
A COMBINATORIAL INTRODUCTION
TO TROPICAL GEOMETRY

BERND STURMFELS

These are the notes for a short course held September 12-16, 2007, at the
Technical University Berlin. The course consists of ten lectures. Originally,
I had hoped to write notes for each lecture but that turned out to be too
optimistic, and is left for the future. Missing notes are replaced with pointers
to the literature, and a fairly substantial bioliography has been compiled.

1. Tropical Arithmetic and Polynomials

Our basic algebraic structure for the geometry in this course is the tropical
semiring (R ∪ {∞},⊕,�). As a set this is just the real numbers R, together
with an extra element ∞ which represents infinity. However, we redefine the
arithmetic operations of addition and multiplication of real numbers as follows:

x ⊕ y := min(x, y) and x � y := x + y.

In words, the tropical sum of two numbers is their minimum, and the tropical
product of two numbers is their sum. Here are some examples of how to do
arithmetic in this strange number system. The tropical sum of 4 and 5 is 4.
The tropical product of 4 and 5 equals 9. We write this as follows:

4 ⊕ 5 = 4 and 4 � 5 = 9.

Many of the familar axioms of arithmetic remain valid in tropical mathematics.
For instance, both addition and multiplication are commutative:

x ⊕ y = y ⊕ x and x � y = y � x.

The distributive law holds for tropical addition and tropical multiplication:

x � (y ⊕ z) = x � y ⊕ x� z.

Both arithmetic operations have a neutral element. Infinity is the neutral
element for addition and zero is the neutral element for multiplication:

x ⊕ ∞ = x and x � 0 = 0.

Elementary school students tend to prefer tropical arithmetic because the mul-
tiplication table is easier to memorize, and even long division becomes easy.
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Here are the tropical addition table and the tropical multiplication table:

⊕ 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 2 3 3 3 3 3
4 1 2 3 4 4 4 4
5 1 2 3 4 5 5 5
6 1 2 3 4 5 6 6
7 1 2 3 4 5 6 7

� 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14

Tropical arithmetic can be tricky because there is no subtraction. There is
no x which we can call “9 minus 5” because the equation 4 ⊕ x = 9 has no
solution x at all. While tropical division does make sense, in these lectures we
shall content ourselves with using addition ⊕ and multiplication � only.

Example 1.1 (Pascal’s Triangle). The tropical Pascal’s triangle looks like

0
0 0

0 0 0
0 0 0 0

0 0 0 0 0
· · · · · · · · · · · · · · · · · ·

Indeed, the rows of this triangle are the coefficients appearing in the Binomial
Theorem. For instance, the third row in the triangle represents the identity

(x⊕ y)3 = (x⊕ y)� (x⊕ y)� (x⊕ y)

= 0� x3 ⊕ 0� x2y ⊕ 0� xy2 ⊕ 0� y3.

Of course, the zero coefficients can be dropped in this identity:

(x⊕ y)3 = x3 ⊕ x2y ⊕ xy2 ⊕ y3.

Moreover, the Freshman’s Dream holds for all powers in tropical arithmetic:

(x⊕ y)3 = x3 ⊕ y3.

The validity of the three displayed identities is easily verified by noting that
the following equations hold in classical arithmetic for all x, y ∈ R:

3 ·min{x, y} = min{3x, 2x + y, x + 2y, 3y} = min{3x, 3y}.
We must always remember that “0′′ is the multiplicatively neutral element. �

Let x1, x2, . . . , xn be variables which represent elements in the tropical semir-
ing (R ∪ {∞},⊕,�). A monomial is any product of these variables, where
repetition is allowed. By commutativity, we can sort the product and write
monomials in the usual notation, with the variables raised to exponents:

x2 � x1 � x3 � x1 � x4 � x2 � x3 � x2 = x2
1x

3
2x

2
3x4.
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A monomial represents a function from Rn to R. When evaluating this function
in classical arithmetic, what we get is a linear function with integer coefficients:

x2 + x1 + x3 + x1 + x4 + x2 + x3 + x2 = 2x1 + 3x2 + 2x3 + x4.

Throughout this course, we will allow negative integer exponents for our mono-
mials. So, for example, the tropical monomial x−17

1 x11
2 x−8

3 represents the linear
function −17x1 + 11x2 − 8x3 in classical arithmetic. With this convention,
tropical monomials in n variables are precisely the linear functions Zn → Z.

A tropical polynomial is a finite linear combination of tropical monomials:

p(x1, . . . , xn) = a� xi1
1 xi2

2 · · ·xin
n ⊕ b� xj1

1 xj2
2 · · ·xjn

n ⊕ · · ·
Here the coefficients a, b, . . . are real numbers and the exponents i1, j1, . . . are
integers. Every tropical polynomial represents a function Rn → R. When
evaluating this function in classical arithmetic, what we get is the minimum
of a finite collection of linear functions (with constant terms), namely,

p(x1, . . . , xn) = min
(
a + i1x1 + · · ·+ inxn , b + j1x1 + · · ·+ jnxn , . . .

)
This function p : Rn → R has the following three important properties:

(a) p is continuous,
(b) p is piecewise-linear, where the number of pieces is finite, and
(c) p is concave, i.e., p(x+y

2
) ≥ 1

2
(p(x) + p(y)) for all x, y ∈ Rn.

Proposition 1.2. Every function Rn → R which satisfies the three properties
(a), (b) and (c) has a representation as the minimum of a finite set of linear
functions. Thus, the tropical polynomials in n variables x1, . . . , xn represent
the class of piecewise-linear concave functions on Rn with integer coefficients.

Proof. Consider a function p : Rn → R which satisfies (a), (b) and (c). Let
`1(x), . . . , `s(x) be the linear functions which appear in the representation of
p(x). By continuity, we may assume that for every i ∈ {1, . . . , s} there is an
open subset Ui of Rn such that p(x) = `i(x) for all x ∈ Ui. Fix any point
z ∈ Rn and let k ∈ {1, . . . , s} be an index such that f(z) = `k(z). Consider
any other index i ∈ {1, . . . , s}. Then we can find points u and v in Uj such
that v lies on the segment between u and z, i.e., there exists λ ∈ (0, 1) such
that v = λz +(1−λ)u and hence z = 1

λ
(v +(λ− 1)u). Concavity of p implies

p(v) ≥ λp(z) + (1− λ)p(u),

and hence, using the linearity of `i,

p(z) ≤ 1

λ

(
p(v) + (λ− 1)p(u)

)
=

1

λ

(
`i(v) + (λ− 1)`i(u)

)
= `i(z).

Combining this inequality with the equation p(z) = `k(z), we find that

p(z) = min
{
`1(z), `2(z), . . . , `s(z)} for all z ∈ Rn.

Hence the function p : Rn → R is represented by a tropical polynomial. �
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The representation of concave functions by tropical polynomials is not unique.

Example 1.3. Consider the general quadratic polynomial in one variable x:

(1) p(x) = a� x2 ⊕ b� x ⊕ c,

Here a, b, c are arbitrary real numbers. If a and c are fixed then all polynomials
p(x) with b ≥ 1

2
(a + c) represent the same function as the complete square

p̃(x) = a�
(
x⊕ c− a

2

)
�

(
x⊕ c− a

2

)
.

On the other hand, if b < 1
2
(a + c) then the quadratic polynomial factors as

p(x) = a�
(
x⊕ (b− a)

)
�

(
x⊕ (c− b)

)
.

We define the root of a linear polynomial x ⊕ C to be its constant term C.
This leads to the tropical quadratic formula: The quadratic polynomial p(x)
has two roots b− a and c− b if the tropical discriminant a− 2b + c is positive
and it has only one root 1

2
(c− a) if the tropical discriminant is negative. �

The following theorem concerns polynomials with non-negative exponents.

Theorem 1.4. (Tropical Fundamental Theorem of Algebra) Every tropical
polynomial function p(x)in one variable x can be written uniquely as a product

(2) p(x) = u� (x⊕ v1)� (x⊕ v2)� · · · � (x⊕ vm).

The rational numbers v1, v2, . . . , vm are the roots of p̃(x) but u is a real number.

Proof. The tropical polynomial function can be written uniquely as

p(x) = d1 � x�c1 ⊕ d2 � x�c2 ⊕ · · · ⊕ dr � x�cr ,

where c1 > c2 > · · · > cr are non-negative integers, d1, . . . , dr are arbitrary
real numbers, and none of the terms di � x�ci are redundant in representing
the function p : R → RR. Then the tropical polynomial p(x) equals

d1�
(
xc1−c2⊕(d2−d1)

)
�

(
xc2−c3⊕(d3−d2)

)
�· · ·�

(
xcr−1−cr⊕(dr−dr−1)

)
�xcr .

Each binomial factor can be factored further into a product of linear forms:

d1�
(
x⊕ d2 − d1

c1 − c2

)�c1−c2�
(
x⊕ d2 − d3

c2 − c3

)�c2−c3�· · ·�
(
x⊕ dr − dr−1

cr−1 − cr

)�cr−1−cr�xcr

This is the desired representation of p(x) as a product of linear terms.
To see that the factorization (2) is unique, we argue as follows. We can

recover the constants u and m because p(x) = mx+u for x � 0. The roots vi

are the places where the graph of p(x) has a breakpoint, and the multiplicity of
a root is the difference of the slope to the left minus the slope to the right. �

Unique factorization of polynomials no longer holds in two or more variables,
because the decomposition of polytopes as Minkowski sums is not unique.
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Example 1.5. The following example shows that the factorization of multi-
variate tropical polynomials into irreducible tropical polynomials is not unique:

(0� x ⊕ 0) � (0� y ⊕ 0) � (0� x� y ⊕ 0)

= (0� x� y ⊕ 0� x ⊕ 0) � (0� x� y ⊕ 0� y ⊕ 0).

All five factors are irreducible, in the sense that they do not admit any non-
trivial factorization. Note that all coefficients of the polynomials are zero. �

A tropical polynomial function p : Rn → R is given as the minimum of a
finite set of linear functions. We define the hypersurface T (p) to be the set of all
points x ∈ Rn at which this minimum is attained at least twice. Equivalently,
a point x ∈ Rn lies in T (p) if and only if p is not linear at x. For example, if
n = 1 and p is the polynomial in (2) then T (p) =

{
v1, v2, . . . , vm

}
. Thus the

hypersurface T (p) is the set of roots of the polynomial p(x).
In this section we consider the case of a polynomial in two variables:

p(x, y) =
⊕
(i,j)

cij � xi � yj.

Proposition 1.6. The tropical curve T (p) is a finite graph which is embedded
in the plane R2. It has both bounded and unbounded edges, all edge directions
are rational, and this graph satisfies a zero tension condition around each node.

The zero tension condition is the following geometric condition. Consider
any node (x, y) of the graph and suppose it is the origin, i.e., (x, y) = (0, 0).
Then the edges adjacent to this node lie on lines with rational slopes. On each
such ray emanating from the origin consider the first non-zero lattice vector.
Zero tension at (x, y) means that the sum of these vectors is zero.

Our first example is a line in the plane. It is defined by a polynomial:

p(x, y) = a� x ⊕ b� y ⊕ c where a, b, c ∈ R.

The curve T (p) consists of all points (x, y) where the function

p : R2 → R , (x, y) 7→ min
(
a + x, b + y, c

)
is not linear. It consists of three half-rays emanating from the point (x, y) =
(c− a, c− b) into northern, eastern and southwestern direction.

Here is a general method for drawing a tropical curve T (p) in the plane.
Consider any term γ � xi � yj appearing in the polynomial p. We represent
this term by the point (γ, i, j) in R3, and we compute the convex hull of these
points in R3. Now project the lower envelope of that convex hull into the
plane under the map R3 → R2, (γ, i, j) 7→ (i, j). The image is a planar convex
polygon together with a distinguished subdivision ∆ into smaller polygons.
The tropical curve T (p) is the dual graph to this subdivision.

As an example we consider the general quadratic polynomial

p(x, y) = a� x2 ⊕ b� xy ⊕ c� y2 ⊕ d� x ⊕ e� y ⊕ f.
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Figure 1. The subdivision ∆ and the tropical curve

Then ∆ is a subdivision of the triangle with vertices (0, 0), (0, 2) and (2, 0).
The lattice points (0, 1), (1, 0), (1, 1) are allowed to be used as vertices in these
subdivisions. Assuming that a, b, c, d, e, f ∈ R are general solutions of

2b ≤ a + c , 2d ≤ a + f , 2e ≤ c + f,

the subdivision ∆ consists of four triangles, three interior edges and six bound-
ary edges. The curve T (p) has four vertices, three bounded edges and six
half-rays (two northern, two eastern and two southwestern). In Figure 2, T (p)
is shown in bold, and the subdivision ∆ is shown in thin lines.

Proposition 1.7. Tropical curves intersect and interpolate like algebraic curves:

(1) Two general lines meet in one point, a line and a quadric meet in two
points, two quadrics meet in four points, etc....

(2) Two general points lie on a unique line, five general points lie on a
unique quadric, etc...

For a general discussion of Bézout’s Theorem in tropical algebraic geometry,
and for many pictures illustrating Fact 4, we refer to the article [65].


