
6. Linear Spaces

A tropical linear space is the tropicalization of a subspace of the vector space
Kn over the Puiseux series field K = C{{t}}. Algebraically, the subspace is
given by an ideal I that is generated by n−d linearly independent linear forms:

(1) I = 〈 ai1x1 + ai2x2 + · · · + ainxn : i = 1, 2, . . . , n − d 〉.

Thus a d-dimensional tropical linear space in Rn is any tropical variety of
the form T (I) where (aij) is any (n−d) × n-matrix of rank n−d with entries
in K. The ideal I is uniquely specified by the vector of Plücker coordinates

p ∈ Gd,n ⊂ R(n

d
) of the linear subspace of Kn. The Plücker coordinates are

(2) pi1i2···id = (−1)i1+i2+···+id · det









a1,j1 a1,j2 · · · a1,jn−d

a2,j1 a2,j2 · · · a2,jn−d

...
...

. . .
...

an−d,j1 an−d,j2 · · · an−d,jn−d









,

where i1< · · ·<id, j1< · · ·<jn−d and {i1, . . . , id, j1, . . . , jn−d} = {1, . . . , n}, and
the ideal I is expressed in terms of the Plücker coordinates by the formula

(3) I =
〈

d
∑

r=0

(−1)r · pi0i1···bir···id
· xir : for all 1≤ i0 <i1 < · · · < ir≤n

〉

.

In what follows we shall make the technical assumption that all Plücker co-
ordinates (2) are non-zero, so we shall only consider linear subspaces of Kn

whose matroid is uniform. This ensures that the tropical Plücker coordinates

wi1i2...id = val(pi1i2···id)

are well-defined rational numbers. The
(

n

d+1

)

linear forms in (3) are called the
circuits of the linear ideal I. Their tropicalizations are called tropical circuits:

(4) Ci0i1···ir :=
d

⊕

r=0

wi0i1···bir ···id
⊙ xir

Lemma 6.1. The circuits in (3) form a tropical basis for the linear ideal
I. Hence the tropical d-plane T (I) equals the intersection in R

n of the
(

n

d+1

)

tropical hyperplanes T (Ci0i1···id) defined by the tropical circuits.

Proof. This follows from two easy facts about Gröbner bases of linear ideals.
First, every reduced Gröbner basis of I consists of circuits, and, second, the
linear ideal inw(I) contains a monomial if and only if a variable appears in its
reduced Gröbner basis. The latter condition is equivalent to w 6∈ T (I). �

The classical Grassmannian Gd,n is the projective variety in P(n

d)−1 defined by
the Plücker ideal Id,n. It parametrizes the d-dimensional linear subspaces of Cn.
We now derive the analogous result for the tropical Grassmannian Gd,n. Here
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Gd,n is regarded as a pure fan of dimension (n − d)d in R(n

d
)/R(1, 1, . . . , 1) ≃

R(n

d
)−1, so the dimensions match correctly with the classical Grassmannian.

Theorem 6.2. The bijection between the classical Grassmannian Gd,n and the
d-dimensional subspaces of Kn induces a unique bijection w 7→ Lw between
the tropical Grassmannian G′

d,n and the set of tropical d-planes in n-space.

Proof. We begin by describing the map which takes a point w in Gd,n to the
associated tropical d-plane Lw ⊂ Rn. Given w, we define Lw as the intersection
of the tropical hyperplanes T (Ci0i1···id) where 1 ≤ i0 < i1 < · · · < id ≤ n. This
definition depends only on w + R(1, 1, . . . , 1), as required. By the Extended

Kapranov Theorem, we can pick a point p ∈ (K∗)(
n

d
) which is a zero of Id,n and

satisfies w = order(p). Let I be the ideal defined by (3). By Lemma 6.1, we
have Lw = T (I). Hence the map w 7→ Lw surjects the tropical Grassmannian
onto the set of all tropical d-planes, and it is the only such map which is
compatible with the classical bijection between Gd,n and the d-planes in Kn.

It remains to be shown that the map w 7→ Lw is injective. We do this by
constructing the inverse map. Suppose we are given the linear space Lw as
a subset of Rn. We need to reconstruct the coordinates wi1···id of w up to a
global additive constant. Equivalently, for any (d− 1)-subset I of [n] and any
pair j, k ∈ [n]\I, we need to reconstruct the real number wI∪{j} − wI∪{k}.

Fix a very large positive rational number M and consider the (n − d + 1)-
dimensional plane defined by xi = M for i ∈ I. The intersection of this plane
with Lw contains at least one point x ∈ R

n, and this point can be chosen
to satisfy xj ≪ M for all j ∈ [n]\I. This can be seen by solving the d − 1
equations xi = tM on any d-plane V (I) ⊂ Kn which tropicalizes to Lw.

Now consider the tropical circuit CJ as in (4) with J = I ∪ {j, k}. Since
x lies T (CJ), and since max(xj, xk) ≪ M = xi for all i ∈ I, we conclude

wJ\{k} + xk = wJ\{j} + xj .

This shows that the desired differences can be read off from the point x:

(5) wI∪{j} − wI∪{k} = xj − xk.

We thus reconstruct w ∈ Gd,n by locating
(

n

d−1

)

special points on Lw. �

The above proof offers an (inefficient) algorithm for computing the map
w 7→ Lw, namely, by solving all

(

n

d+1

)

tropical circuits. Consider the case
d = 2. Here the tropical plane T (Cijk) is the solution set to the linear system

wij + xk = wik + xj ≤ wjk + xi

or wij + xk = wjk + xi ≤ wik + xj

or wij + xk = wjk + xi ≤ wik + xj .

The conjunction of these
(

n

3

)

linear systems is solved efficiently by the Neighbor
Joining Algorithm from phylogenetics [61, 66]. If r and s ∈ Rn/R(1, . . . , 1) are
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vertices of this tree connected by an edge e then r = s + c
∑

i∈S ei for some
c > o where S ⊂ [n] is the set of leaves on the s side of e. We regard the tree
as a metric space by assigning the length c to edge e. The length of each edge
is measured in lattice distance, so we get the tree with metric −2w.

Corollary 6.3. Let w be a point in G2,n which lies in the cone Cσ for some
tree σ. The image of Lw in R

n/R(1, . . . , 1) is a tree of combinatorial type σ.

The bijection w 7→ Lw of Theorem 6.2 is a higher-dimensional generalization
of recovering a phylogenetic tree from pairwise distances among n leaves. For
instance, for d = 3 we can think of w as data giving a proximity measure for any
triple among n “leaves”. The image of Lw in R

n/R(1, . . . , 1) is a “phylogenetic
surface” which is a geometric representation of such data on triples.

The tropical Grassmannians Gd,n and Gn−d,n are isomorphic because the
ideals Id,n and In−d,n are the same after signed complementation of Plücker
coordinates. Theorem 6.2 allows us to define the dual (n − d)-plane L∗ of a
tropical d-plane L in Rn. If L = Lw then L∗ = Lw∗ where w∗ is the vector
whose ([n]\I)-coordinate is the I-coordinate of w, for all d-subsets I of [n].
One can check that a tropical hyperplane T (a1 ⊙ x1 ⊕ · · · ⊕ an ⊙ xn) contains
the tropical plane L∗ if and only if (a1, . . . , an) ∈ Lw. Furthermore, (L∗)∗ = L.

The following example, known as the dual snowflake, shows that a tropical
d-plane in Rn is generally not the intersection of n − d tropical hyperplanes.

Example 6.4. Let w = e12 + e34 + e56 in R(6

2). Then Lw is a tropical 2-
plane in R6. Its image in R6/R(1, . . . , 1) is a snowflake tree, i.e. a tree of type
σ =

{

{12, 3456}, {34, 1256}, {56, 1234}
}

. The Plücker vector dual to w is

w∗ = e3456 + e1256 + e1234 ∈ G4,6 ⊂ R(6

4
).

We shall compute the tropical 4-plane Lw∗ by applying the algorithm in the
proof of Theorem 6.2. There are six tropical circuits CJ as in (4), namely,

C12345 = 0 ⊙ x1 ⊕ 0 ⊙ x2 ⊕ 0 ⊙ x3 ⊕ 0 ⊙ x4 ⊕ 1 ⊙ x5

C12346 = 0 ⊙ x1 ⊕ 0 ⊙ x2 ⊕ 0 ⊙ x3 ⊕ 0 ⊙ x4 ⊕ 1 ⊙ x6

C12356 = 0 ⊙ x1 ⊕ 0 ⊙ x2 ⊕ 1 ⊙ x3 ⊕ 0 ⊙ x5 ⊕ 0 ⊙ x6

C12456 = 0 ⊙ x1 ⊕ 0 ⊙ x2 ⊕ 1 ⊙ x4 ⊕ 0 ⊙ x5 ⊕ 0 ⊙ x6

C13456 = 1 ⊙ x1 ⊕ 0 ⊙ x3 ⊕ 0 ⊙ x4 ⊕ 0 ⊙ x5 ⊕ 0 ⊙ x6

C23456 = 1 ⊙ x2 ⊕ 0 ⊙ x3 ⊕ 0 ⊙ x4 ⊕ 0 ⊙ x5 ⊕ 0 ⊙ x6

The tropical 4-plane Lw∗ is the intersection of these six tropical hyperplanes:

T (C12345) ∩ T (C12346) ∩ T (C12356) ∩ T (C12456) ∩ T (C13456) ∩ T (C23456).

We claim that Lw∗ is not a complete intersection, i.e., there do no exist two
tropical linear forms F and F ′ such that Lw∗ = T (F ) ∩ T (F ′). A tropical
linear form F = a1x1 + · · · + a6x6 vanishes on the dual 4-plane Lw∗ if and
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only if the point a = (a1, . . . , a6) lies in the 2-plane Lw. There are 9 types of
such tropical linear forms ℓ, one for each of the 9 edges of the tree Lw. For
instance, the bounded edge {56, 1234} represents the tropical linear forms

ℓ = α ⊙ (x1 ⊕ x2 ⊕ x3 ⊕ x4) ⊕ β ⊙ (x5 ⊕ x6) where 0 < α ≤ β.

By checking all pairs of the 9 edges, we find that any pairwise intersection
T (ℓ) ∩ T (ℓ′) contains a 5-dimensional cone like {x1+c = x2 ≪ x3, x4, x5, x6},
{x3+c = x4 ≪ x1, x2, x5, x6} or {x5+c = x6 ≪ x1, x2, x3, x4}. �

Our next goal is to give a combinatorial encoding of tropical planes. The
basic object in our combinatorial encoding is a d-partition {A1, . . . , Ad}. By
a d-partition we mean an unordered partition of [n] into d subsets Ai. Let Lw

be a tropical d-plane and F a maximal cell of Lw. Thus F is a d-dimensional
convex polyhedron in Rn which is invariant under translation along the line
R(1, 1, . . . , 1). The affine span of F is a d-dimensional affine space which is
defined by equations of the special form

xk − xj = wJ\{j} − wJ\{k} (the right hand side is a constant)

Such a system of equations defines a d-partition {A1, . . . , Ad}, namely, two
indices j and k lie in the same block Ai if and only if the difference xk − xj

is constant on F . The number of blocks clearly equals d, the dimension of F .
In examples, we always consider F modulo the line R(1, 1, . . . , 1), so it has
dimension d − 1 and may or may not be bounded.

Remark 6.5. A maximal face F of Lw is uniquely specified by its d-partition
{A1, . . . , Ad}. It is a (bounded) polytope in Rn if and only if |Ai| ≥ 2 for all
i. Hence a tropical d-plane Lw ⊂ R

n has no bounded d-faces if n ≤ 2d − 1.

We define the type of a tropical d-plane L, denoted type(L) to be the set of
all d-partitions arising from the maximal faces of L. If d = 2 and L = Lw with
w ∈ Cσ then type(L) is precisely the set σ together with the pairs {{i}, [n]\{i}}
representing the unbounded edges of the tree L. This follows from Corollary
6.3. Thus type(L) generalizes the representation of a semi-labeled tree [61,
Theorem 2.35] by its set of splits to higher-dimensional tropical planes L.

Example 6.6. We present three of the seven types in G3,6. In each case we
display type(Lw) with the 15 obvious tripartitions

{

i, j, [6]\{i, j}
}

removed.
The labeling corresponds to that of the maximal cones in our discussion of G3,6

in the previous lecture. We begin with what is called the tree type in [72, §8]:
{

{1, 23, 456}, {1, 56, 234}, {2, 13, 456}, {2, 56, 134},

EEFF1 : {3, 12, 456}, {3, 56, 124}, {4, 12, 356}, {4, 56, 123},

{5, 12, 346}, {5, 46, 123}, {6, 12, 345}, {6, 45, 123}, {12, 34, 56}
}

The next type is the bipyramid type. All three tetrahedra in a bipyramid
FFFGG have the same type listed below. As the faces of G3,6 contain those
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w inducing different initial ideals inw(Id,n), this example demonstrates that
type(Lw) in general does not determine inw(Id,n).

{

{1, 34, 256}, {1, 56, 234}, {2, 34, 156}, {2, 56, 134}

FFGG : {3, 12, 456}, {3, 56, 124}, {4, 12, 356}, {4, 56, 123}

{5, 12, 346}, {5, 34, 126}, {6, 12, 345}, {6, 34, 125}, {12, 34, 56}
}

For all but one of the seven types in G3,6, the tropical plane Lw has 28 facets.
The only exception is the type EEEE. Here the tropical plane Lw has only 27
facets, all of them unbounded.

{

{1, 23, 456}, {1, 234, 56}, {2, 13, 456}, {2, 135, 46}

EEEE : {3, 12, 456}, {3, 126, 45}, {4, 26, 135}, {4, 126, 35}

{5, 16, 234}, {5, 126, 34}, {6, 15, 234}, {6, 135, 24}
}

From this analysis, we see that every 2-plane Lw in R6/R(1, . . . , 1) has six ver-
tices, it has ≤ 24 edges (of which ≤ 6 are bounded), and ≤ 28 two-dimensional
faces (of which at most one is bounded). �

In order to visualize a tropical 2-plane Lw, we can draw the graph gotten
by intersecting Lw with a large sphere. It consists of n trees, each having
n − 1 leaves, interconnected by

(

n

2

)

edges. In general, for d ≥ 3, each face
of a tropical plane Lw is affinely isomorphic to a full-dimensional polytope in
Rd/R(1, . . . , 1) that is defined by inequalities of the special form xi −xj ≤ wij

for all i, j ∈ {1, . . . , d}. Such polytopes are the basic building blocks for
tropical convexity, as we shall see in the next section, and each of them can
appear as a face in a tropical plane in Rn for some sufficiently large value of n.

The following remarkable theorem about face numbers of tropical linear
spaces was recently proved by David Speyer [72, 73]. His proof is rather difficult
and involves lots of matroid theory and K-theory of the Grassmannian.

Theorem 6.7. (Speyer) The number of i-dimensional faces of a tropical d-
plane in R

n is at most
(

n+1

d−i

)(

2n−d−1

i−1

)

, and the number of faces that are bounded

modulo R(1, 1, . . . , 1) is at most
(

n−2i

d−i

)(

n−i−1

i−1

)

. These bounds are tight.

These upper bounds on the face numbers are attained by what Speyer calls
series-parallel planes. This terminology comes from matroid theory, and it
is based on the correspondence between matroids and the following class of
tropical planes. Let I be an ideal in C[x1, . . . , xn] of the form (1), but we
now allow some of the P l”ucker coordinates (2) to be zero. The collection
on non-zero Pücker coordinates are the bases of the rank d matroid M which
is associated with I. Each tropical Plücker coordinate wi1i2···id is either 0 or
∞, so the knowledge of w is equivalent to the knowledge of the matroid M .
The tropical plane T (I) is a pure d-dimensional fan in Rn which depends only
on the matroid M , and we denote it by T (M). The lineality space of T (M)
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is the one-dimensional space spanned by (1, 1, . . . , 1), so we can consider the
(d − 2)-dimensional polyhedral complex T (M)′. The fan T (M) is called the
Bergman fan and the complex T (M)′ is called the Bergman complex of the
matroid M .

Given any w ∈ Rn, we call wi1 + · · ·+wid the w-weight of a basis {i1, . . . , id}
of M . The set of all bases of M that have maximal w-weight is itself the set of
bases of a new matroid Mw. We call Mw the initial matroid of M with respect
to w. This is precisely the matroid associated with the linear ideal inw(I). A
circuit of the matroid M is a subset γ of {1, . . . , n} which is not contained in
any basis and is minimal with this property. With this convention, the circuits
(4) are the tropical linear forms C =

⊕

i∈γ xi where γ is any circuit of M .

Lemma 6.8. For w ∈ Rn the following are equivalent:

(1) The vector w lies in the Bergman fan T (M).
(2) The initial ideal inw(I) contains no variable xi.
(3) The initial matroid Mw has no loop (i.e. a circuit that is a singleton).
(4) For each circuit γ of M the minimum of {xi : i ∈ γ} is attained at

least twice.

Proof. The equivalence of (1) and (2) is the definition of T (M) = T (I). State-
ments (2) and (3) are equivalent because Mw is the matroid of inw(I), while
(1) and (4) are equivalent by (the argument in the proof of) Lemma 6.1. �

A subset F of [n] is a flat of the matroid M if there is no circuit C such
that C\F has precisely one element. The incidence vector of a subset F ⊆ [n]
is denoted by eF =

∑

i∈F ei. We are interested in the negative of that vector.

Remark 6.9. The vector −eF lies in T (M) if and only if F is a flat of M .

The collection of all flats of M is partially ordered by inclusion, with ∅ as
the smallest flat and [n] as the largest flat. This poset is denoted by LM and
it is the geometric lattice associated with M . Each maximal chain F in LM

has length d, so it can be written as

F : ∅ = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd−1 ⊂ Fd = [n].

The 0-1 vectors eF1
, eF2

, . . . , eFd
arising from such a chain F are linearly inde-

pendent, so they span a simplicial cone CF of dimension d in Rn.

Theorem 6.10. The cones CF and their faces form a fan in Rn whose support
is precisely the Berman fan T (M). Hence the Bergman complex T (M)′ equals
the simplicial complex of chains in the geometric lattice L(M). This simplicial
complex is shellable, and its homotopy type is that of a wedge of µ(M) spheres
of dimension d − 2, where µ(M) is the Möbius invariant of the matroid M .

The first two statements in this theorem are due to Ardila and Kilvans [7].
The third sentence is a well-known result in topological combinatorics [14].
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The Bergman fans of matroids are important for the study of arbitrary
tropical linear spaces because they appear both as the links of their faces and
as their “asymptotes”. Another way to think about tropical linear spaces is as
dual complexes to matroid subdivisions of the second hypersimplex. This point
of view has been developed by Speyer [72, 73], and it also plays an important
role in the connection of tropical linear spaces to affine buildings [27, 47] and
to moduli problems in algebraic geometry [40, 50].

We close our discussion of tropical linear equations with a few remarks about
their defining equations. We already saw in Example 6.4 that the number of
tropical hyperplanes needed to cut out a tropical d-plane in Rn can be larger
than n−d. The following result from [12] shows that this number can actually
be very close to the upper bound

(

n

d+1

)

which we saw in Lemma 6.1.

Proposition 6.11. For any 1 ≤ d ≤ n, there is a linear ideal I in C[x1, . . . , xn]
such that any tropical basis of linear forms in I has size at least 1

n−d+1

(

n

d

)

.

Proof. Suppose that all d × d-minors of the coefficient matrix (aij) are non-
zero. Equivalently, the matroid of I is uniform. There are

(

n

n−d+1

)

circuits in
I, each supported on a different (n − d + 1)-subset of {x1, . . . , xn}. Since the
circuits form a tropical basis of I and each circuit has support of size n−d+1,
the tropical variety T (I) consists of all vectors w ∈ R

n whose smallest d + 1
components are equal. The latter condition is necessary and sufficient to ensure
that no single variable in a circuit becomes the initial form of the circuit with
respect to w. Consider any vector w ∈ Rn satisfying

wi1 = wi2 = · · · = wid < min
(

wj : j ∈ {1, . . . , n}\{i1, i2, . . . , id}
)

.

Since w 6∈ T (I), any tropical basis of linear forms in I contains an f such
that inw(f) ∈ {xi1 , . . . , xid}. This implies that f is one of the d circuits whose
support contains the n − d variables xj with j 6∈ {i1, . . . , id}. The support of
each circuit has size n−d+1, hence contains n−d+1 distinct (n−d)-subsets.
There are

(

n

d

)

(n−d)-subsets of {x1, . . . , xn} to be covered. Hence any tropical

basis consisting of linear forms has size at least 1

n−d+1

(

n

d

)

. �

Example 6.12. Let d = 3, n = 5. The Bergman fan T (I) corresponds to
the line in tropical projective 4-space which consists of the five rays in the
coordinate directions. We have 1

n−d+1

(

n

d

)

= 10/3. Hence this line is not a
complete intersection of three tropical hyperplanes, but it requires four. �

Proposition 6.11 raises the question whether, for special classes of matroids
M , the Bergman fan has a smaller tropical basis which has a nice combina-
torial characterization. This question was studied by Yu and Yuster [89] who
obtained a range of interesting results, including a characterization of tropical
bases for graphic and co-graphic matroids.


