BMS Short Course Tropical Geometry

Exercises for Thursday and Friday, September 13-14
(1) Let I be the ideal generated by three general homogenous linear forms in $\mathbf{C}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$. Describe the tropical variety $\mathcal{T}(I)$ and find a minimal tropical basis for I. What changes if the field \mathbf{C} of complex numbers gets replaced by the field $K=\mathbf{C}\{\{t\}\}$ of Puiseux series?
(2) Draw a general tropical plane in tropical 4-space projective $\mathbf{T P}^{4}$. How many vertices, edges and polygons does your plane have? How many combinatorial types of tropical planes in $\mathbf{T} \mathbf{P}^{4}$ are there altogether?
(3) How many edges does the tropical Grassmannian $\mathcal{G}_{2,7}$ have?
(4) What is the dimension of the prevariety pre $\mathcal{G}_{3,7}$?
(5) Let M be the graphic matroid associated with the complete bipartite graph $K_{2,3}$. Its bases of M are collections of edges in $K_{2,3}$ that form spanning trees. Draw the Bergman complex $\mathcal{T}(M)$. What about $K_{3,3}$?
(6) Desribe a necessary and sufficient condition for a tropical linear system of equations $A \odot x=b$ to be solvable.
(7) Find the image of the tropical linear map $\mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ given by the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

(8) How many combinatorial types of tropical triangles in $\mathbf{T P}^{2}$ are there?
(9) Let X be a curve in \mathbf{C}^{3} given by a parametrization $t \mapsto(f(t), g(t), h(t))$ where f, g, h are polynomials in one variable. The tropical curve $\mathcal{T}(X)$ is a one-dimensional weighted fan in \mathbf{R}^{3}. Describe it in terms of f, g, h.
(10) Compute the discriminant of a general quintic in one variable,

$$
f(t)=x_{5} \cdot t^{5}+x_{4} \cdot t^{4}+x_{3} \cdot t^{3}+x_{2} \cdot t^{2}+x_{1} \cdot t+x_{0}
$$

Compute and draw the Newton polytope of this discriminant.
(11) Find the equation of a tropical cubic curve through the eight points $(0,14),(5,12),(10,10),(15,8),(20,6),(25,4),(30,2),(35,0)$.

Propose a description of the set of all cubic curves through these points.

