
5. Grassmannians and the Space of Trees

In this lecture we shall be interested in a very particular ideal. The ambient
polynomial ring C[p] has

(

n

d

)

variables, which are called Plücker coordinates:

C[p] := C
[

pi1i2···id : 1 ≤ i1 < i2 < · · · < id ≤ n
]

.

The Plücker ideal is the homogeneous prime ideal in C[p] consisting of the
algebraic relations among the d× d-minors of an arbitrary d× n-matrix. The
ideal Id,n is generated by quadrics, and it has a well-known quadratic Gröbner
basis (see e.g. [75, Theorem 3.1.7]. The projective variety of Id,n is the Grass-
mannian Gd,n which parametrizes d-dimensional linear subspaces of Cn. The
Grassmannian Gd,n is a smooth and irreducible variety of dimension d(n− d).
Hence dim(Id,n) = d(n − d) + 1. The parametrization of d-dimensional sub-
spaces of C

n by points p in Gn,d works as follows: if a subspace is given as the
row space of a d×n-matrix then its Pücker coordinate vector p consists of the
d× d-minors of that matrix. This is unique up to scaling. Conversely, if p any
point in the Grassmannian Gd,n then the corresponding subspace equals

(1)
{

x ∈ R
n :

d
∑

r=0

(−1)r · pi0i1···bir ···id
· xir = 0 for all 1≤ i0<i1< · · · < id≤n

}

.

We shall be particularly interested in the case d = 2. Here the Grassmannian
G2,n has dimension 2n−4 and it parametrizes planes through the origin in Cn,
or, equivalently, G2,n parametrizes lines in the projective space Pn−1.

Proposition 5.1. The ideal I2,n is generated by the special quadrics

(2) pijpkl − pikpjl + pilpjk, 1 ≤ i < j < k < l ≤ n.

For suitable term order, these constitute the reduced Gröbner basis for I2,n.

The three-term Plücker relations (2) can be generalized to d > 2 as follows:

(3) pijS · pklS − pikS · pjlS + pilS · pjkS

for S ⊂ {1, . . . , n} with |S| = d − 2 and i, j, k, l ∈ {1, . . . , n}\S. Here we are
employing the standard convention that Plücker coordinates pi1i2···id for non-
increasing index strings i1i2 · · · id are defined by permuting that string to be
increasing and multiplying with the sign of the permutation. For example,

p5342 = −p3542 = p3452 = · · · = −p2345.

In general, for n ≥ d + 3 ≥ 6, the three-term Plücker relations (3) do not
generate the ideal Id,n. However, they do so when Id,n is extended to the
Laurent polynomial ring C[p±], so they will be close enough for our purposes.

We define the tropical Grassmannian Gd,n to be the tropical variety T (Id,n)
specified by the Plücker ideal Id,n. Thus Gd,n is a pure fan in the vector space

R(d

n
) whose coordinates we now denote by wi1i2···id for 1 ≤ i1 < i2 < · · · < id ≤

1
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n. The dimension of Gd,n equals d(n− d) + 1 = dim(Id,n). Among the tropical
hypersurfaces containing the tropical Grassmannian Gd,n are those defined by
the three-term Plücker relations. The tropical three-term Plücker relations are

(4) wijS ⊙ wklS ⊕ wikS ⊙ wjlS ⊕ wilS ⊙ wjkS

where |S| = d− 2 and i, j, k, l ∈ {1, . . . , n}\S. The intersection of the tropical
hypersurfaces T (wijS ⊙ wklS ⊕ wikS ⊙ wjlS ⊕ wilS ⊙ wjkS) is a tropical preva-
riety, denoted preGd,n, which is a combinatorial approximation to the tropical
Grassmannian Gd,n. For n ≥ d + 4 ≥ 7 the approximation preGd,n is strictly
larger than Gd,n, as we shall see in Example ???, but for d = 2 they are equal:

Theorem 5.2. The three-term Plücker relations (2) form a tropical basis for
the Plücker ideal I2,n, and hence the tropical prevariety preG2,n equals G2,n.

The proof of this theorem will be derived as a corollary to our discussion
of phylogenetic trees. First, however, we reduce the dimension of the tropical

Grassmannian Gd,n. Consider the linear map from R
n to R(n

d
) which sends an

n-vector (a1, a2, . . . , an) to the
(

n

d

)

-vector whose coordinates are ai1 + · · ·+aid.
The map φ is injective and its image L equals the intersection of all cones in

Gd,n. The image of Gn,d in R(n

d
)/L is a pointed fan of dimension d(n−d)+1−n =

nd − n − d2 + 1. Intersecting the image with a sphere, we obtain a pure
polyhedral complex G′

d,n of dimension nd − n − d2. By standard abuse of
notation, we refer to this polyhedral complex as the tropical Grassmannian.

Example 5.3. (d = 2, n = 4) The smallest non-zero Plücker ideal is the
principal ideal I2,4 = 〈p12p34−p13p24+p14p23〉. Its tropical variety G2,4 = T (I2,4)
is a fan with three five dimensional cones L × R≥0 glued along L ≃ R4. The
polyhedral complex G′

2,4 is zero-dimensional and consists of three points. �

Example 5.4. (d = 2, n = 5) The tropical Grassmannian G2,5 is a pure fan of
dimension 7 in R10, and its reduced version G′

2,5 is a one-dimensional complex.
This complex the Petersen graph, which has 10 vertices and 15 edges. �

The following theorem generalizes both of these examples. It concerns the
d = 2, that is, the tropical version of the Grassmannian of lines in Pn−1.

Theorem 5.5. The tropical Grassmannian G′
2,n is a simplical complex known

as the space of phylogenetic trees. It has 2n−1−n−1 vertices, 1·3·5 · · ·(2n−5)
facets, and its homotopy type is a bouquet of (n−2)! spheres of dimension n−4.

We begin our steps towards a proof with a description of the simplicial
complex. It is denoted by Tn and is defined as follows. The vertex set consists
of all unordered pairs {A,B} where A and B are disjoint subsets of [n] :=
{1, 2, . . . , n} having cardinality at least two, and A ∪ B = [n]. Such pairs are
called splits. The number of splits is 2n−1 − n − 1. Two splits {A,B} and
{A′, B′} are connected by an edge in the simplicial complex Tn if and only if

(5) A ⊆ A′ or A ⊆ B′ or B ⊆ A′ or B ⊆ B′.
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We define Tn as the largest simplicial complex having this edge graph. Thus,
a subset σ ⊂ Vert(Tn) is a face of Tn if any pair

{

{A,B}, {A′, B′}
}

⊆ σ
satisfies (5). In the language of algebraic combinatorics, Tn is the flag complex
of the compatibility graph specified by (5) on the set of all 2n−1 −n− 1 splits.

The two smallest cases n = 4 (three points) and n = 5 (the Petersen graph)
are discussed in Examples 5.3 and 5.4. Here is a description of the next case:

Example 5.6. (n = 6) The two-dimensional simplicial complex T6 has 25
vertices, 105 edges and 105 triangles, each coming in two symmetry classes:

15 vertices like {12, 3456} , 10 vertices like {123, 456},

60 edges like {{12, 3456}, {123, 456}},

45 edges like {{12, 3456}, {1234, 56}},

90 triangles like {{12, 3456}, {123, 456}, {1234, 56}},

15 triangles like {{12, 3456}}, {34, 1256}}, {56, 1234}}.

Each edge lies in three triangles, so it looks locally like a tropical in R2. �

The simplicial complex Tn is well-known in phylogenetic combinatorics [66].
Its faces σ correspond to semi-labeled trees with leaf labels 1, 2, . . . , n. Here
each internal node is unlabeled and has at least three neighbors. Each internal
edge of such a tree defines a partition {A,B} of the set of leaves {1, 2, . . . , n},
and we encode the tree by the set of splits representing its internal edges.

The facets (= maximal faces) of Tn correspond to trivalent trees, that is,
semi-labeled trees whose internal nodes all have three neighbors. All facets
of Tn have the same cardinality n − 3, the number of internal edges of any
trivalent tree. Hence Tn is pure of dimension n − 4. The number of facets
(i.e. trivalent semi-labeled trees on {1, 2, . . . , n}) is the Schröder number

(6) (2n− 5)!! = (2n− 5) × (2n− 7) × · · · × 5 × 3 × 1.

We now describe an embedding of Tn as a simplicial fan into the 1
2
n(n− 3)-

dimensional vector space R(n

2
)/image(φ). For each trivalent tree σ we first

define a cone Bσ in R(n

2) as follows. By a realization of a semi-labeled tree
σ we mean a one-dimensional cell complex in some Euclidean space whose
underlying graph is a tree isomorphic to σ. Such a realization of σ is a metric
space on {1, 2, . . . , n}. The distance between i and j is the length of the unique
path between leaf i and leaf j in that realization. Then we set

Bσ =
{

(w12, w13, . . . , wn−1,n) ∈ R(n

2
) : −wij is the distance from

leaf i to leaf j in some realization of σ
}

+ image(φ).

Let Cσ denote the image of Bσ in the quotient space R(n

2)/image(φ). Passing
to this quotient has the geometric meaning that two trees are identified if their
only difference is in the lengths of the n edges adjacent to the leaves.
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Lemma 5.7. The closure Cσ is a simplicial cone of dimension |σ| with relative
interior Cσ. The set of all cones Cσ, as σ runs over Tn, is a simplicial fan.

The support of this fan is the space of tree metrics in R(n

2) modulo image(φ).

Proof. Metric spaces that can be realized as trees are characterized by the
Four Point Condition (see e.g. [61, 66]). This condition states that for any
quadruple of leaves i, j, k, l there exists a unique relabeling such that

(7) wij + wkl = wik + wjl ≤ wil + wjk.

Given any tree σ, this gives a system of
(

n

4

)

linear equations and
(

n

4

)

linear

inequalities. The solution set of this linear system is precisely the closure Bσ

of the cone Bσ in R(n

2
). The Neighbor Joining Algorithm [61, Algorithm 2.41]

easily reconstructs the combinatorial tree σ from any point w in Bσ.
All of our cones share a common linear subspace, namely,

(8) Bσ ∩ −Bσ = image(φ).

This is seen by replacing the inequalities in (7) by equalities. The cone Bσ is
the direct sum (9) of this linear space with a |σ|-dimensional simplicial cone.

Let {eij : 1 ≤ i < j ≤ n} denote the standard basis of R(n

2
). Adopting the

convention eji = eij , for any split {A,B} of {1, 2, . . . , n} we define

EA,B =
∑

i∈A

∑

j∈B

eij .

These vectors give the generators of our cone as follows:

(9) Bσ = image(φ) + R≥0

{

EA,B : {A,B} ∈ σ
}

.

From the two presentations (7) and (9) it follows that

(10) Bσ ∩ Bτ = Bσ ∩ τ for all σ, τ ∈ Tn.

Therefore the cones Bσ form a fan in R(n

2
), and this fan has face poset Tn. It

follows from (9) that the quotient Cσ = Bσ/image(φ) is a pointed cone.
We get the desired conclusion for the cones Cσ by taking quotients modulo

the common linear subspace (8). The resulting fan in R(n

2
)/image(φ) is sim-

plicial of pure dimension n − 3 and has face poset Tn. The support of this
fan is as stated because the support of the fan of Bσ’s is the space of tree
metrics with image(φ) added to it. We note that this space is isometric to
the Billera-Holmes-Vogtmann space in [11] because their metric is flat on each

cone Cσ ≃ R
|σ|
≥0 and extended by the gluing relations Cσ ∩ Cτ = Cσ∩ τ . �

We now turn to the tropical Grassmannian and prove the theorem stated
earlier. The simplicial complex Tn is identified with the fan in Lemma 5.7.

Proof of Theorem 5.5: The Plücker ideal I2,n is generated by the
(

n

4

)

quadrics

pijpkl − pikpjl + pilpjk for 1 ≤ i < j < k < l ≤ n.
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Figure 1. A Circular Labeling of a Tree with Six Leaves

The tropicalization of this polynomial is the disjunction of linear systems

wij + wkl = wik + wjl ≤ wil + wjk

or wij + wkl = wil + wjk ≤ wik + wjl

or wik + wjl = wil + wjk ≤ wij + wkl.

The solution set to these constraints is the tropical prevariety preG2,n. The
Four Point Condition, cited in the previous proof, shows that |Tn| = preG2,n.

We need to prove that the fans Tn and G2,n are equal. Equivalently, every
cone Cσ is actually a cone in the Gröbner fan of I2,n and the corresponding
initial ideal contains no monomial. In view of the fan property (10), it suffices
to consider maximal cones σ of Tn. Fix a trivalent tree σ and a weight vector
w ∈ Cσ. Then, for every quadruple i, j, k, l, the inequality in (7) is strict. This
means combinatorially that

{

{i, l}, {j, k}
}

is a four-leaf subtree of σ.
Let Jσ denote the ideal generated by the quadratic binomials pijpkl − pikpjl

corresponding to all four-leaf subtrees of σ. Our discussion shows that Jσ ⊆
inw(I2,n). The proof will be complete by showing that the two ideals agree:

Jσ = inw(I2,n).(11)

This identity will be proved by showing that the two ideals have a common
initial monomial ideal, generated by square-free quadratic monomials.



6

We may assume, without loss of generality, that −w is a strictly positive
vector, corresponding to a planar realization of the tree σ in which the leaves
1, 2, . . . , n are arranged in circular order to form a convex n-gon (Figure 1).

Let M be the ideal generated by the monomials pikpjl for 1 ≤ i < j <
k < l ≤ n. These are the crossing pairs of edges in the n-gon. By a classical
construction of invariant theory, known as Kempe’s circular straightening law
(see [75, Theorem 3.7.3]), there exists a term order ≺circ on Z[p] such that

(12) M = in≺circ
(I2,n).

Now, by our circular choice w of realization of the tree σ, the crossing mono-
mials pikpjl appear as terms in the binomial generators of Jσ. Moreover, the
term order ≺circ on Z[p] refines the weight vector w. This implies

(13) in≺circ
(inw(I2,n)) = in≺circ

(I2,n) = M ⊆ in≺circ
(Jσ).

Using Jσ ⊆ inw(I2,n) we conclude that equality holds in (13) and in (11).
Vogtman [88] proved that Tn has the homotopy type of a bouquet of (n−2) !

spheres of dimension n−4. A stronger combinatorial result, stating that Tn is
a shellable complex, was shown by Trappman and Ziegler [86]. An alternative
derivation of the homotopy type was given by Ardila and Klivans in [7]. �

The simplicial complex ∆(M) represented by the squarefree monomial ideal
M is an iterated cone over the boundary of the polar dual of the associahedron;
see [75, page 132]. The facets of ∆(M) are the triangulations of the n-gon.
Their number is the common degree of the ideals I2,n, Jσ and M :

the (n− 2)nd Catalan number =
1

n− 1

(

2n− 4

n− 2

)

.

Corollary 5.8. There exists a maximal cone in the Gröbner fan of the Plücker
ideal I2,n which contains, up to symmetry, all cones of the Grassmannian G2,n.

Proof. The cone corresponding to the initial ideal (12) has this property. �

Corollary 5.9. Every monomial-free initial ideal of I2,n is a prime ideal.

Proof. If an initial ideal of a given ideal is prime then that ideal is prime as
well. It therefore suffices to consider the binomial ideals inw(I2,n) where w is
in Cσ for some maximal cone σ. Then the vector w satisfies all four point
conditions (7) with strict inequalities. Hence inw(I2,n) = Jσ for some semi-
labeled trivalent tree σ. The ideal Jσ is radical and equidimensional because
its initial ideal M = in≺circ

(Jσ) is radical and equidimensional (unmixed).
To show that Jσ is prime, we use the following argument. For each edge e

of the tree σ we introduce an indeterminate ye. Consider the polynomial ring

C[y] = C
[

ye : e edge of σ
]

.
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Let ψ denote the homomorphism C[p] → C[y] which sends pij to the product of
all indeterminates ye corresponding to edges on the unique path between leaf
i and leaf j. The kernel of ψ is a prime ideal. We claim that kernel(ψ) = Jσ.
The convex polytope corresponding to the toric ideal kernel(ψ) has a canonical
triangulation into 1

n−1

(

2n−4
n−2

)

unit simplices (namely, ∆(M)). Hence kernel(ψ)
and Jσ are both unmixed of the same dimension and the same degree. Since
kernel(ψ) is contained in Jσ, it follows that the two ideals are equal. �

We next study the case d = 3 and n = 6 in detail. The Plücker ideal I3,6 is
minimally generated by 35 quadrics in the polynomial ring in 20 variables,

C[p] = C[p123, p124, . . . , p456].

We are interested in the 10-dimensional fan G3,6 which consists of all vectors
w ∈ R20 such that inw(I3,6) is monomial-free. The four-dimensional pointed
quotient fan of G3,6 sits in R20/image(φ) ≃ R14 and is a fan over the three-
dimensional polyhedral complex G′

3,6. Our aim is to prove the following result:

Theorem 5.10. The tropical Grassmannian G′
3,6 is a 3-dimensional simplicial

complex with 65 vertices, 550 edges, 1395 triangles and 1035 tetrahedra. The
homology of G′

3,6 is concentrated in (top) dimension 3 and H3(G
′
3,6,Z) = Z126.

We begin by listing the vertices. Let E denote the set of 20 standard basis

vectors eijk in R(6

3
). For each 4-subset {i, j, k, l} of {1, 2, . . . , 6} we set

fijkl = eijk + eijl + eikl + ejkl.

Let F denote the set of these 15 vectors. Finally consider any of the 15
tripartitions {{i1, i2}, {i3, i4}, {i5, i6}} of {1, 2, . . . , 6} and define the vectors

gi1i2i3i4i5i6 := fi1i2i3i4 + ei3i4i5 + ei3i4i6

and gi1i2i5i6i3i4 := fi1i2i5i6 + ei3i5i6 + ei4i5i6 .

This gives us another set G of 30 vectors. All 65 vectors in E ∪ F ∪ G are

regarded as elements of the quotient space R(6

3)/image(φ) ≃ R14. Note that

gi1i2i3i4i5i6 = gi3i4i5i6i1i2 = gi5i6i1i2i3i4 .

The following identity will be used later in the proof of Theorem 5.10:

(14) gi1i2i3i4i5i6 + gi1i2i5i6i3i4 = fi1i2i3i4 + fi1i2i5i6 + fi3i4i5i6.

The following lemma was found by computation:

Lemma 5.11. The set of vertices of G′
3,6 equals E ∪ F ∪ G.

We next describe all the 550 edges of the tropical Grassmannian G3,6.

(EE) There are 90 edges like {e123, e145} and 10 edges like {e123, e456}, for a
total of 100 edges connecting pairs of vertices both of which are in E.
(By the word “like”, we will always mean “in the S6 orbit of, where S6

permutes the indices {1, 2, . . .6}.)
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(FF) This class consists of 45 edges like {f1234, f1256}.
(GG) Each of the 15 tripartitions gives exactly one edge, like {g123456, g125634}.
(EF) There are 60 edges like {e123, f1234} and 60 edges like {e123, f1456}, for

a total of 120 edges connecting a vertex in E to a vertex in F .
(EG) This class consists of 180 edges like {e123, g123456}. The intersections

of the index triple of the e vertex with the three index pairs of the g
vertex must have cardinalities (2, 1, 0) in this cyclic order.

(FG) This class consists of 90 edges like {f1234, g123456}.

Lemma 5.12. The 1-skeleton of G′
3,6 is the graph with the 550 edges above.

Let ∆ denote the flag complex specified by the graph in the previous lemma.
Thus ∆ is the simplicial complex on E∪F ∪G whose faces are subsets σ with
the property that each 2-element subset of σ is one of the 550 edges. We will
see that G3,6 is a subcomplex homotopy equivalent to ∆.

Lemma 5.13. The flag complex ∆ has 1, 410 triangles, 1, 065 tetrahedra, 15
four-dimensional simplices, and it has no faces of dimension five or more.

The facets of ∆ are grouped into seven symmetry classes:

Facet FFFGG: There are 15 four-dimensional simplices, one for each par-
tition of {1, . . . , 6} into three pairs. An example of such a tripartition is
{{1, 2}, {3, 4}, {5, 6}}. It gives the facet {f1234, f1256, f3456, g123456, g125634}. The
75 tetrahedra contained in these 15 four-simplices are not facets of ∆.

The remaining 990 tetrahedra in ∆ are facets and they come in six classes:

Facet EEEE: There are 30 tetrahedra like {e123, e145, e246, e356}.
Facet EEFF1: There are 90 tetrahedra like {e123, e456, f1234, f3456}.
Facet EEFF2: There are 90 tetrahedra like {e125, e345, f3456, f1256}.
Facet EFFG: There are 180 tetrahedra like {e345, f1256, f3456, g123456}.
Facet EEEG: There are 240 tetrahedra like {e126, e134, e356, g125634}.
Facet EEFG: There are 360 tetrahedra like {e234, e125, f1256, g125634}.

While ∆ is an abstract simplicial complex on the vertices of G′
3,6, it is not

embedded on the given vertices because of the relation (14) which says that
the five involved vertices form a bipyramid with the F-vertices as the base and
the G-vertices as the two cone points. We modify the flag complex ∆ to a
new simplicial complex ∆′ which has pure dimension three. The complex ∆′ is
obtained from ∆ by removing the 15 FFF-triangles {f1234, f1256, f3456}, along
with the 30 tetrahedra FFFG and the 15 four-simplices FFFGG containing
the FFF-triangles. In the three-dimensional complex ∆′, the bipyramids are
each divided into three tetrahedra arranged around the GG-edges.

Proof of Theorem 5.10: It remains to show that the Grassmannian G′
3,6 equals

the simplicial complex ∆′. This is accomplished an explicit computation. The
integral homology groups ∆′ were computed independently by Michael Joswig
and Volkmar Welker. The assertion ∆′ = G3,6 can be verified by the following
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method. One first checks that the seven types of cones described above are
indeed Gröbner cones of I3,6 whose initial ideals are monomial-free. Next one
checks that the list is complete. This relies on our result in Section 3 which
states that G3,6 is connected in codimension 1. The completeness check is done
by computing the link of each of the known classes of triangles. Algebraically,
this amounts to computing the (truly zero-dimensional) tropical variety of
inw(I3,6) where w is any point in the relative interior of the triangular cone in
question. For all but one class of triangles the link consists of three points,
and each neighboring 3-cell is found to be already among our seven classes.
The links of the triangles are as follows:

Triangle EEE: The link of {e146, e256, e345} consists of e123, g163425, g142635.
Triangle EEF: The link of {e256, e346, f1346} consists of f1256, g132546, g142536.
Triangle EEG: The link of {e156, e236, g142356} consists of e124, e134, f1456.
Triangle EFF: The link of {e135, f1345, f2346} consists of e236, e246, g153426.
Triangle EFG: The link of {e235, f2356, g143526} consists of e145, f1246, e134.
Triangle FFG: The link of {f1236, f1345, g134526} consists of e126, e236, g132645.
Triangle FGG: The link of {f1456, g142356, g145623} consists of f2356 and f1234.

The FGG triangle lies in the interior of our bipyramid FFFGG and is inci-
dent to two of the three FFGG tetrahedra which make up the triangulation of
that bipyramid. It is not contained in any other facet of G′′

3,6. �

One of the consequences which can be inferred from our detailed study of
G3,6 is that the quadrics in I3,6 form a tropical basis, and hence G3,6 = preG3,6.
It turns out that the same statement no longer holds for n ≥ d+ 4 ≥ 7.

Proposition 5.14. For n ≥ d + 4 ≥ 7, the tropical Grassmannian Gd,n is
strictly contained in the tropical prevariety preGd,n defined by the relations (4).

Proof. We consider the case d = 3 and n = 7. An easy lifting argument
extends our example to the general case n ≥ d+4 ≥ 7. The Plücker ideal I3,7 is
minimally generated by 140 quadrics in a polynomial ring C[p123, p124, . . . , p567]
in 35 unknowns. We fix the following zero-one vector. The appearing triples
are gotten by a cyclic shift, and they correspond to the lines in the Fano plane:

w = e124 + e235 + e346 + e457 + e156 + e267 + e137 ∈ R(6

3
).

The vector w satisfies all the three-term Plücker relations (4), so it lies in
the prevariety preG3,7. To show that it is not in the Grassmannian G3,7, we
compute the initial ideal inw(I3,7). In a computer algebra system, this is done
by computing the reduced Gröbner basis of I3,7 over the field of rational num-
bers with respect to the (reverse lexicographically refined) weight order defined
by −w. The reduced Gröbner basis is found to have precisely 196 elements,
namely, 140 quadrics, 52 cubics, and 4 quartics. The initial ideal inw(I3,7) is
generated by the w-leading forms of the 196 elements in that Gröbner basis.
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Among the 52 cubics in the Gröbner basis of I3,7, we find the special cubic

f = 2 · p123p467p567 − p367p567p124 − p167p467p235 − p127p567p346

−p126p367p457 − p237p467p156 + p134p567p267 + p246p567p137 + p136p267p457.

The weights of the underlined variables are one, while the weights of the non-
underlined variables are zero. We conlcude that the leading form of this special
cubic polynomial is the monomial

inw(f) = p123p467p567.

This proves that w does not lie in the tropical Grassmannian G3,7. �

The Fano plane in the proof of Proposition 5.14 indicates an intimate con-
nection between the tropical Grassmannian and the theory of matroids. The
basis exchange axiom in matroid theory can be interpreted as consistency with
the three-term Plücker relations (3). This leads to the following result.

Corollary 5.15. Let B be any subset of the collection
(

[n]
d

)

of d-element subsets
of {1, . . . , n}, and consider the negative of the corresponding incidence vector:

wB := −
∑

σ∈B

eσ ∈ R(n

d).

Then B is the set of bases of a matroid if and only if wB lies in preGd,n. The
vector wB also lies in Gd,n if and only if that matroid can be realized over C.

Proof. The first statement is a re-interpretation of the basis exchange axiom for
matroids. Consider the second statement. The if-direction is seen as follows:
Suppose B is a complex d×n-matrix which realizes the given matroid, i.e., the
column bases of B are precisely the d-sets in B. Then take a generic complex
d×n-matrix C and consider the matrix t−1B + C over K = C{{t}}. Consider
the vector of maximal minors of this matrix and multiply that vector by td−1.
The resulting vector lies in the Grassmannian Gd,n and its image under the
valuation map is precisely the vector wB Thus wB lies in Gd,n. The same
argument works in reverse, using the extended Kapranov theorem [45, 82]. �

The combinatorial study of tropical Grassmannians and its relation to ma-
troid theory has its origin in the work of Dress and Wenzel [28]. They intro-
duced the concept of valuated matroids, and these are precisely the points in the
prevariety preGd,n. The Dress-Wenzel theory was further developed by Murota
[59] who showed that the three-term relations (3) can be replaced by the set
of all quadrics in Id,n without changing the prevariety. Dress and Terhalle
[27] explained the connection between valuated matroids and affine buildings,
which leads to the interpretation of points in Gd,n as higher-dimensional trees.
For that reason, Pachter and Sturmfels [61, §3.5] refer to preGd,n as the space
of d-trees. The state of the art on this subject is the work of Speyer [72, 73]
on tropical linear spaces which will be discussed in the next section.


