟨Dt⟩
s−1+δ
2σ−1 u∥2σ−1

L
2σ−1
s−1

t L
2σ−1
s−1

x

∥u∥L∞
t Hs+1

x
.

(4.5.94)

Applying Corollary 4.5.5 gives

∥⟨Dt⟩
s−1+δ
2σ−1 u∥2σ−1

L
2σ−1
s−1

t L
2σ−1
s−1

x

≲ ∥⟨Dx⟩
2s−2+4δ
2σ−1 u∥2σ−1

L
2σ−1
s−1

t L
2σ−1
s−1

x

+ ∥⟨Dt⟩
s−1+2δ
2σ−1

−1f∥2σ−1

L
2σ−1
s−1

t L
2σ−1
s−1

x

. (4.5.95)

Since 2s−2
2σ−1

≤ 1− (1
2
− s−1

2σ−1
), when s ≤ σ + 1

2
, we have by Sobolev embedding in the spatial

variable,

∥⟨Dx⟩
2s−2+4δ
2σ−1 u∥2σ−1

L
2σ−1
s−1

t L
2σ−1
s−1

x

∥u∥L∞
t Hs+1

x
≲ ∥u∥2σ−1

S1+cδ
T

∥u∥L∞
t H2s

x
(4.5.96)

for some fixed constant c > 0.
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Next, applying Sobolev embedding in the time variable, and using the inequality ∥g∥Lp
xL

q
t
≲

∥g∥Lq
tL

p
x
when p ≥ q, we also obtain

∥⟨Dt⟩
s−1+2δ
2σ−1

−1f∥
L

2σ−1
s−1

t L
2σ−1
s−1

x

≲ ∥f∥
L

2σ−1
s−1

x L2
t

≲ ∥f∥
L2
tL

2σ−1
s−1

x

≲ ∥f∥S0
T

(4.5.97)

and so, the first term in (4.5.93) can be controlled by (after possibly relabelling δ),

2−jδ(∥u∥S1+cδ
T

+ ∥f∥S0
T
)2σ−1∥u∥L∞

t H2s
x

≲ bjΛ∥u∥L∞
t H2s

x
≲ bjΛ∥u∥X 2s

T
. (4.5.98)

For the second term in (4.5.93), we simply have by Bernstein, and Corollary 4.2.11 and

Corollary 4.5.5,

∥S̃2jD
s−1
t (S̃≥2j(|u|2σ−2u)f)∥L2

tL
2
x
≲ 2−jδ∥Ds−1+ δ

2
t (|u|2σ−2u)∥

L
4

2σ−1
t L

4
2σ−1
x

∥f∥
L4
tL

4
3−2σ
x

≲ 2−jδ∥⟨Dt⟩
1
2
+ δ

2u∥2σ−1
L4
tL

4
x
∥f∥S0

T

≲ 2−jδ(∥u∥2σ−1

S1+δ
T

+ ∥f∥2σ−1
S0
T

)∥f∥S0
T

≲ bjΛ∥f∥S0
T
.

(4.5.99)

This handles the case 1 ≤ s ≤ σ + 1
2
.

Next, suppose σ + 1
2
< s < 2σ. By Bernstein’s inequality,

∥S̃2jD
s−1
t (S̃≥2j(|u|2σ−2u)∂tu)∥L2

tL
2
x
≲ 2−jδ∥Ds−1+ δ

2
t (|u|2σ−2u)∥

L
2

2σ−1
t L

2
2σ−1
x

∥∂tu∥
L

1
1−σ
t L

1
1−σ
x

≲ bj∥D
s−1+ δ

2
t (|u|2σ−2u)∥

L
2

2σ−1
t L

2
2σ−1
x

∥∂tu∥
L

1
1−σ
t L

1
1−σ
x

.

(4.5.100)

Using Corollary 4.2.11 and then Corollary 4.5.5, we estimate,

∥Ds−1+ δ
2

t (|u|2σ−2u)∥
L

2
2σ−1
t L

2
2σ−1
x

≲ ∥⟨Dt⟩
s−1+δ
2σ−1 u∥2σ−1

L2
tL

2
x

≲ ∥P≤0⟨Dt⟩
s−1+δ
2σ−1 u∥2σ−1

L2
tL

2
x
+

(∑
j>0

∥⟨Dt⟩
s−1+δ
2σ−1 Pju∥2L2

tL
2
x

) 1
2
(2σ−1)

≲ ∥⟨Dx⟩
2s−2+2δ
2σ−1 u∥2σ−1

L2
tL

2
x
+ ∥f∥2σ−1

S0
T

.

(4.5.101)
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Furthermore, we have by Sobolev embedding and the equation,

∥∂tu∥
L

1
1−σ
t L

1
1−σ
x

≲ ∥⟨Dx⟩σ+
3
2u∥L∞

t L2
x
+ ∥⟨Dx⟩σ−

1
2f∥L∞

t L2
x
. (4.5.102)

Hence, we obtain

bj∥D
s−1+ δ

2
t (|u|2σ−2u)∥

L
2

2σ−1
t L

2
2σ−1
x

∥∂tu∥
L

1
1−σ
t L

1
1−σ
x

≲ bj(∥⟨Dx⟩σ+
3
2u∥L∞

t L2
x
+ ∥⟨Dx⟩σ−

1
2f∥L∞

t L2
x
)∥⟨Dx⟩

2s−2+2δ
2σ−1 u∥2σ−1

L2
tL

2
x

+ Λbj(∥u∥L∞
t H2s

x
+ ∥f∥Zs−1+δ

∞
).

(4.5.103)

To control the first term, interpolating each factor between L∞
t H

2s
x and L∞

t H
1
x shows that

∥⟨Dx⟩
2s−2+2δ
2σ−1 u∥2σ−1

L2
tL

2
x
∥⟨Dx⟩σ+

3
2u∥L∞

t L2
x
≲ ∥u∥2σ−1

S1+δ
T

∥u∥L∞
t H2s

x
. (4.5.104)

For the second term, interpolating the ⟨Dx⟩
2s−2+2δ
2σ−1 u factor between L∞

t H
1
x and L∞

t H
2s
x and

the ⟨Dx⟩σ−
1
2f factor between L∞

t L
2
x and L∞

t H
2s−2+δ
x and using that s > σ + 1

2
leads to

∥⟨Dx⟩
2s−2+2δ
2σ−1 u∥2σ−1

L2
tL

2
x
∥⟨Dx⟩σ−

1
2f∥L∞

t L2
x
≲ Λ(∥u∥L∞

t H2s
x
+ ∥f∥Zs−1+δ

∞
). (4.5.105)

Now, collecting all of the estimates and using that ∥u∥L∞
t H2s

x
≲ ∥u∥X 2s

T
completes the proof.

Finally, we use Lemma 4.5.12 to establish Lemma 4.5.9.

Proof. First, it is straightforward to verify that b2j is a X 2s
T frequency envelope for ṽ in the

sense that b2j satisfies property (4.2.3) and is slowly varying. Next, we expand

(i∂t + ∂2x)ṽ = i∂tη̃v + η̃(i∂t + ∂2x)v := f. (4.5.106)

Using an argument similar to what was done to estimate (4.5.61) and applying Corol-

lary 4.5.5, it is straightforward to verify ∥f∥Sδ
T
+∥f∥Zs−1+δ

∞
≲ ε+∥v∥X 2s

T
, and so the conclusion

immediately follows from Lemma 4.5.12.

4.6 Well-posedness at high regularity

In this section, we aim to prove Theorem 4.1.1. We begin by studying a suitable regularized

equation.
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Well-posedness of a regularized equation

Since there is an apparent limit to the possible regularity of solutions to (gDNLS), we con-

struct H2s
x solutions as limits of smooth solutions to an appropriate regularized approximate

equation. Like in the previous section η will denote a time-dependent cutoff with η = 1 on

[−1, 1] with support in (−2, 2). To construct the requisite solutions, we need the following

lemma:

Lemma 4.6.1. Let 2 − σ < 2s < 4σ. Let 2s ≥ α > max{2 − σ, 2s − 1}. Then there is

an ε > 0 such that for every u0 ∈ H2s
x with ∥u0∥Hα

x
≤ ε and for all j > 0, the regularized

equation  (i∂t + ∂2x)u = iηP<j|u|2σ∂xu,

u(0) = P<ju0,
(4.6.1)

admits a global solution u ∈ C2(R;H∞
x ). Moreover, we have the following bounds for T = 2,

∥u∥Xα
T ∩S1+δ

T
≲ ε,

∥(i∂t + ∂2x)u∥Sδ
T∩Zs−1+δ

∞
≲ ε,

(4.6.2)

where the implicit constant in the above inequality is independent of the parameter j and

where 0 < δ ≪ 1 is any small positive constant.

Remark 4.6.2. The smallness assumption on the Hα
x norm of u0 will turn out to be incon-

sequential (by L2
x subcriticality for (gDNLS)). This assumption is made for convenience to

guarantee (4.6.2).

Let us now construct solutions to (4.6.1). The first step is to construct solutions to an

appropriate linear equation. For this, we have the following lemma.

Lemma 4.6.3. Let η = η(t) be a smooth time-dependent cutoff with η = 1 on [−1, 1] and

with support in (−2, 2). Let T > 0 and v ∈ L2σ
T L

∞
x . Let u0 ∈ H2s

x . Then for each j > 0,

there exists a unique solution w ∈ C([−T, T ];H∞
x ) solving the equation ∂tw = i∂2xw + ηP<j|v|2σ∂xw,

w(0) = P<ju0.
(4.6.3)

Proof. First, observe that for each n > j a simple (iterated) application of the contraction

mapping theorem in the closed subspace of C([−T, T ];L2
x) consisting of functions whose spa-

tial Fourier transform is supported on [−2n, 2n] gives rise to a solution w(n) ∈ C([−T, T ];H∞
x )
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to the following regularized linear equation, ∂tw
(n) = i∂2xw

(n) + ηP≤n(P<j|v|2σ∂xw(n)),

w(n)(0) = P<ju0.
(4.6.4)

We show that the sequence w(n) converges as n → ∞ to some w ∈ C([−T, T ];H∞
x ) which

solves (4.6.3). This follows in two stages, but is standard. First, for each integer k ≥ 0, a

standard energy estimate and Bernstein’s inequality shows that w(n) satisfies the bound

∥w(n)∥C([−T,T ];Hk
x )

≲ exp(2j(k+1)∥v∥2σL2σ
T L∞

x
)∥P<ju0∥Hk

x
(4.6.5)

where importantly, the bound is independent of n (but can depend on j). Furthermore, a

simple energy estimate in L2
x for differences of solutions w

(n)−w(m) to (4.6.4) shows that the

sequence w(n) is Cauchy in C([−T, T ];L2
x) and thus converges to some w ∈ C([−T, T ];L2

x).

Interpolating against (4.6.5) shows that in fact w(n) converges to some w in C([−T, T ];H∞
x )

and that w solves (4.6.3) in the sense of distributions, and furthermore that w satisfies the

bound (4.6.5) for each k ≥ 0.

The next step in the proof of Lemma 4.6.1 is to construct the corresponding C2(R;H∞
x )

solution to (4.6.1). For this purpose, consider the following iteration scheme, (i∂t + ∂2x)u
(n+1) = iηP<j|u(n)|2σ∂xu(n+1),

u(n+1)(0) = P<ju0,
(4.6.6)

with the initialization u(0) = 0. Thanks to Lemma 4.6.3 it follows that for each n, there

is a solution u(n+1) ∈ C([−2, 2];H∞
x ) to the above equation. In particular, u(n+1) can be

extended globally in time because for |t| > 2, u(n+1) solves the linear Schrödinger equation.

Next, we have the following lemma concerning the convergence of this iteration scheme,

from which Lemma 4.6.1 is immediate.

Lemma 4.6.4. Let 2−σ < 2s < 4σ. Let 2s ≥ α > max{2−σ, 2s−1}. Let u0 ∈ H2s
x and let

u(n+1) be the corresponding C(R;H∞
x ) solution to (4.6.6). Then there is ε > 0 independent

of j such that if ∥u0∥Hα
x
≤ ε, then u(n) converges to some u ∈ C(R;H∞

x ) solving (4.6.1).

Furthermore, we have u ∈ C2(R;H∞
x ) and the bounds

∥u∥Xα
T ∩S1+δ

T
≲ ε,

∥(i∂t + ∂2x)u∥Sδ
T∩Zs−1+δ

∞
≲ ε.

(4.6.7)
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Proof. We begin by showing that u(n+1) satisfies the bounds

∥u(n+1)∥Xα
T ∩S1+δ

T
≲ ε,

∥(i∂t + ∂2x)u
(n+1)∥Sδ

T∩Zs−1+δ
∞

≲ ε,
(4.6.8)

for T = 2 uniformly in n. Given the initialization u(0) = 0, we may make the inductive

hypothesis that (4.6.8) holds with n+1 replaced by n. Now, we prove the above two bounds

for u(n+1).

We begin by showing ∥u(n+1)∥Xα
T ∩S1+δ

T
≲ ε. Indeed, it follows from the modification of

the low regularity bounds outlined in Lemma 4.3.18 that for 2s ≥ α > 2− σ,

∥u(n+1)∥Xα
T ∩S1+δ

T
≲ ∥u(n+1)∥Xα

T
. (4.6.9)

Then Proposition 4.5.1 and the inductive hypothesis gives

∥u(n+1)∥2Xα
T
≲ ∥u0∥2Hα

x
+ ε2σ(∥u(n+1)∥2Xα

T
+ ∥u(n+1)∥2S1

T
) + ε2σ−1∥u(n+1)∥S1

T
∥u(n+1)∥Xα

T
∥u(n)∥Xα

T

+ ε4σ−2∥u(n+1)∥2S1
T
∥u(n)∥2Xα

T
,

(4.6.10)

and so,

∥u(n+1)∥2Xα
T
≲ ∥u0∥2Hα

x
+ ε2σ∥u(n+1)∥2Xα

T
. (4.6.11)

From this, we deduce

∥u(n+1)∥Xα
T
≲ ε. (4.6.12)

Next, we aim to verify the bound,

∥(i∂t + ∂2x)u
(n+1)∥Sδ

T∩Zs−1+δ
∞

≲ ε. (4.6.13)

For this, we use the equation,

(i∂t + ∂2x)u
(n+1) = iηP<j|u(n)|2σ∂xu(n+1). (4.6.14)

From Lemma 4.5.10 and (4.6.9), we have

∥iηP<j|u(n)|2σ∂xu(n+1)∥Sδ
T∩Zs−1+δ

∞
≲ ε2σ∥u(n+1)∥Xα

T
≲ ε. (4.6.15)

This verifies the uniform in n bound (4.6.8).
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Next, we show that that u(n) converges to u ∈ C(R;L2
x). Clearly it suffices to show (by

the localization properties of η) that u(n) converges to u ∈ C([−2, 2];L2
x).

We begin by estimating the L2
x norm of u(n+1)(t) − u(n)(t) for |t| ≤ 2. Indeed, we see

that u(n+1) − u(n) satisfies the equation,
(i∂t + ∂2x)(u

(n+1) − u(n)) = iηP<j|u(n)|2σ∂x(u(n+1) − u(n))

+iηP<j(|u(n)|2σ − |u(n−1)|2σ)∂xu(n),

(u(n+1) − u(n))(0) = 0.

(4.6.16)

A simple energy estimate shows that for each −2 ≤ T ≤ 2

∥u(n+1) − u(n)∥2L∞
T L2

x

≲ ∥u(n)∥S1
T
∥u(n)∥2σ−1

L∞
T L∞

x
∥u(n+1) − u(n)∥2L∞

T L2
x

+ ∥u(n)∥S1
T
(∥u(n)∥2σ−1

L∞
T L∞

x
+ ∥u(n−1)∥2σ−1

L∞
T L∞

x
)∥u(n) − u(n−1)∥L∞

T L2
x
∥u(n+1) − u(n)∥L∞

T L2
x

(4.6.17)

where all the implicit constants are independent of j. Using (4.6.8) and Cauchy Schwarz,

we obtain

∥u(n+1) − u(n)∥2L∞
T L2

x
≤ 1

4
∥u(n+1) − u(n)∥2L∞

T L2
x
+

1

4
∥u(n) − u(n−1)∥2L∞

T L2
x
. (4.6.18)

From this, one obtains

∥u(n+1) − u(n)∥2L∞
T L2

x
≤ 1

2
∥u(n) − u(n−1)∥2L∞

T L2
x
. (4.6.19)

Hence, we see that u(n) converges to u in C([−2, 2];L2
x). By a simple energy estimate, and

Bernstein’s inequality, it is straightforward to verify that for each integer k ≥ 0, we have the

uniform (in n) bound

∥u(n+1)∥C([−2,2];Hk
x )

≲ exp(2j(k+1)∥u(n)∥2σL2σ
T L∞

x
)∥P<ju0∥Hk

x
≲j ∥u0∥H2s

x
. (4.6.20)

Hence, by interpolating against (4.6.20), we see that u(n) converges to u in C([−2, 2];H∞
x ).

By differentiating the equation in time, we find u ∈ C2([−2, 2];H∞
x ).

It remains to show (4.6.7). Since u(n) → u in C([−2, 2];H∞
x ), the X α

T ∩ S1+δ
T bound fol-

lows immediately from (4.6.8). For the remaining estimate, we may clearly control

(i∂t + ∂2x)u = iηP<j|u|2σ∂xu (4.6.21)
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in SδT ∩ Zs−1+δ
∞ by (after possibly slightly enlarging δ)

∥u∥2σXα
T ∩S1+δ

T

+ ∥iηP<j|u|2σ∂xu∥Zs−1+δ
∞

≲ ε+ ∥iP<jη|u|2σ∂xu∥Zs−1+δ
∞

. (4.6.22)

From Lemma 4.5.10, we have

∥iηP<j|u|2σ∂xu∥
Z

s− 3
2+δ

∞
≲ ε. (4.6.23)

Then applying Lemma 4.5.10 again, using (4.6.23) then gives

∥iηP<j|u|2σ∂xu∥Zs−1+δ
∞

≲ ε. (4.6.24)

This completes the proof.

Remark 4.6.5. Note that at this point, we haven’t said anything about the behavior of

(4.6.1) as j → ∞. For this, we will again need the uniform bounds from Proposition 4.5.1.

Well-posedness for the full equation

In this section, we prove the local well-posedness of (gDNLS) in H2s
x for 2− σ < 2s < 4σ.

Indeed, let u0 ∈ H2s
x and let 2 − σ < α ≤ 2s. By rescaling (recalling the problem is L2

x

subcritical), we may assume without loss of generality that ∥u0∥Hα
x

≤ ε for some ε > 0

sufficiently small, and construct the corresponding H2s
x solution on the time interval [−1, 1].

For 2−σ < 2s ≤ 3
2
, we construct the solution in the Strichartz type space X 2s

T ∩S1+δ
T , where

0 < δ ≪ 1 is any sufficiently small positive constant. When s > 3
2
, the extra S1+δ

T component

is, of course, redundant, thanks to Sobolev embedding.

We will realize H2s
x well-posed solutions as (restrictions to the interval [−1, 1] of) limits of

smooth solutions to the regularized equation (4.6.1). To establish this, we have the following

lemma.

Lemma 4.6.6. Let 2 − σ < 2s < 4σ. Let 2s ≥ α > max{2 − σ, 2s − 1}. Then there is an

ε > 0 such that for every u0 ∈ H2s
x with ∥u0∥Hα

x
≤ ε, the time-truncated equation, (i∂t + ∂2x)u = iη|u|2σ∂xu,

u(0) = u0,
(4.6.25)
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admits a global solution u ∈ C2(R;H∞
x ). Moreover, we have the following bounds for T = 2,

∥u∥Xα
T ∩S1+δ

T
≲ ε,

∥(i∂t + ∂2x)u∥Sδ
T∩Zs−1+δ

∞
≲ ε,

(4.6.26)

and also

∥u∥2X 2s
T

≲
1

1− Cε2σ
∥u0∥2H2s

x
, (4.6.27)

where C > 0 is some universal constant.

Proof. If ε is small enough, thanks to Lemma 4.6.1, for each j > 0, there is a smooth solution

u(j) ∈ C2(R;H∞
x ) to the equation, (i∂t + ∂2x)u

(j) = iηP<j|u(j)|2σu(j)x ,

u(j)(0) = P<ju0,
(4.6.28)

satisfying

∥u(j)∥Xα
T ∩S1+δ

T
+ ∥(i∂t + ∂2x)u

(j)∥Sδ
T∩Zs−1+δ

∞
≲ ε (4.6.29)

uniformly in j. Now, define for k > j, v(k,j) := u(k) − u(j). Then v(k,j) satisfies the equation,
(i∂t + ∂2x)v

(k,j) = iηP<k|u(k)|2σ∂xv(k,j) + iηP<k(|u(k)|2σ − |u(j)|2σ)∂xu(j)

+iηPj≤·<k|u(j)|2σ∂xu(j),

v(k,j)(0) = Pj≤·<ku0.

(4.6.30)

Multiplying by −iv(k,j) taking real part and integrating over R and from 0 to t with |t| ≤ T

leads to the simple energy estimate

∥v(k,j)∥2L∞
T L2

x
≲ ∥Pj≤·<ku0∥2L2

x
+ (∥u(j)∥2σ−1

S1
T

+ ∥u(k)∥2σ−1
S1
T

)∥u(j)∥S1
T
∥v(k,j)∥2L∞

T L2
x

+ ∥u(k)∥2σS1
T
∥v(k,j)∥2L∞

T L2
x
+ ∥Pj≤·<k|u(j)|2σ∥L∞

T L2
x
∥u(j)∥S1

T
∥v(k,j)∥L∞

T L2
x
.

(4.6.31)

Using the uniform in j bound

∥u(j)∥S1+δ
T

≲ ε (4.6.32)

from Lemma 4.6.1 and Cauchy Schwarz gives

∥v(k,j)∥2L∞
T L2

x
≲ ∥Pj≤·<ku0∥2L2

x
+ ∥Pj≤·<k|u(j)|2σ∥2L∞

T L2
x
∥u(j)∥2S1

T
. (4.6.33)

Furthermore,

∥Pj≤·<k|u(j)|2σ∥L∞
T L2

x
≲ 2−j∥u(j)∥2σS1

T
. (4.6.34)
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Hence, the right hand side of (4.6.33) goes to zero as j, k → ∞. Therefore, u(j) converges to

some u in C([−2, 2];L2
x). On the other hand, thanks to the uniform (in k) bounds from the

energy estimate Proposition 4.5.1, we obtain

∥Pju(k)∥2X 2s
T

≲ a2j∥u0∥2H2s
x
+ [b

(k)
j ]2ε2σ∥u(k)∥2X 2s

T
, (4.6.35)

where b
(k)
j is a X 2s

T frequency envelope for u(k). Using that ∥u(k)∥S1+δ
T

≲ ε, an argument similar

to the low regularity well-posedness shows that for ε small enough, aj is a X 2s
T frequency

envelope for u(k). Analogously to the low regularity argument, this can be used to show that

u(k) → u in X 2s
T and that aj is a X 2s

T frequency envelope for u and that u solves the time

truncated equation,  i∂tu+ uxx = iη|u|2σux,

u(0) = u0,
(4.6.36)

in the sense of distributions. Moreover, by square summing over j and passing to the limit

in (4.6.35), we obtain the uniform bound

∥u∥2X 2s
T

≲
1

1− Cε2σ
∥u0∥2H2s

x
. (4.6.37)

Next, we establish local well-posedness for the full equation (gDNLS).

For existence, we may rescale (using the L2
x subcriticality of the equation) to assume u0 ∈ H2s

x

has sufficiently small data. Then we may construct a X 2s
T solution to (gDNLS) on the time

interval [−1, 1] by applying Lemma 4.6.6 and restricting to |t| ≤ 1.

For uniqueness, we consider the difference of two H2s
x solutions u1, u2 to (gDNLS) and obtain,

by a standard energy estimate, the weak Lipschitz bound,

∥u1 − u2∥L∞
T L2

x
≲∥u1∥S1

T
,∥u2∥S1

T

∥u1(0)− u2(0)∥L2
x
. (4.6.38)

for T > 0. Among other things, this shows uniqueness in C([−1, 1];H2s
x ) ∩ S1

T .

For continuous dependence, again assume without loss of generality that u0 has sufficiently

small H2s
x norm. To show continuous dependence for the full equation (gDNLS), it clearly

suffices (by restricting to T ≤ 1) to show that the data to solution map u0 ∈ H2s
x 7→ u ∈

X 2s
T=2 ∩ S1+δ

T=2 for the time-truncated equation (4.6.36) is continuous. For this, let un0 ∈ H2s
x
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be a sequence of initial data converging to some u0 in H2s
x . Let un and u denote the corre-

sponding X 2s
T=2 ∩ S1+δ

T=2 solutions to the time-truncated equation (4.6.36), respectively. From

the frequency envelope bound (4.6.35) and an argument almost identical to the proof of

continuous dependence at low regularity, it follows that

lim
n→∞

∥un − u∥X 2s
T=2∩S

1+δ
T=2

= 0. (4.6.39)

We omit the details. This finally completes the proof of Theorem 4.1.1.

4.7 Global well-posedness

Here, we complete the proof of Theorem 4.1.2. That is, we show that for
√
3
2
< σ < 1 and

1 ≤ 2s < 4σ, (gDNLS) is globally well-posed in H2s
x . The proof of local well-posedness in H2s

x

for 1 ≤ 2s ≤ 3
2
and σ >

√
3
2

established in Section 4.4 relied on having global well-posedness

when 3
2
< 2s < 4σ, so we establish this first. Ultimately, global well-posedness will follow

from the conservation laws, which we use in the next lemma to establish uniform control of

the H1
x norm of solutions:

Lemma 4.7.1. (H1
x norm remains bounded) Let u0 ∈ H2s

x , 1 ≤ 2s < 4σ and
√
3
2
< σ < 1.

Let T > 0 be sufficiently small. If 2s ≤ 3
2
, suppose that there is a corresponding well-posed

solution u ∈ X2s
T to (gDNLS). Likewise, if 4σ > 2s > 3

2
, let u ∈ X 2s

T be the corresponding

well-posed solution to (gDNLS). Then for 0 ≤ |t| ≤ T , we have

∥u(t)∥H1
x
≲∥u0∥H1

x
1 (4.7.1)

where the implied constant depends only on the size of ∥u0∥H1
x
. In particular, the H1

x norm

of u cannot blow up in finite time.

Remark 4.7.2. There is one small technical caveat to be aware of. Namely, in Lemma 4.7.1,

it is assumed for 1 ≤ 2s ≤ 3
2
that the equation (gDNLS) is locally well-posed X2s

T . As men-

tioned above, this will follow from the results proven in Section 4.4 once we have established

global well-posedness in the range 3
2
< 2s < 4σ (where we already have local well-posedness

from Section 6).

Proof. Recall that we have the conserved mass and energy, respectively

M(u) :=
1

2

∫
R
|u|2dx =M(u0), (4.7.2)
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E(u) :=
1

2

∫
R
|ux|2dx+

1

2(1 + σ)
Re

∫
R
i|u|2σuuxdx = E(u0). (4.7.3)

It is also straightforward to verify that any well-posed solution in X 2s
T (when 3

2
< 2s < 4σ)

or X2s
T (when 1 ≤ 2s ≤ 3

2
) satisfies these conservation laws. By interpolation, we have the

following lower bound for the energy (where C is some constant that may change from line

to line)

E(u) ≥ 1

2
∥ux∥2L2

x
− C∥u∥2σ+1

L4σ+2
x

∥ux∥L2
x

≥ 1

4
∥ux∥2L2

x
− C∥u∥

1+σ
1−σ

L2
x

≥ 1

4
∥ux∥2L2

x
− CM(u)

1+σ
2(1−σ) .

(4.7.4)

Hence, for 0 ≤ |t| ≤ T , we have

∥u(t)∥2H1
x
≲ E(u0) +M(u0) +M(u0)

1+σ
2(1−σ) ≲∥u0∥H1

x
1. (4.7.5)

Corollary 4.7.3. Let u0 ∈ H2s
x , 0 < T ∗ < ∞, 3

2
< 2s < 4σ and

√
3
2
< σ < 1. Suppose that

for each T < T ∗, there is a corresponding well-posed solution u ∈ X 2s
T with initial data u0.

Then for each 0 < δ ≪ 1, we have

lim sup
T↗T ∗

∥u∥S1+δ
T ∩X2−σ+2δ

T
<∞. (4.7.6)

In particular, the S1+δ
T ∩X2−σ+2δ

T norm of a solution cannot blow up in finite time.

Proof. Lemma 4.7.1 shows that for all 0 < T < T ∗, the norm ∥u∥L∞
T H1

x
is bounded by a

constant depending on the initial data ∥u0∥H1
x
. Therefore, iterating (after appropriately

translating and rescaling the initial data) Proposition 4.3.6 shows that

lim sup
T↗T ∗

∥u∥X1
T
≲∥u0∥H1

x
1. (4.7.7)

By virtue of (4.7.7) and iterating Proposition 4.3.6, we find that

lim sup
T↗T ∗

∥u∥X2−σ+2δ
T

<∞. (4.7.8)

It follows that

lim sup
T↗T ∗

∥u∥S1+δ
T

≤ lim sup
T↗T ∗

∥u∥X2−σ+2δ
T

<∞. (4.7.9)
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Next, we use Corollary 4.7.3 and Lemma 4.6.6 to establish global well-posedness in the

high regularity regime 3
2
< 2s < 4σ. Indeed, for u0 ∈ H2s

x let T ∗ > 0 be the maximal time

for which there is a corresponding well-posed solution u ∈ X 2s
T for each T < T ∗. If T ∗ = ∞,

then we are done. We can therefore assume for the sake of contradiction that T ∗ <∞. Then

we have

lim sup
T↗T ∗

∥u∥X 2s
T

= ∞. (4.7.10)

We show that this is impossible. By rescaling and translation, we may without loss of gen-

erality take T ∗ = 1.

We begin with the case 3
2
< 2s < 2. Set α = 2 − σ + 2δ where δ is some small posi-

tive constant.

Let 0 < ε ≪ 1. Define now the rescaled solution uλ(t, x) = λ
1
2σu(λ2t, λx) to (gDNLS),

where λ satisfies k := λ−2 ∈ N and where λ is small enough so that for each T < λ−2,

∥uλ∥L∞
T<λ−2H

α
x
≲ λ

1
2σ

− 1
2∥u∥L∞

T<1H
α
x
≲ ε. (4.7.11)

By assumption uλ is a X 2s
T solution to (gDNLS) for T < λ−2 with

lim sup
T↗λ−2

∥uλ∥X 2s
T

= ∞. (4.7.12)

Now, we iterate Lemma 4.6.6. We consider the initial value problem for each natural number

n < k,  (i∂t + ∂2x)wn = iη|wn|2σ∂xwn,

wn(0) = uλ(n).
(4.7.13)

By Lemma 4.6.6 by taking α = 2−σ+2δ, and (4.7.11) there is a global solution w ∈ C(R;H2s
x )

to the above equation satisfying

∥wn∥2X 2s
T=2

≲
1

1− Cε2σ
∥uλ(n)∥2H2s

x
(4.7.14)

from which we deduce (by restricting w to times in [−1, 1]),

∥uλ(n+ ·)∥2X 2s
T=1

≲
1

1− Cε2σ
∥uλ(n)∥2H2s

x
. (4.7.15)

Iterating this k times gives the bound

∥uλ∥2X 2s
T<λ−2

≲

(
1

1− Cε2σ

)k
∥uλ(0)∥2H2s

x
. (4.7.16)
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This contradicts (4.7.12). Therefore T ∗ = ∞ and the X 2s
T norm cannot blow up in finite

time when 3
2
< 2s < 2.

Next, we proceed with the case 2 ≤ 2s < 4σ. If 2 ≤ 2s < 3, then if we assume a max-

imal time of existence T ∗ < ∞ for a X 2s
T solution, then the previous case shows that for

δ > 0 sufficiently small,

lim sup
T↗T∗

∥u∥X 2s−1+δ
T

<∞. (4.7.17)

Replacing α in the previous case with max{2s− 1 + δ, 2− σ + 2δ} and repeating the proof

verbatim shows once again that T ∗ = ∞. Iterating once more shows that in the case

3 ≤ 2s < 4σ, we also have the same conclusion. Thus, (gDNLS) is globally well-posed in

H2s
x when 3

2
< 2s < 4σ.

We finally turn to the last case. Namely, we show that (gDNLS) is globally well-posed

when 1 ≤ 2s ≤ 3
2
.

Indeed, at this point, we know from Section 4 and the previous two cases that we have

a locally well-posed X2s
T solution. Iterating the low regularity bounds Proposition 4.3.6 and

using Lemma 4.7.1 shows that such a solution can be continued for all time. This finally

completes the proof of Theorem 4.1.2.
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