2. PUISEUX SERIES AND TROPICAL HYPERSURFACES

Let $K = \mathbb{C}\{\{t\}\}\$ denote the field of *Puiseux series* with complex coefficients. The elements of K are the formal power series

(1)
$$c(t) = c_1 t^{a_1} + c_2 t^{a_2} + c_3 t^{a_3} + \cdots,$$

where c_1, c_2, c_3, \ldots are non-zero complex numbers and $a_1 < a_2 < a_3 < \cdots$ are rational numbers that have a common denominator. We write K^* for the set of non-zero elements in K. Clearly, K is a field, as it is closed under the usual arithmetic operations of addition, subtraction, multiplication and division. Moreover, we have the following classical result.

Theorem 2.1. (Puiseux's Theorem) The Puiseux series field $K = \mathbb{C}\{\{t\}\}$ is algebraically closed, i.e. every non-constant polynomial in K[x] has a root in K.

The algorithmic version of this theorem is fundamental for connecting tropical geometry with classical algebraic geometry. To explain this connection we first introduce some general definitions. The *order* of the Puiseux series c(t)in (1) is the exponent a_1 of the lowest degree term. The map

ord :
$$K^* \to \mathbb{Q}, c(t) \mapsto a_1 =$$
 the order of $c(t)$

is a *valuation*, which means that it satisfies

 $\operatorname{ord}(c+d) \ge \min\{\operatorname{ord}(c), \operatorname{ord}(d)\}$ and $\operatorname{ord}(c \cdot d) = \operatorname{ord}(c) + \operatorname{ord}(d)$.

Let $f \in K[x_1, \ldots, x_n]$ be any polynomial in n variables with coefficients in K. Then its *tropicalization*, denoted $\operatorname{trop}(f)$, is the tropical polynomial which gotten from f by replacing each coefficient by its order and by replacing classical arithmetic by tropical arithmetic. Thus the classical polynomial

$$f = c(t) \cdot x_1^{u_1} x_2^{u_2} \cdots x_n^{u_n} + d(t) \cdot x_1^{v_1} x_2^{v_2} \cdots x_n^{v_n} + \cdots$$

has the tropicalization

 $\operatorname{trop}(f) = \operatorname{ord}(c(t)) \odot x_1^{\odot u_1} \odot \cdots \odot x_n^{\odot u_n} \oplus \operatorname{ord}(d(t)) \odot x_1^{\odot v_1} \odot \cdots \odot x_n^{\odot v_n} \oplus \cdots$

Lemma 2.2. The piecewise-linear concave function $\mathbb{R}^n \to \mathbb{R}$ given by the tropical polynomial trop(f) is characterized by the following property. For almost all complex numbers $\gamma_1, \ldots, \gamma_n$, we have

$$(\operatorname{trop}(f))(w_1,\ldots,w_n) = \operatorname{ord}(f(\gamma_1 t^{w_1},\ldots,\gamma_n t^{w_n})) \text{ for all } w_1,\ldots,w_n \in \mathbb{Q}.$$

Proof. Consider any monomial $c(t)x_1^{u_1}\cdots x_n^{u_n}$ appearing in the expansion of f. This contributes the expression $c(t) \cdot \gamma_1^{u_1} \cdots \gamma_n^{u_n} \cdot t^{w_1u_1+\cdots+w_nu_n}$ to the expansion of the univariate series $f(\gamma_1 t^{w_1}, \ldots, \gamma_n t^{w_n})$. Since the γ_i are generic, the terms of lowest order in that expansion cannot cancel, and hence the order of $f(\gamma_1 t^{w_1}, \ldots, \gamma_n t^{w_n})$ equals the minimum of $\operatorname{ord}(c(t)) + w_1u_1 + \cdots + w_nu_n$ over all monomials in f. That minimum is precisely $\operatorname{trop}(f)(w_1, \ldots, w_n)$.

The previous lemma has the following important corollary.

Corollary 2.3. Tropicalization of polynomial functions commutes with multiplication, i.e., if f and g are polynomials in $K[x_1, \ldots, x_n]$ then

 $\operatorname{trop}(f \cdot g) = \operatorname{trop}(f) \odot \operatorname{trop}(g) \quad as functions \ \mathbb{R}^n \to \mathbb{R}.$

Example 2.4. The identity $\operatorname{trop}(f \cdot g) = \operatorname{trop}(f) \odot \operatorname{trop}(g)$ need not hold at the level of polynomials. For instance, if n = 1, $f = x - t^2$ and $g = x + t^2 + t^3$ then $\operatorname{trop}(f \cdot g) = x^2 \oplus 3 \odot x \oplus 4$ while $\operatorname{trop}(f) \odot \operatorname{trop}(g) = x^2 \oplus 2 \odot x \oplus 4$. These are different polynomials but they define the same function $\mathbb{R} \to \mathbb{R}$.

We are now prepared to return to the situation of Puiseux's Theorem.

Proposition 2.5. Let f(x) be a polynomial in one variable with coefficients in the Puiseux series field K and let u_1, \ldots, u_m be the roots of f(x) in K. Their orders $\operatorname{ord}(u_1), \ldots, \operatorname{ord}(u_m)$ are the roots of the tropical polynomial $\operatorname{trop}(f)$.

Proof. We first consider the case m = 1, when f is a linear polynomial

 $f = c \cdot x + d = c \cdot (x + (-d/c)).$

Its tropicalization is the tropical polynomial

$$\operatorname{trop}(f) = \operatorname{ord}(c) \odot x \oplus \operatorname{ord}(d) = \operatorname{ord}(c) \odot (x \oplus (\operatorname{ord}(d) - \operatorname{ord}(c))).$$

This proves the proposition for m = 1 because

$$\operatorname{ord}(-d/c) = \operatorname{ord}(d/c) = \operatorname{ord}(d) - \operatorname{ord}(c).$$

For $m \ge 2$ we express f as a product of linear factors by the Fundamental Theorem of Algebra. The result follows directly from Corollary 2.3 and the m = 1 case.

We now take a closer look at the geometry of tropical hypersurfaces. To this end we first need to review some notions from polyhedral geometry. A *polyhedron* in \mathbb{R}^n is the intersection of a finite collection of closed halfspaces $\{x : Ax \ge b\}$. If all halfspaces pass through the origin (i.e. b = 0) then the polyhedron is called a *cone*. Bounded polyhedra are called *polytopes*. If the entries of all the defining matrices A and b are rational numbers then we speak of a *rational polyhedron*, *rational cone* or *rational polytope*. A *face* of a polyhedron P is a subset of P at which a linear form w attains its minimum. We use the following notation for the face of P specified by a linear form w:

$$face_w(P) = \{ x \in P : w \cdot x \le w \cdot y \text{ for all } y \in P \}.$$

Here we identify \mathbb{R}^n with its dual vector space, using the standard inner product, and so we simply regard w as a vector in \mathbb{R}^n . Given a face F of a polyhedron P we can consider the *normal cone* of P at the face F:

$$N_P(F) = \{ w \in \mathbb{R}^n : \text{face}_w(P) \subseteq F \}.$$

The dimension of this cone is complementary to the dimension of the face:

$$\dim(F) + \dim(N_P(F)) = n.$$

 $\mathbf{2}$

A polyhedral complex is a finite collection \mathcal{C} of polyhedra in \mathbb{R}^n such that

- If P is in C then every face of P is also in C.
- If P and Q are in C then $P \cap Q$ is a face of P and is a face of Q.

The elements of C are called the *cells* of C. The *support* |C| of C is the union of all cells in C. The *dimension* of C is the maximal dimension of any cell in C. If all maximal cells (with respect to inclusion) have the same dimension then C is said to be *pure*. A *fan* is a polyhedral complex all of whose cells are cones. An example of a fan is the *normal fan* of a polyhedron P:

$$\mathcal{N}(P) = \{ N_P(F) : F \text{ face of } P \}.$$

The support $|\mathcal{N}(P)|$ of the normal fan is a cone in \mathbb{R}^n . If P is a polytope then $|\mathcal{N}(P)| = \mathbb{R}^n$. A subdivision of a polytope P is a polyhedral complex Δ whose support equals P. If all cells in Δ are simplices then Δ is a triangulation of P.

Given a tropical polynomial p in n variables, its hypersurface $\mathcal{T}(p)$ was defined as the set of all $x \in \mathbb{R}^n$ at which the function p is not linear. Thus \mathcal{T} is the "corner locus" of the piecewise-linear concave function $p : \mathbb{R}^n \to \mathbb{R}$.

Proposition 2.6. The tropical hypersurface $\mathcal{T}(p)$ is a pure polyhedral complex of dimension n-1. The cells of this complex can be bounded or unbounded.

Proof. We define a polytope P in \mathbb{R}^{n+1} by taking the convex hull of all points (c, u_1, \ldots, u_n) where $c \odot x_1^{\odot u_1} \odot \cdots \odot x_n^{\odot u_n}$ is a term of the tropical polynomial p. The hypersurface $\mathcal{T}(p)$ consists of all points $w = (w_1, \ldots, w_n)$ in \mathbb{R}^n such that the linear form given by $(1, w) = (1, w_1, \ldots, w_n)$ attains its minimum at more than one of the points (c, u_1, \ldots, u_n) representing a term in p. Equivalently,

(2)
$$\mathcal{T}(p) = \left\{ w \in \mathbb{R}^n : \dim(\operatorname{face}_{(1,w)}(P)) \ge 1 \right\}.$$

Let $\mathcal{N}(P)_{\leq n}$ denote the set of all non-maximal cones in the normal fan $\mathcal{N}(P)$. This a pure fan of dimension n. If we intersect (the support of) this fan with the hyperplane $\{x_0 = 1\}$ in \mathbb{R}^{n+1} then we get precisely the set $\mathcal{T}(p)$ in (2). Every cone C of $\mathcal{N}(P)_{\leq n}$ emanates from the origin and hence intersects the hyperplane $\{x_0 = 1\}$ transversally, or the intersection is empty. This implies that $\mathcal{T}(p) = \mathcal{N}(P)_{\leq n} \cap \{x_0 = 1\}$ is a pure polyhedral complex of dimension n-1. The cell $C \cap \{x_0 = 1\}$ is bounded if and only if the cone C meets the hyperplane $\{x_0 = 0\}$ just in the origin, and this may or may not happen. \Box

It is often useful to consider the dual representation of $\mathcal{T}(p)$ as a polyhedral subdivision. The Newton polytope New(p) of the polynomial p is the convex hull in \mathbb{R}^n of all points (u_1, \ldots, u_n) such that $x_1^{\odot u_1} \odot \cdots \odot x_n^{\odot u_n}$ appears with some coefficient in p. Thus New(p) equals the image of P under the projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ onto the last n coordinates. A face F of P is called a *lower* face if it has the form $F = \text{face}_{(1,w)}(P)$ for some $w \in \mathbb{R}^n$. The set of all lower faces of P form a pure polyhedral complex of dimension n. The image of this complex under the map π is a polyhedral subdivision of the Newton polytope New(p). We denote this subdivision by $\Delta(p)$ and we call it the *subdivided* Newton polytope of the tropical polynomial p. Each *i*-dimensional cell of $\Delta(p)$ corresponds to an *i*-dimensional lower face of P and, by way of the formula (2), to an (n-1-i)-dimensional cell of $\mathcal{T}(p)$. We conclude the following:

Corollary 2.7. The tropical hypersurface $\mathcal{T}(p)$ is dual to the subdivided Newton polytope $\Delta(p)$. There is an order-reversing bijection between the cells of $\mathcal{T}(p)$ and the positive-dimensional cells of $\Delta(p)$. Unbounded cells of $\mathcal{T}(p)$ correspond to cells of $\Delta(p)$ that lie in the boundary of the Newton polytope $|\Delta(p)|$.

In the previous section we have seen several examples of tropical curves in the plane, the case n = 2. For n = 3, a tropical hypersurface is a piecewise-linear surface in \mathbb{R}^3 which is dual to a subdivided 3-dimensional polytope.

Example 2.8. The simplest example of a surface $\mathcal{T}(p)$ is a tropical plane in 3-space. Here the tropical polynomial p has degree one, so we can write:

$$p(x, y, z) = a \odot x \oplus b \odot y \oplus c \odot z \oplus d.$$

The tropical plane $\mathcal{T}(p)$ is a two-dimensional fan with apex (d-a, d-b, d-c). To this apex we attach the rays with directions (1,0,0), (0,1,0), (0,0,1), and (-1,-1,-1), and we add the six cones spanned by any two of these rays. Thus a tropical plane in \mathbb{R}^3 has one vertex, four unbounded edges and six unbounded 2-cells. Now consider a second plane $\mathcal{T}(p')$ whose apex does not lie on any of the rays of the first plane, and vice versa. Then their intersection $L = \mathcal{T}(p) \cap \mathcal{T}(p')$ is a *tropical line*. A tropical line in \mathbb{R}^3 has two vertices, one bounded edge and four unbounded edges. The bounded edge connects the two vertices and the four rays point in the four distinguished directions. \Box

Example 2.9. Consider a tropical polynomial of degree 3 in three variables:

$$p(x, y, z) = \bigoplus_{i+j+k \le 3} c_{ijk} \odot x^{\odot i} y^{\odot j} z^{\odot k}$$

We assume that all twenty terms are present with a coefficient $c_{ijk} \in \mathbb{R}$. The Newton polytope of p is the standard tetrahedron scaled by a factor of three:

$$New(p) = conv\{(0,0,0), (0,0,3), (0,3,0), (3,0,0)\}$$

If the c_{ijk} are sufficiently general then the subdivision $\Delta(p)$ is a triangulation of the tetrahedron. We are particularly interested in the case when this triangulation is *unimodular*, i.e., it consists of 27 tetrahedra each having volume 1/6. The corresponding tropical cubic surface $\mathcal{T}(p)$ is the dual surface which which has 27 vertices. We refer to the recent paper by Vigeland [87] for several picture and for a careful analysis of tropical cubic surfaces that contain 27 tropical lines. There are still many open problems in this subject [87, §7.2]. \Box We now take a step towards algebraic geometry over the Puiseux series field K. As our ambient space we take the *algebraic torus* $(K^*)^n = (K \setminus \{0\})^n$. The valuation map of the field extends to the torus by coordinate-wise application

ord :
$$(K^*)^n \to \mathbb{Q}^n, \ u = (u_1, \dots, u_n) \mapsto (\operatorname{ord}(u_1), \dots, \operatorname{ord}(u_n)).$$

The hypersurface defined by a polynomial $f \in K[x_1, \ldots, x_n]$ is the subvariety

$$V(f) := \{ u \in (K^*)^n : f(u) = 0 \}$$

Tropical geometry mirrors algebraic geometry by way of the following result.

Theorem 2.10. (Kapranov's Theorem) The image of V(f) under the valuation map is the set of all \mathbb{Q} -rational points in the tropical hypersurface, i.e.

$$\operatorname{ord}(V(f)) = \mathcal{T}(\operatorname{trop}(f)) \cap \mathbb{Q}^n.$$

Proof. Set $f = \sum c_a x^a$ and $p = \operatorname{trop}(f) = \bigoplus \operatorname{ord}(c_a) \odot x^{\odot a}$. Here a runs over a finite subset of \mathbb{N}^n . We first show that $\operatorname{ord}(V(f))$ is contained in $\mathcal{T}(p)$. Let $u \in (K^*)^n$ be any point with $f(u) = \sum c_a u^a = 0$. Consider the minimum among the numbers $\operatorname{ord}(c_a u^a) = \operatorname{ord}(c_a) \odot u^{\odot a}$. This minimum is attained at least twice because the summands of lowest order in $\sum c_a u^a$ must cancel. This means that u is in the tropical hypersurface $\mathcal{T}(p)$. Hence $\operatorname{ord}(V(f)) \subset \mathcal{T}(p)$.

We next show $\mathcal{T}(p) \cap \mathbb{Q}^n \subseteq \operatorname{ord}(V(f))$. Consider any point $v \in \mathbb{Q}^n$ which lies in $\mathcal{T}(p)$. We must construct $u \in V(f)$ such that $\operatorname{ord}(u) = v$. Consider the univariate polynomial $g(x) = f(t^{v_1}x, t^{v_2}x, \ldots, t^{v_n}x)$. Then $\operatorname{trop}(g)(z) =$ $p(v_1 \odot z, v_2 \odot z, \ldots, v_n \odot z)$ and z = 0 is a root of this univariate tropical polynomial. By Theorem 2.1, there exists $s \in K^*$ with g(s) = 0 and $\operatorname{ord}(s) = 0$. The point $u = (st^{v_1}, st^{v_2}, \ldots, st^{v_n})$ satisfies f(u) = 0 and $\operatorname{ord}(u) = v$.

Frequently, we shall be interested in tropicalizing polynomials f whose coefficients do not depend on t at all but are just scalars in \mathbb{C} . Let $f \in \mathbb{C}[x_1, \ldots, x_n]$ be such a polynomial. Then $\operatorname{trop}(f)$ is a tropical polynomial all of whose coefficients are zero. For example, if $f = 23x^3 - 17xy + \sqrt{-1}y^2 - 59$ then $\operatorname{trop}(f) = 0 \odot x^{\odot 3} \oplus 0 \odot x \odot y \oplus 0 \odot y^{\odot 2} \oplus 0$. The tropical hypersurfaces of such polynomials are special in that each of their cells is a cone with apex 0.

Corollary 2.11. Let p be a tropical polynomial all of whose coefficients are zero. Then the tropical hypersurface $\mathcal{T}(p)$ is a pure fan of codimension 1.

Proof. The polytope P in the proof of Proposition 2.6 lies in the hyperplane $\{x_0 = 0\}$ and can be identified with the Newton polytope New(p). Under this identification, we have $face_{0,w}(P) = face_w(New(p))$. Thus, (2) translates into

(3)
$$\mathcal{T}(p) = \left\{ w \in \mathbb{R}^n : \dim(\operatorname{face}_w(\operatorname{New}(p))) \ge 1 \right\}.$$

Thus $\mathcal{T}(p)$ is the union of all non-maximal cones in the normal fan $\mathcal{N}(\text{New}(p))$. This is a pure fan of codimension 1 in \mathbb{R}^n . The lineality space of a fan is the largest linear subspace of the ambient vector space which is contained in all cones of the fan. A fan is called *pointed* if its lineality space is $\{0\}$. If \mathcal{F} is a fan with positive-dimensional lineality space L then it can be represented by the quotient fan \mathcal{F}/L . This is a pointed fan of dimension $\dim(\mathcal{F}) - \dim(L)$ which lives in the quotient space \mathbb{R}^n/L . We can reduce the dimension further by intersecting this pointed fan with a sphere \mathbb{S} around the origin in \mathbb{R}^n/L . The result is a polyhedral complex of $\dim(\mathcal{F}) - \dim(L) - 1$, which retains all the geometric and combinatorial information about \mathcal{F} . If p is a tropical polynomial with all coefficients zero then this construction is used to represent its tropical hypersurface $\mathcal{F} = \mathcal{T}(p)$ by the lower-dimensional polyhedral complex $\mathcal{T}'(p) := \mathcal{T}(p)/L \cap \mathbb{S}$.

Example 2.12. Consider a tropical linear form in four variables:

$$p = 0 \odot x_1 \oplus 0 \odot x_2 \oplus 0 \odot x_3 \oplus 0 \odot x_4.$$

Then $\mathcal{T}(p)$ is a three-dimensional fan with a one-dimensional lineality space L. The one-dimensional complex $\mathcal{T}'(p)$ is the complete graph on four nodes K_4 . The six edges of $\mathcal{T}'(p) = K_4$ correspond to the six three-dimensional cones of $\mathcal{T}(p)$. Thus this example is combinatorially isomorphic to Example 2.8. \Box

Example 2.13. (The Tropical Determinant) The determinant of an $m \times m$ matrix is a polynomial det of degree m in m^2 unknowns having m! terms. The tropical determinant is the tropicalization of that polynomial. It is denoted by tropdet := trop(det). A real $m \times m$ -matrix is called tropically singular if it lies in the tropical hypersurface $\mathcal{T}(\text{tropdet}) \subset \mathbb{R}^{m^2}$ defined by the determinant.

For instance, if m = 3 then the tropical determinant equals

$$\operatorname{tropdet} \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} = \begin{array}{c} x_{11} \odot x_{22} \odot x_{33} \oplus x_{11} \odot x_{23} \odot x_{32} \\ \oplus & x_{12} \odot x_{21} \odot x_{33} \oplus x_{12} \odot x_{23} \odot x_{32} \\ \oplus & x_{13} \odot x_{21} \odot x_{32} \oplus x_{13} \odot x_{22} \odot x_{31} \end{array}$$

This is a tropical polynomial in n = 9 variables. The lineality space L of its hypersurface consists of all matrices of the form $(u_i + v_j)_{1 \le i,j \le 3}$, so L is 5-dimensional. Thus $\mathcal{T}(\text{tropdet})/L$ is a 3-dimensional fan in a 4-dimensional space. Intersecting with a sphere we get the 2-dimensional polyhedral complex $\mathcal{T}'(\text{tropdet})$. This representation of the tropical 3×3 -determinant is shown in [61, Figure 3.5, page 114]. The complex $\mathcal{T}'(\text{tropdet})$ has 9 vertices, 18 edges and 15 two-dimensional cells (9 squares and 6 triangles).

The tropical $m \times m$ -determinant has a nice interpretation in the context of combinatorial optimization. We regard the $m \times m$ -matrix (x_{ij}) as an instance for the following assignment problem. A company has m workers and m jobs, and it seeks to assign the jobs to the workers. The matrix entry x_{ij} is the cost if job j is performed by worker i. An assignment of jobs to workers is a permutation π of $\{1, 2, \ldots, m\}$ and the total cost of that assignment equals

$$x_{1\pi(1)} + x_{2\pi(2)} + \dots + x_{m\pi(m)} = x_{1\pi(1)} \odot x_{2\pi(2)} \odot \dots \odot x_{m\pi(m)}$$

The company wishes to find the minimum over these m! expressions. This is precisely the problem of evaluating the tropical determinant. A well-known method, called the *Hungarian Algorithm*, performs this task in polynomial time. So, there is no need to inspect all m! tropical summands in order to compute the tropical determinant of the cost matrix (x_{ij}) . We conclude:

Remark 2.14. The tropical hypersurface $\mathcal{T}(\text{tropdet})$ is the set of all instances (x_{ij}) of the assignment problem for which the optimal solution is not unique.