
3. Computing Tropical Varieties

Given any polynomial f ∈ C[x] = C[x1, . . . , xn] and a vector w ∈ Rn, the
initial form inw(f) is the sum of all terms in f of lowest w-weight. For instance,
if ` = x1 + x2 + x3 + 1 then in(0,0,1)(`) = x1 + x2 + 1 and in(0,0,−1)(`) = x3.
Recall that the tropical hypersurface T (f) is the union of all codimension one
cones in the normal fan of the Newton polytope New(f). In light of the relation

facew(New(f)) = New(inw(f)),

the tropical hypersurface can be expressed as follows:

T (f) = {w ∈ Rn : inw(f) is not a monomial }.
As before, we represent T (f) by the polyhedral complex T ′(f) which is ob-
tained by removing the lineality space and intersecting with the unit sphere.
A finite intersection of tropical hypersurfaces is called a tropical prevariety

For the linear polynomial ` above, T ′(`) is the complete graph on the 2-
sphere having the four nodes (1, 0, 0), (0, 1, 0), (0, 0, 1) and −( 1√
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, 1√

3
, 1√

3
). . If

we pick the second linear form `′ = x1+x2+2x3 then T ′(`′) is a graph with two
vertices connected by three edges on the 2-sphere, and T ′(`) ∩ T ′(`′) consists
of three edges of T ′(`) which are adjacent to −( 1√

3
, 1√

3
, 1√

3
). This graph is not

balanced. The tropical prevariety T (`) ∩ T (`′) is not a tropical variety.
Every ideal I in the polynomial ring C[x] specifies a tropical variety T (I).

By definition, T (I) is the intersection of the tropical hypersurfaces T (trop(f)),
where f runs over all polynomials in the ideal I. The initial ideal inw(I) is
generated by all polynomials inw(f) where f runs over I. Using the various
initial ideals, the tropical variety of I can be expressed as follows:

T (I) = {w ∈ Rn : inw(I) contains no monomial }.
Theorem 3.7 below states that every tropical variety T (I) is a tropical pre-

variety, i.e., every ideal I has a finite generating set {f1, f2, . . . , fr} such that

T (I) = T (f1) ∩ T (f2) ∩ · · · ∩ T (fr) .

If this holds then {f1, f2, . . . , fr} is called a tropical basis of I. For instance,
our ideal I = 〈`, `′〉 has the tropical basis {x1 +x2 +2x3, x1 +x2 +2, x3− 1 },
and we find that its tropical variety consists of three points on the sphere:

T (I) =
{
(1, 0, 0), (0, 1, 0), −(

1√
2
,

1√
2
, 0)

}
.

The aim of this lecture is to discuss a practical algorithm for computing
the tropical variety T (I) from any generating set of its ideal I. The emphasis
lies on the geometric and algebraic features of this computation. A key result
(Theorem 3.10) states that the tropical variety T (I) of a prime ideal I is
connected in codimension one. This result is the foundation of Algorithm 3.23.
We shall also describe procedures for computing tropical bases and tropical
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prevarieties. Our algorithms have been implemented in the software package
Gfan, and we shall explain how to use this software for computing T (I).

A note on the choice of ground field is in order. We here work with varieties
defined over C. Our tropical software in Gfan requires that the given polyno-
mials have rational coefficients, but the underlying algorithms work verbatim
for complex coefficients. In the literature, tropical varieties are usually defined
from polynomials with coefficients in a field K with non-archimedean valua-
tion, such as the Puiseux series field K = C{{t}}. These tropical varieties are
polyhedral complexes but usually they are not fans. Our algorithms can be
applied to this situation as follows. Consider the field C(t) of rational func-
tions in the unknown t. Then C(t) is a subfield of the algebraically closed field
K. Suppose we are given an ideal I in C(t)[x]. The tropical variety of I is the
intersection of all tropical hypersurfaces T (trop(f)) where f ∈ I. To compute
T (I), we consider the polynomial ring C[t,x] in n+1 variables and its ideal
J = I∩C[t,x]. Generators of J are computed from generators of I by clearing
denominators and saturating with respect to t. The tropical variety T (J) is a
fan in Rn+1 which our algorithm will compute. The tropical variety of I is the
intersection of the fan T (J) with the hyperplane {x0 = 1} in Rn+1. In symbols

(1) T (I) =
{

w ∈ Rn+1 : (1, w) ∈ T (J)
}

Note that the situation is now analogous to that in the proof of Proposition
??. The result that T (J) is a fan implies that T (I) is (finite) polyhedral
complex in Rn which usually has both bounded and unbounded faces.

A most basic problem in computational tropical geometry is the following:

Problem 3.1. Given a finite list of polynomials f1, . . . , fr ∈ C[x] in n un-
knowns, compute the tropical prevariety T (f1) ∩ · · · ∩ T (fr) in Rn .

The geometry of this problem is best understood by considering the New-
ton polytopes New(f1), . . . , New(fr) of the given polynomials. By definition,
New(fi) is the convex hull in Rn of the exponent vectors which appear in fi.
The tropical hypersurface T (fi) consists of the (n−1)-dimensional cones of the
normal fan of the polytope New(fi). Our problem is to from a fan by inter-
secting these hypersurfaces. The resulting tropical prevariety can be a fairly
general polyhedral fan. Its maximal cones may have different dimensions.

The tropical variety of an ideal I in C[x] is the set T (I) :=
⋂

f∈I T (f). We
first note that it suffices to compute tropical varieties of homogeneous ideals.
Let hI ⊂ C[x0,x] be the homogenization of an ideal I in C[x] by a new variable.

Lemma 3.2. Fix an ideal I ⊂ C[x] and a vector w ∈ Rn. The initial ideal
inw(I) contains a monomial if and only if in(0,w)(

hI) contains a monomial.

Proof. Suppose xu ∈ inw(I). Then xu = inw(f) for some f ∈ I. The (0, w)-
weight of a term in hf equals the w-weight of the corresponding term in f .
Hence in(0,w)(

hf) = xa
0x

u ∈ in(0,w)(
hI) where a is some non-negative integer.
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Conversely, if xu ∈ in(0,w)(
hI) then xu = in(0,w)(f) for some f ∈ hI. Substi-

tuting x0 = 1 in f gives a polynomial in I. The (0, w)-weight of any term in
f equals the w-weight of the corresponding term in f |x0=1. Since in(0,w)(f) is
a monomial, only one term in f has minimal (0, w)-weight. This term cannot
be canceled during the substitution. Hence it lies in inw(I). �

Our main goal in this lecture is to solve the following computational task.

Problem 3.3. Given a finite list of homogeneous polynomials f1, . . . , fr ∈
C[x], compute the tropical variety T (I) of their ideal I = 〈f1, . . . , fr〉.

It is important to note that Problems 3.1 and 3.3 are of a fundamentally
different nature. Problem 3.1 is a problem of polyhedral geometry. It involves
only polyhedral computations and no algebra. Problem 3.3, on the other hand,
combines the polyhedral aspect with an algebraic one. To solve Problem 3.3
we must perform algebraic operations with polynomials (e.g. Gröbner bases).

Our next problem concerns tropical bases. Recall that a finite set {f1, . . . , ft}
is a tropical basis of I if 〈f1, . . . , ft〉 = I and T (I) = T (f1) ∩ · · · ∩ T (ft).

Problem 3.4. Compute a tropical basis of a given ideal I ⊂ C[x].

A priori, it is not clear that every ideal I has a finite tropical basis, but we
shall prove this below. First, here is one case where this is easy:

Example 3.5. If I = 〈f〉 is a principal ideal, then {f} is a tropical basis. �

In [73] it was claimed that any universal Gröbner basis of I is a tropical
basis. Unfortunately, this claim is false as the following example shows.

Example 3.6. Let I be the intersection of the three linear ideals 〈x + y, z〉,
〈x + z, y〉, and 〈y + z, x〉 in C[x, y, z]. Then I contains the monomial xyz, so
T (I) is empty. A minimal universal Gröbner basis of I is

U = {x + y + z, x2y + xy2, y2z + yz2, x2z + xz2 },
and the intersection of the four corresponding tropical surfaces in R3 is the
line w1 = w2 = w3. Thus U is not a tropical basis of I. �

We now prove that every ideal I ⊂ C[x] has a tropical basis. By Lemma 3.2,
one tropical basis of a non-homogeneous ideal I is the dehomogenization of a
tropical basis for hI. Hence we shall assume that I is a homogeneous ideal.

Tropical bases can be constructed from the Gröbner fan of I (see [57], [75]).
The Gröbner fan is a complete finite rational polyhedral fan in Rn whose
relatively open cones are in bijection with the distinct initial ideals of I. Two
weight vectors w, w′ ∈ Rn lie in the same relatively open cone of the Gröbner
fan of I if and only if inw(I) = inw′(I). The closure of this cell, denoted by
Cw(I), is called a Gröbner cone of I. The n-dimensional Gröbner cones are in
bijection with the reduced Gröbner bases, or equivalently, the monomial initial
ideals of I. Every Gröbner cone of I is a face of at least one n-dimensional
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Gröbner cone of I. If inw(I) is not a monomial ideal, then we can refine w to
≺w by breaking ties in the partial order induced by w with a fixed term order
≺ on C[x]. Let G≺w(I) denote the reduced Gröbner basis of I with respect
to ≺w. The Gröbner cone of G≺w(I), denoted by C≺w(I), is an n-dimensional
Gröbner cone that has Cw(I) as a face. The tropical variety T (I) consists of
all Gröbner cones Cw(I) such that inw(I) does not contain a monomial. From
the description of T (I) as

⋂
f∈I T (f) it is clear that T (I) is supported on a

closed subfan of the Gröbner fan. This endows the tropical variety T (I) with
the structure of a polyhedral fan. In this lecture, the tropical variety T (I) of
a homogenous ideal I is always assumed to come with this fan structure.

Theorem 3.7. Every ideal I ⊂ C[x] has a tropical basis.

Proof. We may assume that I is a homogeneous ideal. Let F be any finite
generating set of I which is not a tropical basis. Pick a Gröbner cone Cw(I)
whose relative interior intersects ∩f∈FT (f) non-trivially and whose initial
ideal inw(I) contains a monomial xm. Compute the reduced Gröbner basis
G≺w(I) for a refinement ≺w of w, and let h be the normal form of xm with
respect to G≺w(I). Let f := xm−h. Since the normal form of xm with respect
to G≺(inw(I)) = {inw(g) : g ∈ G≺w(I)} is 0 and h is the normal form of xm

with respect to G≺w(I), every monomial occurring in h has higher w-weight
than xm. Moreover, h depends only on the reduced Gröbner basis G≺w(I) and
is independent of the particular choice of w in Cw(I). Hence for any w′ in
the relative interior of Cw(I), we have xm = inw′(f). This implies that the
polynomial f := xm−h is a witness for the cone Cw(I) not being in the tropical
variety T (I). We now add the witness f to the current basis F and repeat
the process. Since the Gröbner fan has only finitely many cones, this process
will terminate after finitely many steps. It eventually removes all cones of the
Gröbner fan which violate the condition for F to be a tropical basis. �

The following lemma is useful for practical computations with Gröbner fans
and for finding a low-dimensional representation of the tropical variety T (I).

Lemma 3.8. For an ideal I ⊂ C[x] and w ∈ Rn, the following are equivalent:

(1) The ideal I is w-homogeneous; i.e. I is generated by a set S of w-
homogeneous polynomials, meaning that inw(f) = f for all f ∈ S.

(2) The initial ideal inw(I) is equal to I.

Proof. If I has a w-homogeneous generating set then I ⊆ inw(I). Any maximal
w-homogeneous component of f ∈ I is in I. In particular inw(f) ∈ I. Con-
versely, the ideal inw(I) is generated by w-homogeneous elements by definition
so, if I = inw(I), then I is generated by w-homogeneous elements. �

The set of w which satisfy conditions (1) and (2) is a linear subspace of
Rn. Its dimension is called the homogeneity of I and is denoted homog(I).
This space is contained in every cone of the fan T (I) and can be computed
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from the Newton polytopes of the polynomials that form any reduced Gröbner
basis of I. Passing to the quotient of Rn modulo that subspace and then to
a sphere around the origin, T (I) can be represented as a polyhedral complex
of dimension n − codim(I) − homog(I) − 1 = dim(I) − homog(I) − 1. Here
codim(I) and dim(I) are the codimension and dimension of I. In what follows,
T (I) is always presented in this way, and every ideal I is presented by a finite
list of generators together with the three numbers n, dim(I) and homog(I).

Example 3.9. Let I denote the ideal which is generated by the 3× 3-minors
of a symmetric 4× 4-matrix of unknowns. This ideal has n = 10, dim(I) = 7
and homog(I) = 4. Hence T (I) is a two-dimensional polyhedral complex.
We regard T (I) as the tropicalization of the secant variety of the Veronese
threefold in P9, i.e., the variety of symmetric 4 × 4-matrices of rank ≤ 2,
Applying our Gfan implementation (see Example 3.28), we find that T (I) is a
simplicial complex consisting of 75 triangles, 75 edges and 20 vertices. �

In our next theorem, we shall assume that I is a homogeneous prime ideal
of dimension d in C[x1, . . . , xn]. Its tropical variety T (I) is called irreducible.
It is a subfan of the Gröbner fan of I. A theorem due to Bieri and Groves [10]
states that T (I) is pure of dimension d, and we shall strengthen this result.
A cone of dimension d−1 in T (I) is called a ridge. A ridge path is a sequence
of d-dimensional cones F1, F2, . . . , Fk such that Fi ∩ Fi+1 is a ridge for all
i ∈ {1, 2, . . . , k − 1}. The following theorem is crucial for our algorithms.

Theorem 3.10. The irreducible tropical variety T (I) is a pure fan of di-
mension d. This fan is connected in codimension one, which means that two
maximal (d-dimensional) cones in T (I) are connected by a ridge path in T (I).

The proof of this theorem will be based on the following important lemma.

Lemma 3.11. (Transverse Intersection Lemma)
Let I and J be ideals in C[x1, . . . , xn] whose tropical varieties T (I) and T (J)
meet transversally at a point w ∈ Rn. Then w ∈ T (I + J).

By “meet transversely” we mean that if F and G are the cones of T (I) and
T (J) which contain w in their relative interior, then RF + RG = Rn.

This lemma implies that any transverse intersection of tropical varieties is
a tropical variety. In particular, any transverse intersection of tropical hyper-
surfaces is a tropical variety, and such a tropical variety is defined by an ideal
which is a complete intersection in the commutative algebra sense.

Corollary 3.12. For any two ideals I and J in C[x1, . . . , xn] we have

T (I + J) ⊆ T (I) ∩ T (J).

Equality holds if the latter intersection is transverse at every point except the
origin and the two fans meet in at least one point other than the origin.
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Proof. We have T (I)∩T (J) =
⋂

f∈I T (f)∩
⋂

f∈J T (f) =
⋂

f∈I∪J T (f). Clearly,

this contains T (I + J) =
⋂

f∈I+J T (f). If T (I) and T (J) intersect transver-

sally and w is a point of T (I)∩T (J) other than the origin then the preceeding
lemma tells us that w ∈ T (I + J). Thus T (I + J) contains every point of
T (I) ∩ T (J) except possibly the origin. In particular, T (I + J) is not empty.
Since every nonempty fan contains the origin, it is in T (I + J) as well. �

We first derive Theorem 3.10 from Lemma 3.11, which will be proved later.
We must at this point address an annoying technical detail. The subset T (I) ⊂
Rn depends only on the ideal IC[x±1] generated by I in the Laurent polynomial
ring C[x±1 , . . . , x±1

n ]. From a theoretical perspective then, it would be better to
directly work with ideals in C[x±1]. One reason is the availability the symmetry
group GLn(Z) of the multiplicative group of monomials. The action of this
group transforms T (I) by the obvious action on Rn. This symmetry will prove
invaluable for simplifying the arguments in this section. Therefore, in this
section, we will work with ideals in C[x±1]. Computationally, however, it is
much better to deal with ideals in C[x] as it is for such ideals that Gröbner
basis techniques have been developed and this is the approach we take here.

Note that, if I ⊂ C[x] is prime then so is the ideal it generates in the
Laurent polynomial ring C[x±1]. We will signify an application of the GLn(Z)
symmetry by the phrase “making a multiplicative change of variables”. The
fan structure on T (I) induced by the Gröbner fan of I will change under a
multiplicative change of variables of IC[x±] in C[x±1], but all of the properties
of T (I) that are of interest to us depend only on the underlying point set.

Proof of Theorem 3.10. As discussed, we replace I by the ideal it generates in
C[x±1] and, by abuse of notation, continue to denote this ideal as I. The proof
is by induction on d = dim(T (I)). If d ≤ 1 then the statement is trivially
true. We now explain why the result holds for d = 2. By a multiplicative
change of coordinates, it suffices to check that T (I) ∩ {xn = 1} is connected.
Let K be the Puiseux series field over C. Let I ′ ⊂ K[x1, . . . , xn−1] be the
prime ideal generated by I via the inclusion C[xn] → K. By Lemma ??, the
tropical variety of I ′ is T (I)∩{xn = 1}. The tropical variety of I ′ is connected
since I ′ defines an irreducible curve. This can be seen by projecting into the
plane and using the balancing condition of Proposition ??. We conclude that
T (I) ∩ {xn = 1} is connected, so our result holds for d = 2.

We now suppose that d ≥ 3. Let F and F ′ be facets of T (I). We can find

H =
{

(u1, . . . , un) ∈ Rn : a1u1 + · · ·+ anun = 0
}

such that a1, . . . , an are relatively prime integers, both H ∩ F and H ∩ F ′ are
cones of dimension d − 1, and H intersects every cone of T (I) except for the
origin transversally. To see this, pick rays w and w′ in the relative interiors of
F and F ′. By perturbing w and w′ slightly, we may arrange that the span of
{w,w′} does not meet any ray of T (I). Here it is important that d ≥ 3. Now,
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taking H to be the span of w, w′ and a generic (n−3)-plane, we get that H
also does not contain any ray of T (I) and hence does not contain any positive-
dimensional face of T (I). So H is transverse to T (I) everywhere except at
the origin. Since H ∩ F and H ∩ F ′ are positive-dimensional (as d ≥ 2), the
hyperplane H intersects T (I) at points other than just the origin. Note that
H is the tropical hypersurface of a binomial, namely, H = T (〈fu〉), where

fu =
∏

i:ai>0

(uixi)
ai −

∏
j:aj<0

(ujxj)
−aj ,

and u = (u1, u2, . . . , un) is an arbitrary point in the algebraic torus (C∗)n.
Our transversality assumption regarding H and Lemma 3.11 imply that

(2) H ∩ T (I) = T (〈fu〉) ∩ T (I) = T
(
I + 〈fu〉

)
.

Since I is prime of dimension d, and fu 6∈ I, the ideal I + 〈fu〉 has dimension
d − 1 by Krull’s Principal Ideal Theorem [29, Theorem 10.1]. If I + 〈fu〉
were a prime ideal then we would be done by induction. Indeed, this would
imply that there is a ridge path between the facets H ∩ F and H ∩ F ′ in the
(d− 1)-dimensional tropical variety (2). Since d ≥ 3, the (d− 1)- and (d− 2)-
dimensional faces of H ∩ T (I) arise uniquely from the intersections of H with
d- and (d− 1)-dimensional faces of T (I). Hence this path is also a ridge path
considered as a path in T (I).

Let V (J) denote the subvariety of the algebraic torus (C∗)n defined by an
ideal J ⊂ C[x±1

1 , . . . , x±1
n ]. The tropical variety in (2) depends only on the

subvariety of (C∗)n defined by our ideal I + 〈fu〉. This subvariety is

(3) V
(
I + 〈fu〉

)
= V (I) ∩ V (fu) = V (I) ∩ u−1 · V (f1).

Here 1 denotes the identity element of (C∗)n. For generic choices of the group
element u ∈ (C∗)n, the intersection (3) is an irreducible subvariety of dimension
d − 1 in (C∗)n. This follows from Kleiman’s version of Bertini’s Theorem [?,
Theorem III.10.8], applied to the algebraic group (C∗)n. Hence (2) is indeed
an irreducible tropical variety of dimension d − 1, defined by the prime ideal
I + 〈fu〉. This completes the proof by induction. �

Proof of Lemma 3.11: Again, we replace I ⊂ C[x] by the ideal it generates in
C[x±1]. Let F be the cone of T (I) which contains w in its relative interior and
G the cone of T (J) which contains w in its relative interior. Our hypothesis
is that F and G meet transversally at w, that is, RF + RG = Rn.

We claim that the ideal inw(I) is homogeneous with respect to any weight
vector v ∈ RF or, equivalently (see Proposition 3.8), that inv(inw(I)) = inw(I).
According to Proposition 1.13 in [75], for ε a sufficiently small positive number,
inw+εv(I) = inv(inw(I)). The vector w + εv is in the relative interior of F so
inw+εv(I) = inw(I). By the same argument, the ideal inw(J) is homogeneous
with respect to any weight vector in RG.
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After a multiplicative change of variables in C[x±1
1 , . . . , x±1

n ] we may assume
that w = e1, R{e1, e2, . . . , es} ⊆ RF and R{e1, es+1, . . . , en} ⊆ RG. We
change the notation for the variables as follows:

t = x1, y = (y2, . . . , ys) = (x2, . . . , xs), z = (zs+1, . . . , zn) = (xs+1, . . . , xn).

The homogeneity properties of the two initial ideals ensure that we can pick
generators f1(z), . . . , fa(z) for inw(I) and generators g1(y), . . . , gb(y) for inw(J).
Since inw(I) is not the unit ideal, the Laurent polynomials fi(z) have a com-
mon zero Z = (Zs+1, . . . , Zn) ∈ (C∗)n−s, and likewise the Laurent polynomials
gj(y) have a common zero Y = (Y2, . . . , Ys) ∈ (C∗)s−1.

Next we consider the following general chain of inclusions of ideals:

(4) inw(I) · inw(J) ⊆ inw(I · J) ⊆ inw(I ∩ J) ⊆ inw(I) ∩ inw(J).

The product of two ideals which are generated by (Laurent) polynomials in
disjoint sets of variables equals the intersection of the two ideals. Since the
set of y-variables is disjoint from the set of z-variables, it follows that the first
ideal in (4) equals the last ideal in (4). In particular, we conclude that

(5) inw(I ∩ J) = inw(I) ∩ inw(J).

We next claim that

(6) inw(I + J) = inw(I) + inw(J).

The left hand side is an ideal which contains both inw(I) and inw(J), so it
contains their sum. We must prove that the right hand side contains the left
hand side. Consider any element f + g ∈ I + J where f ∈ I and g ∈ J . Let
f = f0(y, z) + t · f1(t, y, z) and g = g0(y, z) + t · g1(t, y, z). We have the
following representation for some integer a ≥ 0 and non-zero polynomial h0:

f + g = ta · h0(y, z) + ta+1 · h1(t, y, z).

If a = 0 then we conclude

inw(f + g) = h0(y, z) = f0(y, z) + g0(y, z) ∈ inw(I) + inw(J).

If a ≥ 1 then f0 = −g0 lies in inw(I) ∩ inw(J). In view of (5), there exists
p ∈ I ∩ J with f0 = −g0 = inw(p). Then f + g = (f − p) + (g + p) and
replacing f by (f − p)/t and g by (g + p)/t puts us in the same situation
as before, but with a reduced by 1. By induction on a, we conclude that
inw(f + g) is in inw(I) + inw(J), and the claim (6) follows.

For any constant T ∈ C∗, the vector (T, Y2, . . . , Ys, Zs+1, . . . , Zn) is a com-
mon zero in (C∗)n of the ideal (6). We conclude that inw(I + J) is not the
unit ideal, so it contains no monomial, and hence w ∈ T (I + J). �

We are now prepared to describe our solutions for the three computational
problems stated earlier on in this lecture. The emphasis is on algorithms for
Problem 3.3 for homogeneous prime ideals, taking advantage of Theorem 3.10.
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In order to state our algorithms we must first explain how polyhedral cones
and polyhedral fans are represented. A polyhedral cone is represented by a
canonical minimal set of inequalities and equations. Given arbitrary defining
linear inequalities and equations, the task of bringing these to a canonical form
involves linear programming. Representing a polyhedral fan requires a little
thought. We are rarely interested in all faces of all cones.

Definition 3.13. A set S of polyhedral cones in Rn is said to represent a fan
F in Rn if the set of all faces of cones in S is exactly F .

A representation may contain non-maximal cones, but each cone is repre-
sented minimally by its canonical form. A Gröbner cone Cw(I) is represented
by the pair (G≺w(inw(I)),G≺w(I)) of marked reduced Gröbner bases, where ≺
is some globally fixed term order. In a marked Gröbner basis the initial terms
are distinguished. The advantage of using marked Gröbner bases is that the
weight vector w need not be stored – we can deduce defining inequalities for its
cone from the marked reduced Gröbner bases themselves, see Example 3.25.
This is done as follows; see [75, proof of Proposition 2.3]:

Lemma 3.14. Let I ⊂ C[x] be a homogeneous ideal, ≺ a term order and
w ∈ Rn a vector. For any other vector w′ ∈ Rn:

w′ ∈ Cw(I) ⇐⇒ ∀ f ∈ G≺w(I) : inw(inw′(f)) = inw(f).

Our first two algorithms perform polyhedral computations, and they solve
Problem 3.1. By the support of a fan we mean the union of its cones. Recall
that, for a polynomial f , the tropical hypersurface T (f) is the union of the
normal cones to the edges of the Newton polytope New(f).

Algorithm 3.15. Tropical Hypersurface
Input: f ∈ C[x].
Output: A representation S of a polyhedral fan whose support is T (f).
{

S := ∅;
For every vertex v ∈ New(f)
{

Compute the normal cone C of v in New(f);
S := S ∪ {the facets of C};

}
}

Let F1 and F2 be polyhedral fans in Rn. Their common refinement is

F1 ∧ F2 := {C1 ∩ C2}(C1,C2)∈F1×F2 .

To compute a common refinement we simply run through all pairs of cones
in the fan representations and bring their intersection to canonical form. The
canonical form makes it easy to remove duplicates.
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Algorithm 3.16. Common Refinement
Input: Representations S1 and S2 for polyhedral fans F1 and F2.
Output: A representation S for the common refinement F1 ∧ F2.
{

S := ∅;
For every pair (C1, C2) ∈ S1 × S2

S := S ∪ {C1 ∩ C2};
}

If refinements of more than two fans are needed, Algorithm 3.16 can be
applied successively. Note that the intersection of the support of two fans is
the support of the fans’ common refinement. Hence Algorithm 3.16 can be used
for computing intersections of tropical hypersurfaces. This solves Problem 3.1,
but the output may be a highly redundant representation.

Recall (from the proof of Theorem 3.7) that a witness f ∈ I is a polynomial
which certifies T (f) ∩ rel int(Cw(I)) = ∅. Computing witnesses is essential
for solving Problems 3.3 and 3.4. The first step of constructing a witness
is to check if the ideal inw(I) contains monomials, and, if so, compute one
such monomial. The check for monomial containment can be implemented
by saturating the ideal with respect to the product of the variables (cf. [75,
Lemma 12.1]). Knowing that the ideal contains a monomial, a simple way of
finding one is to repeatedly reduce powers of the product of the variables by
applying the division algorithm until the remainder is 0.

Algorithm 3.17. Monomial in Ideal
Input: A set of generators for an ideal I ⊂ C[x].
Output: A monomial m ∈ I if one exists, no otherwise.
{

If ((I : x1 · · ·x∞n ) 6= 〈1〉) return no;
m := x1 · · ·xn;
While (m 6∈ I) m := m · x1 · · ·xn;
Return m;

}
Remark 3.18. To pick the smallest monomial in I with respect to a term
order, we first compute the largest monomial ideal contained in I using [?,
Algorithm 4.2.2] and then pick the smallest monomial generator of this ideal.

Constructing a witness from a monomial was already explained in the proof
of Theorem 3.7. We only state the input and output of this algorithm.

Algorithm 3.19. Witness
Input: A set of generators for an ideal I ⊂ C[x] and a vector w ∈ Rn with
inw(I) containing a monomial.
Output: A polynomial f ∈ I such that the tropical hypersurface T (f) and the
relative interior of Cw(I) have empty intersection.
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Combining Algorithm 3.17 and Algorithm 3.19 with known methods (e.g. [75,
Algorithm 3.6]) for computing Gröbner fans, we can now compute the tropical
variety T (I) and a tropical basis of I. This solves Problem 3.3 and Problem
3.4. but this approach is too slow to be useful in practise.

We next present a practical algorithm for computing T (I) when I is prime.
An ideal I ⊂ C[x] is said to define a tropical curve if dim(I) = 1 + homog(I).
Our problems are easier in this case because a tropical curve consists of only
finitely many rays and the origin modulo the homogeneity space.

Algorithm 3.20. Tropical Basis of a Curve
Input: A set of generators G for an ideal I defining a tropical curve.
Output: A tropical basis G ′ of I.
{

Compute a representation S of
∧

g∈G T (g);
For every C ∈ S
{

Let w be a generic relative interior point in C;
If (inw(I) contains a monomial)

then add a witness to G and restart the algorithm;
}
G ′ := G;

}

Proof of correctness. The algorithm terminates because I has only finitely
many initial ideals and at least one is excluded in every iteration. If a vector
w passes the monomial test (which verifies w ∈ T (I)) then C has dimension
0 or 1 modulo the homogeneity space since we are looking at a curve and w
is generic in C. Any other relative interior point of C would also have passed
the monomial test. (This property fails in higher dimensions, when T (I) is no
longer a tropical curve). Hence, when we terminate only points in the tropical
variety are covered by S. Thus G ′ is a tropical basis. �

In the curve case, combining Algorithms 3.15 and 3.16 with Algorithm 3.20
we get a reasonable method for solving Problem 3.3. This method is used as
a subroutine in Algorithm 3.22 below. In the remainder of this section we
concentrate on providing a better algorithm for Problem 3.3 in the case of a
prime ideal. The idea is to use connectivity to traverse the tropical variety.

The next algorithm is an important subroutine for us. We only specify the
input and output. This algorithm is one step in the Gröbner walk [18].

Algorithm 3.21. Lift
Input: Marked reduced Gröbner bases G≺′(I) and G≺w(inw(I)) where w ∈
C≺′(I) is an unspecified vector and ≺ and ≺′ are unspecified term orders.
Output: The marked reduced Gröbner basis G≺w(I).
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We now suppose that I is a monomial-free prime ideal with d = dim(I),
and ≺ is a globally fixed term order. We first describe the local computations
needed for a traversal of the d-dimensional Gröbner cones contained in T (I).

Algorithm 3.22. Neighbors
Input: A pair (G≺w(inw(I)),G≺w(I)) such that inw(I) is monomial-free and
Cw(I) has dimension d.
Output: The collection N of pairs of the form (G≺w′ (inw′(I)),G≺w′ (I)) where
one w′ is taken from the relative interior of each d-dimensional Gröbner cone
contained in T (I) that has a facet in common with Cw(I).
{

N := ∅;
Compute the set F of facets of Cw(I);
For each facet F ∈ F
{

Compute the initial ideal J := inu(I)
where u is a relative interior point in F ;

Use Algorithm 3.20 and Algorithm 3.16 to produce a relative
interior point v of each ray in the curve T (J);

For each such v
{

Compute (G≺v(inv(J)),G≺v(J)) = (G≺vu
(inv(J)),G≺vu

(J));
Apply Algorithm 3.21 to G≺w(I) and G≺vu

(J) to get G≺vu
(I);

N := N ∪ {(G≺vu
(inv(J)),G≺vu

(I))};
}

}
}

Proof of correctness. Facets and relative interior points are computed using
linear programming. The initial ideal inu(I) is homogeneous with respect to the
span of F . Hence homog(I) = d− 1. The Krull dimension of C[x]/inu(I) is d.
Hence inu(I) defines a curve and T (inu(I)) can be computed using Algorithm
3.20. The identity inv(inu(I)) = inu+εv(I) for small ε > 0, see [75, Proposition
1.13], implies that we run through all the desired inw′(I) where w′ = u + εv
for small ε > 0. The lifting step can be carried out since u ∈ C≺w(I). �

Algorithm 3.23. Traversal of an Irreducible Tropical Variety
Input: A pair (G≺w(inw(I)),G≺w(I)) such that inw(I) is monomial free and
Cw(I) has dimension d.
Output: The collection T of pairs of the form (G≺w′ (inw′(I)),G≺w′ (I)) where
one w′ is taken from the relative interior of each d-dimensional Gröbner cone
contained in T (I). The union of all the Cw′(I) is T (I).
{

T := {(G≺w(inw(I)),G≺w(I))};
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Old := ∅;
While (T 6= Old)
{

Old := T ;
T := T ∪ Neighbors(T );

}
}

Proof of correctness. By Neighbors(T ) we mean the union of all the output
of Algorithm 3.22 applied to all pairs in T . The algorithm computes the
connected component of the starting pair. Since I is a prime ideal, Theorem
3.10 implies that the union of all the computed Cw′(I) is T (I). �

To use Algorithm 3.23 we must know a starting d-dimensional Gröbner cone
contained in the tropical variety. One inefficient method for finding one would
be to compute the entire Gröbner fan. Instead we currently use heuristics,
which are based on the following probabilistic recursive algorithm:

Algorithm 3.24. Starting Cone
Input: A marked reduced Gröbner basis G for an ideal I whose tropical variety
is pure of dimension d = dim(I). A term order ≺ for tie-breaking.
Output: Two marked reduced Gröbner bases:

• One for an initial ideal inw′(I) without monomials, where the homo-
geneity space of inw′(I) has dimension d. The term order is ≺w′.

• A marked reduced Gröbner basis for I with respect to ≺w′.

{
If (dim(I) = homog(I))

Return (G≺(I),G≺(I));
If not
{

Repeat
{

Compute a random reduced Gröbner basis of I;
Compute a random extreme ray w of its Gröbner cone;

}
Until (inw(I) is monomial free);
Compute G≺w(I);
(GInit,GFull):= Starting Cone(G≺w(inw(I)));
Apply Algorithm 3.21 to G≺w(I) and GFull

to get a marked reduced Gröbner basis G ′ for I;
Return (GInit,G ′);

}
}
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The above algorithms have been implemented in the software package Gfan [?].
In what follows we illustrate the use of Gfan in computing various tropical va-
rieties.

Example 3.25. We consider the prime ideal I ⊂ C[a, b, c, d, e, f, g] which is
generated by the 3× 3 minors of the generic Hankel matrix of size 4× 4:

a b c d
b c d e
c d e f
d e f g

 .

Its tropical variety is a 4-dimensional fan in R7 with 2-dimensional homogene-
ity space. Its combinatorics is given by the graph in Figure 1. To compute
T (I) in Gfan, we write the ideal generators on a file hankel.in:
% more hankel.in

{-c^3+2*b*c*d-a*d^2-b^2*e+a*c*e,-c^2*d+b*d^2+b*c*e-a*d*e-b^2*f+a*c*f,

-c*d^2+c^2*e+b*d*e-a*e^2-b*c*f+a*d*f,-d^3+2*c*d*e-b*e^2-c^2*f+b*d*f,

-c^2*d+b*d^2+b*c*e-a*d*e-b^2*f+a*c*f,-c*d^2+2*b*d*e-a*e^2-b^2*g+a*c*g,

-d^3+c*d*e+b*d*f-a*e*f-b*c*g+a*d*g,-d^2*e+c*e^2+c*d*f-b*e*f-c^2*g+b*d*g,

-c*d^2+c^2*e+b*d*e-a*e^2-b*c*f+a*d*f,-d^3+c*d*e+b*d*f-a*e*f-b*c*g+a*d*g,

-d^2*e+2*c*d*f-a*f^2-c^2*g+a*e*g,-d*e^2+d^2*f+c*e*f-b*f^2-c*d*g+b*e*g,

-d^3+2*c*d*e-b*e^2-c^2*f+b*d*f,-d^2*e+c*e^2+c*d*f-b*e*f-c^2*g+b*d*g,

-d*e^2+d^2*f+c*e*f-b*f^2-c*d*g+b*e*g,-e^3+2*d*e*f-c*f^2-d^2*g+c*e*g}

We then run the command

gfan_tropicalstartingcone < hankel.in > hankel.start

which applies Algorithm 3.24 to produce a pair of marked Gröbner bases. This
represents a maximal cone in T (I), as explained prior to Lemma 3.14.
% more hankel.start

{

c*f^2-c*e*g,

b*f^2-b*e*g,

b*e*f+c^2*g,

b*e^2+c^2*f,

b^2*g-a*c*g,

b^2*f-a*c*f,

b^2*e-a*c*e,

a*f^2-a*e*g,

a*e*f+b*c*g,

a*e^2+b*c*f}

{

c*f^2+e^3-2d*e*f+d^2*g-c*e*g,

b*f^2+d*e^2-d^2*f-c*e*f+c*d*g-b*e*g,

b*e*f+d^2*e-c*e^2-c*d*f+c^2*g-b*d*g,

b*e^2+d^3-2c*d*e+c^2*f-b*d*f,

b^2*g+c^2*e-b*d*e-b*c*f+a*d*f-a*c*g,

b^2*f+c^2*d-b*d^2-b*c*e+a*d*e-a*c*f,

b^2*e+c^3-2b*c*d+a*d^2-a*c*e,

a*f^2+d^2*e-2c*d*f+c^2*g-a*e*g,

a*e*f+d^3-c*d*e-b*d*f+b*c*g-a*d*g,

a*e^2+c*d^2-c^2*e-b*d*e+b*c*f-a*d*f}

Using Lemma 3.14 we can easily read off the canonical equations and equalities
for the corresponding Gröbner cone Cw(I). For example, the polynomials cf 2−
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ceg and cf 2 + e3 − 2def + d2g − ceg represent the equation

wc + 2wf = wc + we + wg

and the inequalities

wc + 2wf ≤ min
{
3we, wd + we + wf , 2wd + wg, wc + we + wg

}
.

At this point, we could run Algorithm 3.23 using the following command:

gfan_tropicaltraverse < hankel.start > hankel.out

However, we can save computing time and get a better idea of the structure
of T (I) by instructing Gfan to take advantage of symmetries of I as it produces
cones. The only symmetries that can be used in Gfan are those that simply
permute variables. The output will show which cones of T (I) lie in the same
orbit under the action of the symmetry group we provide.

Our ideal I is invariant under reflecting the 4 × 4-matrix along the anti-
diagonal. This reverses the variables a, b, . . . , g. To specify this permutation,
we add the following line to the bottom of the file hankel.start:

{(6,5,4,3,2,1,0)}

We can add more symmetries by listing them one after another, separated
by commas, inside the curly braces. Gfan will compute and use the group
generated by the set of permutations we provide, and it will return an error if
we input any permutation which does not keep the ideal invariant.

After adding the symmetries, we run the command

gfan_tropicaltraverse --symmetry < hankel.start > hankel.out

to compute the tropical variety. We show the output with some annotations:

% more hankel.out

Ambient dimension: 7

Dimension of homogeneity space: 2

Dimension of tropical variety: 4

Simplicial: true

Order of input symmetry group: 2

F-vector: (16,28)

A short list of basic data: the dimen-
sions of the ambient space, of T (I),
and of its homogeneity space, and also
the face numbers (f -vector) of T (I)
and the order of symmetry group spec-
ified in the input.

Modulo the homogeneity space:

{(6,5,4,3,2,-1,0),

(5,4,3,2,1,0,-1)}

A basis for the homogeneity space.
The rays are considered in the quotient
of R7 modulo this 2-dimensional sub-
space.
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Rays:

{0: (-1,0,0,0,0,0,0),

1: (-5,-4,-3,-2,-1,0,0),

2: (1,0,0,0,0,0,0),

3: (5,4,3,2,1,0,0),

4: (2,1,0,0,0,0,0),

5: (4,3,2,1,0,0,0),

6: (0,-1,0,0,0,0,0),

7: (6,5,4,3,2,0,0),

8: (3,2,1,0,0,0,0),

9: (0,0,-1,0,0,0,0),

10: (0,0,0,0,-1,0,0),

11: (0,0,0,-1,0,0,0),

12: (-6,-4,-3,-3,-1,0,0),

13: (-3,-2,-2,-1,-1,0,0),

14: (3,2,2,1,1,0,0),

15: (3,2,2,0,1,0,0)}

The direction vectors of the trop-
ical rays. Since the homogene-
ity space is positive-dimensional,
the directions are not uniquely
specified. For instance, the vec-
tors (−5,−4,−3,−2,−1, 0, 0) and
(0, 0, 0, 0, 0, 0,−1) represent the same
ray. Note that Gfan uses negated
weight vectors.

Rays incident to each

dimension 2 cone:

{{2,6}, {3,7},

{2,4}, {3,5},

{4,9}, {5,10},

{4,8}, {5,8},

{8,11},

{0,12}, {1,12},

{0,1},

{1,6}, {0,7},

{1,9}, {0,10},

{0,13}, {1,13},

{6,14}, {7,14},

{9,13}, {10,13},

{6,10}, {7,9},

{6,7},

{11,12},

{11,15},

{14,15}}

The cones in T (I) are listed from high-
est to lowest dimension. Each cone is
named by the set of rays on it. There
are 28 two-dimensional cones, broken
down into 11 orbits of size 2 and 6 or-
bits of size 1.

The further output, which is not displayed here, shows that the 16 rays break
down into 5 orbits of size 2 and 6 orbits of size 1.

Using the same procedure, we now compute several more examples.

Example 3.26. Let I be the ideal generated by the 3×3 minors of the generic
5 × 5 Hankel matrix. We again use the symmetry group Z/2. The tropical
variety is a graph with vertex degrees ranging from 2 to 7.
Ambient dimension: 9

Dimension of homogeneity space: 2

Dimension of tropical variety: 4

Simplicial: true

F-vector: (28,53)

Example 3.27. Let I be the ideal generated by the 3× 3 minors of a generic
3×5 matrix. We use the symmetry group S5×S3, where S5 acts by permuting
the columns and S3 by permuting the rows.
Ambient dimension: 15

Dimension of homogeneity space: 7

Dimension of tropical variety: 12

Simplicial: true

F-vector: (45,315,930,1260,630)
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Figure 1. The tropical variety of the ideal generated by the
3× 3 minors of the generic 4× 4 Hankel matrix.

Example 3.28. Let I be the ideal generated by the 3× 3 minors of a generic
4× 4 symmetric matrix. We use the symmetry group S4 which acts by simul-
taneously permuting the rows and the columns.
Ambient dimension: 10

Dimension of homogeneity space: 4

Dimension of tropical variety: 7

Simplicial: true

F-vector: (20,75,75)

If we take the 3× 3 minors of a generic 5× 5 symmetric matrix then we get
Ambient dimension: 15

Dimension of homogeneity space: 5

Dimension of tropical variety: 9

Simplicial: true

F-vector: (75, 495, 1155, 855)

Example 3.29. Let I be the prime ideal of a pair of commuting 2×2 matrices.
That is, I ⊂ C[a, b, . . . , h] is defined by the matrix equation(

a c
b d

) (
e g
f h

)
−

(
e g
f h

) (
a c
b d

)
= 0.

The tropical variety is the graph K4, which Gfan reports as follows:
Ambient dimension: 8

Dimension of homeogeneity space: 4

Dimension of tropical variety: 6

Simplicial: true

F-vector: (4,6)

If I is the ideal of 3× 3 commuting symmetric matrices then we get:
Ambient dimension: 12

Dimension of homeogeneity space: 2

Dimension of tropical variety: 9

Simplicial: false

F-vector: (66,705,3246,7932,10888,8184,2745)


