## BMS: Tropical Geometry

Exercises for Wednesday, September 12
(1) Consider the following $2 \times 2$-matrix over the rational function field $\mathbf{Q}(t)$ :

$$
A=\left(\begin{array}{cc}
t^{2} & t^{2} \\
-t^{2} & t+t^{2}+t^{3}
\end{array}\right)
$$

Compute its determinant, characteristic polynomial, eigenvalues and eigenvectors. The tropicalization of the matrix $A$ is the tropical matrix

$$
B=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right)
$$

Define and compute the determinant, characteristic polynomial, eigenvalues and eigenvectors of the tropical matrix $B$. Compare the results.
(2) Given five general points in $\mathbf{R}^{2}$, there exists a unique quadratic curve passing through these points. Determine and draw the quadratic curve passing through the points $(0,5),(1,0),(4,2),(7,3)$ and $(9,4)$
(3) A tropical cubic curve in $\mathbf{R}^{2}$ is smooth if it has precisely 9 nodes. Prove that every smooth cubic curve has a unique bounded region, and that this region can has either three, four, five, six, seven, eight, or nine edges. Draw examples for all seven cases.
(4) Draw a quadratic surface in tropical 3-space. Describe the result of intersecting two such tropical quadratic surfaces?
(5) We have drawn the tropical hypersurface of the $3 \times 3$-determinant as a two-dimensional polyhedral complex consisting of triangles and quadrangles. Pick one point each from the relative interior of a triangle and a quadrangle, and find two singular matrices in $\mathbf{C}\{\{t\}\}^{3 \times 3}$ that map to your chosen tropical matrices under the valuation map.
(6) The discriminant of a quadratic form in three unknowns equals

$$
\operatorname{det}\left(\begin{array}{ccc}
2 x_{1} & x_{2} & x_{3} \\
x_{2} & 2 x_{4} & x_{5} \\
x_{3} & x_{3} & 2 x_{6}
\end{array}\right)
$$

Draw a picture of the tropical hypersurface defined by this polynomial.

