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1 Introduction

In the present work, we discuss the “Implicitization Challenge” proposed as Problem 7.7 in [4], Chapter
VI. The problem goes as follows. We are given an undirected graph with 4 observed nodes and two
hidden nodes.
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Figure 1: Graphical model for the complete independence model on four nodes given the hidden
variable R (root).

Each node represents a binary random variable. Our goal is to describe the algebraic variety
corresponding to this model.

Let us discuss the geometry behind the model, a very beautiful one indeed. As a warm-up, consider
a graph with four disconnected nodes. We know ([4], Example 1.2.6) that this simplicial complex
corresponds to the complete independence model for four identically distributed random variables.
Thus, Figure 1 represents a hidden model, where we marginalize over all possible values at the hidden
root of the 4-claw tree. We see immediately that this corresponds to the secant variety of the Segre
variety Seg(P1 × P1 × P1 × P1). From the i.d. assumption we see that this model comes equiped with
a natural S4-action, namely the one obtained by permuting all four observed nodes.

It is worth mentioning that the case of four observed nodes is the first case where the secant variety
of the Segre variety Seg(P1 × P1 × P1 × P1) doesn’t fill in the whole space. In cases n = 2, 3 we have
Sec(Seg(P1 × P1)) = P3 and Sec(Seg(P1 × P1 × P1)) = P7. This follows by dimension arguments, since
both secant varieties are nondefective. This was studied in full detail in [1], Example 2.1.

The parametrization of the hidden model consists of a toric model corresponding to the fully
observed undirected graphical model, composed with the marginalization map over the two hidden
nodes. In this case, the marginalization map is given by a map P63 → P15. According to [4], the
Zariski closure of the image is a hypersurface. The goal consists of computing the degree of the
equation, or even better, its Newton polytope. Interpolation techniques will allow us to compute the
corresponding irreducible homogeneous polynomial equation in 16 unknowns.

As we can imagine, the naive Gröbner basis approach won’t give us the desired result in a reasonable
amount of time, if it terminates at all. So we need to develop an alternative approach. Tropical
Algebraic Geometry will come to the rescue.

The paper is organized as follows. In Section 2 we describe a parametrization of the model and we
discuss its symmetric nature. We also describe the ideal defining the model in terms of an elimination
task. We also give some insight to motivate the codimension 1 guess for the associated variety, which
we’ll be discussed further in Section 5.1. In Section 3 we describe the ideal of the secant variety
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Sec(P1 × P1 × P1 × P1) of the Segre variety, following [3] and, more generally, the construction of
embedded secant varieties in projective space. In Section 4 we describe the tropical framework to
solve the implicitization task. A key-proposition will enable us to translate the tropical implicitization
problem to a Minkowski sum of polyhedral fans. We also study the relation between tropical varieties
with constant coefficient and base change to the Puiseux series context. We also discuss the notion of
multiplicities of maximal cones in tropical varieties, showing that the problem is far from being well
behaved. At this stage, gfan will come in handy. In addition, the tropical framework will allow us
to show that our variety is in fact a hypersurface as predicted. We describe all our computations in
Section 5. We closed the section discussing the ray-shooting method to obtain the Newton polytope
of our desired equation from it’s known tropicalization. In particular, this procedure will allow us to
compute the degree of the equation, by computing one vertex of this polytope. We hope to get the
right answer in the near future.

2 The model

In what follows, we describe the parametric representation of the model we wish to study. Recall
that all our six random variables are binary, with four observed nodes and two hidden ones. Like any
undirected graphical model (see [5] or [4]), the corresponding parametrization is given by

p : R32 → R16 pijkl =
1∑

s=0

1∑
r=0

asibsjcskdslerifrjgrkhrl for all (i, j, k, l) ∈ {0, 1}4.

Notice that our coordinates are homogeneous of degree 1 in the subset of variables corresponding to
each edge of the graph. Therefore, there is a natural interpretation of this model in projective space.
On the other hand, by the distributive law we can write down each coordinate as a product of two
points in the model corresponding to the 4-claw tree. Namely,

p : (P1 × P1)8 → P15 pijkl = (
1∑

s=0

asibsjcskdsl) · (
1∑

r=0

erifrjgrkhrl) for all (i, j, k, l) ∈ {0, 1}4.

From this observation it is natural to define a new operation between projective varieties: the star
operation, which we now describe.

Definition 1. Let X, Y ⊂ Pn be two projective varieties. Define a new projective variety as follows:

X ∗ Y = {(x0y0 : . . . : xnyn) |x ∈ X, y ∈ Y, x ∗ y 6= 0} ⊂ Pn.

where x ∗ y = (x0y0, . . . , xnyn) ∈ An+1.

Note that this structure is well-defined since each coordinate is bihomogeneous of degree (1,1).
From our construction, it follows immediately that im p = X ∗X where X = Sec(P1×P1×P1×P1).

Therefore, we are reduced to study the variety X ∗X.
Notice that the binary nature of our random variables enables us to define a natural S2-action by

permuting the values 0 and 1 on each index in our 4-tuples. Combining this with the S4-action on the
4-tuples of indices, we see that our model comes equiped with a natural S4 n (S2)4-action. This group
action will be extremely helpful for our computations (see Section 5, specially §5.1). We’ll describe the
semidirect product structure in Section 5.

Why one would expect this variety to be of codimension 1? Dimension arguments will clarify this
point. It is well-known that the expected dimension of Sec(P1 × P1 × P1 × P1) equals 2 · 4 + 1 = 9. If
we are able to show that X ∗X has dimension 14, then we’ll be done. We postpone this discussion to
Section 4, where we develope the necessary tropical techniques.

In the remaining of the section, let us describe the ideal associated to X ∗ Y , where X, Y ⊂ Pn.
For this we will use the Segre embedding
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Figure 2: The model corresponds to X ∗X as a projective variety in P15.

Proposition 1. [Characterization of I(X ∗ Y )]
Let J = I(X) = (f1, . . . , fs) ⊂ C[x0, . . . , xn] and L = I(Y ) = (g1, . . . , gr) ⊂ C[y0, . . . , yn] where all

fi and gj are homogeneous polynomials in n + 1 unknowns. Then

I(X ∗ Y ) = (zij − xiyj , ft(x), gl(y) : i, j ∈ [n], t = 1, . . . , s, l = 1, . . . , r)︸ ︷︷ ︸
⊂C[x,y,z]

∩C[z00, . . . , znn]

= (zii − xiyi, ft(x), gl(y) : i, j ∈ [n], t = 1, . . . , s, l = 1, . . . , r)︸ ︷︷ ︸
T⊂C[x,y,z]

∩C[z00, . . . , znn].

Proof. The proof follows by scheme arguments. Namely, X ∗ Y corresponds to φ ◦ ι, where φ is the
projection Pn2+2n to the diagonal Pn and ι is the inclusion ι : X × Y ↪→ Pn × Pn ↪→ Pn2+2n (the last
inclusion is the Segre embedding).

Note that our initial guess is that the variety X ∗X is a hypersurface, so we should get only one
equation after eliminating all variables except for the diagonal ones.

Remark 1. In case X and Y are irreducible projective varieties not contained in any coordinate
hyperplane, one can see that X ∗ Y is also irreducible. This follows because this variety is the closure
of the image of the following map X × Y ↪→ Pn × Pn ↪→ Pn2+2n → Pn, where the last maps are the
Segre embedding followed by the projection map to the diagonal, and X × Y is irreducible (the affine
cone C(X × Y ) is irreducible in An+1 by Exercise 3.15 in [15], Chapter I, so X × Y ⊂ Pn2+2n will
also be irreducible by Exercise 2.10 in [15] Chapter I). This condition will be important when dealing
with computations, since gfan assumes our input to be a prime ideal.

3 Ideal of flattenings

In this section we describe how to compute the ideal associated to the secant variety Sec(P1 × P1 ×
P1×P1). Note that the Segre embedding of P1×P1×P1×P1 ⊂ P15 is irreducible so its ideal is prime.
Our task is to compute the ideal of its secant variety.

By definition, the embedded secant variety SecV of a projective variety V ⊂ Pn corresponds to the
closure of the set {sx + ty : x, y ∈ V, (s : t) ∈ P1} ⊂ Pn (i.e. the projection of the affine secant variety
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of the associated affine cone C(V ) to projective space.) How to find the ideal of this variety? Pick
I(V ) = (f1, . . . , fr). Call

J ′ = (zi − sxi − tyi, fj(x), fj(y) : j = 1, . . . , r, i = 0, . . . , n) ⊂ C[x, y, z, s, t] (*)

In addition, since we have (s : t) ⊂ P1, we need to saturate w.r.t. the ideal (s, t). To finish, we need
to eliminate all variables except the z-unknowns. Thus

Proposition 2. Let V ⊂ Pn be an irreducible projective variety, and let I(V ) = (f1, . . . , fr). With
the notation (*) we have

I(Sec(V )) = (J ′ : (s, t)∞) ∩ C[z0, . . . , zn].

Proof. The inclusion (⊇) follows by construction. To prove the other inclusion, it suffices to show that
(J ′ : (s, t)∞) is a radical ideal. If we prove that J ′ is radical, then we’ll be done. Moreover, we claim
that J ′ is a prime ideal. This follows because J is a prime ideal and

C[x, y, z, s, t]/J ′ =
((

C[x/Ix(V )︸ ︷︷ ︸
domain

)
[y]/(Iy(V ))

)
[s, t].

where Ix(V ) = I(V ) ⊂ C[x].
The coefficients ring is a domain since {x, y} are algebraically independent and Ix(V ), Iy(V ) are

prime ideals.

In the case of the variety we’re studying, an alternative approach will leads us the a generating set
of the associated ideal. As we know, the Segre embedding P1 × P1 × P1 × P1 ↪→ P15 is determined by
the monomial parametrization pijkl = ui · vj · wk · xl for i, j, k, l ∈ {0, 1}. Its associated prime ideal is
generated by the 2× 2-minors of all three 4× 4-flattenings:

F(34|12) :=


p0000 p0001 p0010 p0011

p0100 p0101 p0110 p0111

p1000 p1001 p1010 p0111

p1100 p1101 p1110 p1111

 , F(13|24) :=


p0000 p0001 p0100 p0101

p0010 p0011 p0110 p0111

p1000 p1001 p1100 p1101

p1010 p1011 p1110 p1111

 ,

F(14|23) :=


p0000 p0010 p0100 p0110

p0001 p0011 p0101 p0111

p1000 p1010 p1100 p1110

p1001 p1011 p1101 p1111

 .

As explained in [3], the three matrices above reflect the bracketings of the parametrization (i.e. asso-
ciativity formulas), which also correspond to the three topologies for a trivalent tree on four taxa. See
Figure 3.

We know that the secant variety X = Sec(P1×P1×P1×P1) ⊂ P15 is the nine-dimensional irreducible
subvariety consisiting of all 2 × 2 × 2 × 2-tensors of tensor rank at most 2, which corresponds to the
general Markov model for the 4-claw tree, as we mentioned in previous sections.

The prime ideal of X is generated by all the 3× 3-minors of the three flattenings. Namely,

X = X(12|34) ∩X(13|24) ∩X(14|23),

where X(12|34) is the ideal of 3×3 minors of the matrix F(12|34), and similarly for the other two. Notice
that X(12|34) is also the ideal corresponding to the general Markov model in the tree corresponding to
the quartet (12|34).

4 Tropical land

In this section we discuss some background on tropicalization of varieties over Cn or C{{t}}n and
we prove our main result concerning the interplay between the star operation (Definition 1) and the
tropicalization of projective varieties. Tropicalization of algebraic varieties provide a combinatorial
shadow of the original varieties and its proven to be a useful tool to study the algebraic variety.
Throughout this section we’ll define tropicalizations followin the min convention.

For simplicity call K any of the previous two fields. We define
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Figure 3: Three topologies for trivalent trees on four taxa corresponding to the bracketing of the Segre
embedding Seg(P1 × P1 × P1 × P1).

Definition 2. Given X ⊂ Kn an algebraic variety, with defining ideal I = I(X) ⊂ K[x1, . . . , xn], we
define the tropicalization of X as:

T X = {w ∈ Rn+1 | inw(I) contains no monomial}.

were inw(I) = (inw(f) : f ∈ I). Likewise, we can define the same tropicalization construction for
ideals in the Laurent polynomial ring. All the relevant information regarding the tropical variety will
be encoded in the tropicalization of X ′ = X ∩ (K∗)n ⊂ (K∗)n, in case X ′ is non-empty.

Depending on the nature of the field K, we’ll define the initial term of a polynomial w.r.t. w in
two different ways. If K = C (known as the constant coefficient case), we define inw(f) as the sum
of all nonzero terms of f =

∑
α cαxα where α · w is minimum over all α’s with cα 6= 0. On the other

hand, if K = C{{t}} (the non-constant coefficient case) with its standard valuation, we define inw(f)
as follows. For f =

∑
α cα(t)xα, we set W = min{val(cα) + α · w : cα 6= 0}, and so

inw(f) = tW
∑

α∈Zn

cα(t)tw·αxα ⊂ C[x±1].

From the definition in the constant coefficient case, we see that T X is a cone. Moreover, it is a
pure polyhedral fan and it is connected in codimension one. In addition, in case X is a projective
variety there will be a linear space inside the tropical variety, called the lineality space. It corresponds
to the set {w ∈ T X|inwI(X) = I(X)}. Thus, to analyze the tropical variety we’ll often mod out by
the lineality space, since it provided no interesting combinatorial information.

Remark 2. In case X is an irreducible projective hypersurface in Pn not contained in any coordinate
hyperplane, say X = (f = 0) where f is irreducible, we have T X = {w ∈ Rn+1 | inw(f) is not a
monomial} and the lineality space L is L = {w ∈ Rn+1 | inw(f) = f}. The space L will be closely
related to the support of the Newton polytope of f . Moreover, the tropical variety T X will allow us to
recover NP (f). We’ll discuss this method in Section 5.2.

In the non-constant coefficient case, the tropicalization T X have bounded components as well as
unbounded components, and it is a pure polyhedral complex. In addition, there won’t be any lineality
space (unless our tropical variety comes from an ideal with constant coefficients).

It will be important for us to relate T X and T X̃ where X̃ is the variety associated to the extended
ideal I(X)C{{t}}[x±1

1 , . . . , x±1
n ]. We do this in Lemma 1.
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Another important feature from tropical varieties is the so called “balancing condition”. In fact,
tropical varieties will be weighted polyhedral fans with this extra balancing condition satisfied. Our
interest in the problem we’re studying will rely on the weights or multiplicities of all maximal cones
in our tropical variety. This notion will be closely related to multiplicities of minimal primes of initial
ideals. More precisely,

Definition 3. Let K = C or C{{t}}, and X ⊂ (K∗)n an algebraic variety. Pick σ ⊂ T X a maximal
polyhedron and let w be a vector in the relative interior of σ. We define the multiplicity of σ in T X
as follows:

mσ,T X =
∑

P⊂Spec S
P minimal
over inwI

mult(P, S/inwI),

where mult(P, S/inwI) is the multiplicity of P as an associated minimal prime to inwI ⊂ S.
In the homogeneous case, we’ll define mσ,T C as the some of the multiplicities of all monomial-free

associated minimal primes to inwI ⊂ S.

How to define the multiplicity of P? In general, for a noetherian ring R, a finitely generated R-
module, and a minimal P - primary component of (0) ⊂ M we wish to define mult(P,R). As we will
show, it will be describe as a length of certain artinian RP -module. We will follow the exposition in
[13], Section 3.6.

For this we need to define a set H0
I (M) for an ideal I:

H0
I (M) := {m ∈ M | Inm = 0 for n � 0}.

An important result concerning this set (which is a submodule of M and it only depends on the
radical of I) is the following:

Fact (Proposition 3.13 in [13]). Let 0 =
⋂
i

Mi be a primary decomposition of (0) ⊂ M , with Mi Pi-

primary. Then the submodule H0
I (M) is the intersection of those Mi s.t. Pi /∈ {P ∈ AssM |P ⊃ I}.

In particular, this intersection is independent of the primary decomposition chosen.

In case I = P is a prime ideal, then H0
P (M) ⊂ MP is the unique largest submodule of finite length

and we define:

Definition 4. mult(P,M) = lengthRP
(H0

P (M))P .

In Lemma 1 we discuss the relation between multiplicities of maximal cones in T X and in T X̃.
Multiplicities will be extremely important for our implicitization problem. See Section 5.2 and [2].

Proposition 3. Given X, Y ⊂ Pn two projective irreducible varieties none of which is contained in a
proper coordinate hyperplane, we can consider the associated proejctive variety X ∗ Y ⊂ Pn. Then as
sets:

T (X ∗ Y ) = T (X) + T (Y )

where the sum on the (RHS) is the Minkowski sum of the corresponding polyhedral fans in Cn+1.

At the end of this section we’ll study the relationship between the multiplicities of maximal cones
on each set. As we will see, there is no general behavior of multiplicities in T (X ∗ Y ) compared to
multiplicities in T X and T Y .

As one can easily imagine, this set-theoretic result is motivated by Kapranov’s theorem and the
fact that valuations turn products into sums. However, we are dealing with the constant coefficient
case, so we need to enlarge our variety to include it in the affine ring with coefficients in the Puiseux
series ring. This will be done by the following lemma.

Lemma 1. [Base change lemma] Let X ⊂ Pn an irreducible variety not contained in a coordinate
hyperplane, and consider the fiber product X ′ = X ×Spec C Spec C{{t}} ⊂ Pn

C{{t}}. Let X̃ = C(X ′) ⊂
Tn+1, where Tn+1 = C{{t}}[x±1

0 , . . . , x±1
n ]. Then

T X = T X̃,
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both as sets and with the corresponding multiplicities, i.e. they have the same structure as weighted
polyhedral fans.

Proof. First, we prove the equality as sets. Consider I = I(X) = (f1, . . . , fr) the homogeneous ideal
defining X. Then X̃ is defined by

J = IC{{t}}[x±1
0 , . . . , x±1

n ].

By definition, T X̃ = {w ∈ Rn+1 | inw(J) contains no monomial}. Note that we can write g =
∑

i hifi

as
∑

j≥l t
j/N

∑r
i=0 hijfi, where hij is the coefficient of h in

(
C[x±1

0 , . . . , x±1
n ]

)
((t1/N )) associated to

the j-th. power of t1/N for some N . It is clear that T X̃ ⊂ T X. For the converse we need to make
one useful remark. We claim that inw(

∑
i hifi) equals inw of a truncation of the series in t with

coefficients in C[x±1
0 , . . . , x±1

n ]. This follows because g involves only finitely many monomials in x, and
so the minimum value {val(cα) + w · α : cα 6= 0} will be attained at only finitely many values of tj/N .
Therefore, we can truncate the series. Hence, inw(g) = inw(

∑M
j=l(

∑
i gijfi)tj/N . Since w ∈ T X we

have inw(
∑

i gijfi) is not a monomial for all
∑

i(gijfi), and there will. In particular for any two choices
of j, say j < j′ there will be no cancellations because different values of j will give different values of
exponents α. Thus, inw(g) won’t be a monomial, meaning w ∈ T X̃.

Concerning the multiplicities, pick σ a d-dimensional polyhedron in T X = T X̃ and fix w in the
relative interior of σ. Let S = C[x±1

1 , . . . , x±1
n ]. We need to show that

mσ,T X =
∑

P⊂Spec S
P minimal
over inwI

mult(P, S/inwI) =
∑

Q⊂Spec S
Q minimal
over inwJ

mult(Q,S/inwJ) = mσ,T X̃ .

where the multiplicities mult(P, S/inwI) denote the multiplicity of P as an associated minimal prime
to inwI ⊂ S, and likewise for Q and inwJ (see Definition 4.)

The key-fact is that in this case inwI = inwJ . This follows by similar arguments as the ones
used above. It is clear that inwI ⊂ inwJ . For the converse, pick g ∈ J . By definition, we’ll have
g =

∑
j hjt

j/N for some hj ∈ I. By definition of inw, we see that inw(g) coincides with the initial of
a truncation of this series. So we can assume g is a polynomial in t. And we see that the maximum
W = max{j + α · w : cα 6= 0} at each summand hjt

j/N will be realized at indices (j, α), where α is a
monomial in inw(hj). By construction, we won’t get any cancellations. Hence inw(g) ⊂ inw(I), as we
wanted to show.

Let’s go back to the main result in this section. Before proving it, we recall Kapranov’s theorem
adapted to our setting (see [11] Theorem 2.3 for a general statement):

Theorem 1 (Kapranov’s Theorem). Let K = C{{t}} be the ring of Puiseux series with its associated
valuation, and let X be a variety X ⊂ Tm

K with radical ideal I ⊂ K[x±1
1 , . . . , x±1

m ]. Then the following
subsets of Rm coincide:

(i) T (X) ;

(ii) {w ∈ Rm : initwI 6= (1)};

(iii) The closure in Rm of {val(x) := (val(x1), . . . , val(xm)) ∈ Rm : x = (x1, . . . , xm) ∈ X}.

Proof. (Proposition 3) Pick x ∈ X̃ and y ∈ Ỹ , following the notation in Lemma 1. By definition,
val(x ∗ y) = val(x)+ val(y). Since the sum in Rn is a continuous function w.r.t. the product topology,
the result follows by Kapranov’s theorem.

Therefore, the same proof gives us:

Proposition 4. Let R ⊂ K = C{{t}} be the ring of Puiseux series with its associated nontrivial
valuation, and let X, Y ⊂ Tm

K with radical ideals I, J ⊂ K[x±1
1 , . . . , x±1

m ]. Consider the variety X ∗Y ⊂
Tm

K as the closure of the image of the coordinatewise multiplication map X × Y → Tm
K , (x, y) 7→

(xiyi)m
i=1. Then as sets:

T (X ∗ Y ) = T X + T Y.
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Note that we’re not claiming that they have the same fan structure. In general, it might happen
that maximal cones in (RHS) get subdivided to give maximal cones in (LHS) or, moreover, the union
of several cones in (RHS) gives a maximal cone in the (LHS). The following example illustrates the
latter. In general, for the constant coefficient case, a fan structure can be determined by means of the
Gröbner fan of the ideal I(X ∗ Y ).
Example 1. Consider the variety X = Y = V (y10 − xzw8, x4 + y4 + z4 + w4) ⊂ C4, which we
know is irreducible, with ideal given by these two polynomials (we check this by doing a primary
decomposition). We compute it’s fan structure with gfan

gfan_buchberger <input.gfan.n4 | gfan_tropicalstartingcone | gfan_tropicaltraverse
&>output.gfan.n4
Q[x,y,z,w]
{y^10-x*z*w^8, x^4+y^4+z^4+w^4}

_application PolyhedralFan
_version 2.2
_type PolyhedralFan

AMBIENT_DIM
4

DIM
2

LINEALITY_DIM
1

RAYS
-10 -1 0 0 # 0
5 1 5 0 # 1
0 -1 -10 0 # 2

N_RAYS
3

LINEALITY_SPACE
1 1 1 1

ORTH_LINEALITY_SPACE
0 0 1 -1
0 1 0 -1
1 0 0 -1

F_VECTOR
1 3

CONES
{} # Dimension 1
{0} # Dimension 2
{1}
{2}

MAXIMAL_CONES
{0} # Dimension 2
{1}

8



{2}

PURE
1

MULTIPLICITIES
4 # Dimension 2
8
4

As we see, the fan structure consists of 3 rays with multiplicities 4, 8 and 4. After moding out by the
lineality space, we can draw the Minkowski sum. And in this case, the union of the three 2-dimensional
cones give a 2-dimensional vector space. So we have a 3-dimensional vector space in R4 corresponding
to the tropical variety as a set.

To check this, we compute the ideal I(X∗X) and the corresponding tropicalization. The elimination
ideal was computed with Singular:

LIB = "elim.lib";
ring R = 0, (s,t,u,v,x,y,z,w,a,b,c,d), lp;
ideal I = (s-x*a, t-y*b, u-z*c, v-w*d, y^10-x*z*w^8, x^4+y^4+z^4+w^4,
b^10-a*c*d^8, a^4+b^4+c^4+d^4);
eliminate(I, a*b*c*d*x*y*z*w);

_[1]=suv8-t10

Since the generating polynomial is a binomial, we know that its tropicalization is a vector space,
namely, its lineality space.

To confirm this and check the multiplicity structure, we plug in this equation into gfan to obtain
the weighted fan structure:

gfan_buchberger | gfan_tropicalstartingcone |gfan_tropicaltraverse
&>output.gfan.TropXXn4
Q[s,t,u,v]
{suv^8-t^10};
_application PolyhedralFan
_version 2.2
_type PolyhedralFan

AMBIENT_DIM
4

DIM
3

LINEALITY_DIM
3

RAYS

N_RAYS
0

LINEALITY_SPACE
0 0 8 -1
0 4 0 5
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8 0 0 -1

ORTH_LINEALITY_SPACE
1 -10 1 8

F_VECTOR
1

CONES
{} # Dimension 3

MAXIMAL_CONES
{} # Dimension 3

PURE
1

MULTIPLICITIES
1 # Dimension 3

�

Corollary 1 (Expected dimension). Let X, Y be as in Proposition 4. Let LX , LY be the lineality
spaces in X and Y , and let dim X = d, dim Y = d′ denote their dimensions as affine varieties. Then
the expected affine dimension of T (X ∗Y ) is min{(d−dim LX)+(d′−dim LY )+dim(LX +LY ), n} =
min{d + d′ − dim(LX ∩ LY ), n}.

Proof. By Proposition 4, we have dim T (X ∗Y ) ≤ min{d+d′−dim(LX ∩LY )}, and since T (X ∗Y ) ⊂
Rn, dim T (X ∗ Y ) ≤ n.

Assume d + d′ − dim(LX ∩ LY ) ≤ n. To prove the other inequality, we need to find two maximal
cones σ ∈ T X, τ ∈ T Y s.t. dim σ + τ = d + d′ − dim(LX + LY ), and we need to do this if X and Y
are generic irreducible varieties of dimensions d and d′.

If X and Y are generic, we have that LX = LY is 1-dimensional, generated by the all ones vector
(recall that X, Y are projective). Therefore, LX = LY = LX ∩ LY . In addition, if X and Y are
generic, then the maximal cones in X and Y will also be generic d and d′-dimensional cones in Rn.
And therefore, the Minkowski sum of pair of cones in X and Y will have dimension d + d′ − 1, as we
wanted.

On the other hand, if d+d′−dim(LX∩LY ) > n, and X and Y are sufficiently generic, we have that
the Minkowski sum of maximal cones σ ∈ T X and τ ∈ T Y will span the whole space (d + d′ − 1 > n
vectors in Rn.) Therefore, the result also follows in this case.

Before moving on to the next section, let us say a word about the dimension of our statistical
model, as an application of the previous corollary. It is a well-known fact (see [10], Theorem 2.7) that
the dimension of an irreducible variety in Cn coincides with the dimension of its tropicalization. Since
our variety is the algebraic closure of the image of a polynomial map, we know it is irreducible.

If we specialize Corollary 1 to the case X = Y , we have that the expected dimension of T X ∗X
is min{2 dim X − dim LX , n}. In Section 5.1, we compute T X and we see that dim T X = 10, with
dim LX = 5, so X = Sec(P1 × P1 × P1 × P1) has the expected projective dimension (9). Hence, the
expected dimension for T (X ∗X) is min{15, 16} = 15. By computing T X ∗X via Minkowski sums,
we show that T (X ∗ X) ⊂ R16 is a (pure) polyhedral fan of dimension 15. This ensures that our
model corresponds to a hypersurface in P15 (its associated affine cone is 15-dimensional). Therefore,
the dimension predicted in [4] was correct.
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4.1 Multiplicities

We now return to the question of equality as weighted polyhedral fans. Our aim is to study the relation
between the multiplicities of maximal cones σ ∈ T X, τ ∈ T Y and the multiplicity of σ+τ ∈ T (X∗Y ),
if this sum is a maximal cone in T (X ∗ Y ). For simplicity, assume X = Y . Since the Minkowski sum
map Φ satisfies Φ(σ, τ) = Φ(τ, σ), we see that for maximal cones in im Φ the fiber has even cardinality.
We should expect our formula to involve half the cardinality of the fibers of maximal cones in T (X∗X).

We first consider Example 1. As we can see, the Minkowski sum map has only fibers of cardinality
2. However, in this case, our maximal cones in T (X ∗X) (namely, the unique linear space) has empty
fiber under the map Φ. This will be the case if T (X∗X) is a linear subspace of Rn (with the coarsest fan
structure) and X is an irreducible generic projective variety of affine dimension d ≤ d(n−r)/2e because
we need n−dim LX +1 points to express L⊥X ⊂ Rn as a cone (namely v1, . . . , vn−r,−(v1 + . . .+ vn−r),
were r = dim LX .)

In this case, the fan structure will consist of only 1 cone (the entire linear space) and the multiplicity
will be 1 (because the tropical variety coincides with the homogeneous space, so for any w in the relative
interior of the cone (i.e. any w in the linear space) ∈w (I) = I. Since I(X ∗X) = I is a prime ideal in
C[x±1

1 , . . . , x±1
n ] we have mσ,T (X∗X) = 1.

The case of a tropical variety being a linear space (with more general fan structure) was studied in
detail by Sturmfels in [14], Lemma 9.9:

Lemma 2. Let X ⊂ Rn be an irreducible proyective variety of dimension d not contained in any
coordinate hyperplane, and suppose T (X ∗X) is a linear subspace of Rn of dimension r. Then there
is an r-dimensional subtorus T ⊂ (C∗)n, such that X ∗X consists of finitely many T -orbits.

Note that since X ∗ X is not contained in any coordinate hyperplane and is irreducible, then
X ∗ X ∩ (C∗)n is irreducible and dense in X ∗ X. In addition, if X is generic we expect r to equal
min{2d− dim LX , n}, were LX denotes the lineality space of T X.

We now consider an example where Φ maps pairs of maximal cones in T X onto maximal cones in
T (X ∗X).
Example 2. Let X = Y = V (y4 − xzw2 + xyzw, x2 + y2 + z2 + w2) ⊂ C4. We know that the
corresponding ideal is given by these two polynomials and it is a prime ideal (we compute a primary
decomposition of it and we obtain one component). Therefore, we ensure that gfan will give us the
right answer.

We compute the tropicalization of X: it consists of 4 rays and a 1-dimensional lineality space:

gfan_buchberger |gfan_tropicalstartingcone |gfan_tropicaltraverse
&>output.gfan.n4.bis.bis

Q[x,y,z,w]
{y^4-x*z*w^2+z*x*w*y, x^2+y^2+z^2+w^2}
Hypersurfaces to go:5
Max dimension: 4
Hypersurfaces to go:4
Max dimension: 3
Hypersurfaces to go:3
Max dimension: 3

_application PolyhedralFan
_version 2.2
_type PolyhedralFan

AMBIENT_DIM
4

DIM
2
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LINEALITY_DIM
1

RAYS
-4 -1 0 0 # 0
1 0 1 0 # 1
3 2 3 0 # 2
0 -1 -4 0 # 3

N_RAYS
4

LINEALITY_SPACE
1 1 1 1

ORTH_LINEALITY_SPACE
0 0 1 -1
0 1 0 -1
1 0 0 -1

F_VECTOR
1 4

CONES
{} # Dimension 1
{0} # Dimension 2
{1}
{2}
{3}

MAXIMAL_CONES
{0} # Dimension 2
{1}
{2}
{3}

PURE
1

MULTIPLICITIES
2 # Dimension 2
2
2
2

After moding out by the lineality space, we can identify our fan with a fan in R3 by proyection onto
the first three coordinates. As a set, we’ll have six 2-dimensional maximal cones, which pairwise span
the whole space. Hence, the only possibility to get the fan structure would be to subdivide our 2-
dimensional cones. In particular, the tropical variety T (X ∗X) has dimension 3, so we know X ∗X
is a hypersurface. We compute its implicit equation with Singular:

LIB = "elim.lib";
ring R = 0, (s,t,u,v,x,y,z,w,a,b,c,d), lp;
ideal I =(s-x*a, t-y*b, u-z*c, v-w*d, y^4-x*z*w^2+z*x*w*y, x^2+y^2+z^2+w^2,
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b^4-a*c*d^2+ c*a*d*b , a^2+b^2+c^2+d^2);
eliminate(I, a*b*c*d*x*y*z*w);

_[1]=s10t8u6v8-2s8t10u6v8-2s8t8u8v8-2s8t8u6v10+s8t6u8v10-2s8t5u8v11+3s8t4u8v12-
4s8t3u8v13+3s8t2u8v14-2s8tu8v15+s8u8v16+2s7t13u5v7+2s7t12u5v8+2s7t9u7v9-4s7t8u7v10+
8s7t7u7v11-12s7t6u7v12+6s7t5u7v13-8s7t4u7v14-s6t16u4v6+4s6t14u6v6+8s6t13u6v7+
15s6t12u6v8+12s6t11u6v9-2s6t10u8v8+35s6t10u6v10+6s6t9u6v11+s6t8u10v8-2s6t8u8v10+
28s6t8u6v12-16s5t17u5v5-40s5t16u5v6-60s5t15u5v7-80s5t14u5v8+2s5t13u7v7-50s5t13u5v9+
2s5t12u7v8-56s5t12u5v10+28s4t20u4v4+72s4t19u4v5+105s4t18u4v6+90s4t17u4v7-s4t16u6v6+
70s4t16u4v8-28s3t23u3v3-68s3t22u3v4-78s3t21u3v5-56s3t20u3v6+17s2t26u2v2+34s2t25u2v3+
28s2t24u2v4-6st29uv-8st28uv2+t32

At last, we obtain the fan structure of T (X ∗ X) with gfan. This confirms that our fan has 6
maximal cones, so Φ is also onto in this case. Moreover, each fiber has cardinality two, and consists of
pairs {(σ, τ), (τ, σ)}.

gfan_buchberger | gfan_tropicalstartingcone | gfan_tropicaltraverse
&>output.gfan.TropXXn4.bis.bis
Q[s,t,u,v]
{s10t8u6v8-2s8t10u6v8-2s8t8u8v8-2s8t8u6v10+s8t6u8v10-2s8t5u8v11+3s8t4u8v12-
4s8t3u8v13+3s8t2u8v14-2s8tu8v15+s8u8v16+2s7t13u5v7+2s7t12u5v8+2s7t9u7v9-4s7t8u7v10+
8s7t7u7v11-12s7t6u7v12+6s7t5u7v13-8s7t4u7v14-s6t16u4v6+4s6t14u6v6+8s6t13u6v7+
15s6t12u6v8+12s6t11u6v9-2s6t10u8v8+35s6t10u6v10+6s6t9u6v11+s6t8u10v8-2s6t8u8v10+
28s6t8u6v12-16s5t17u5v5-40s5t16u5v6-60s5t15u5v7-80s5t14u5v8+2s5t13u7v7-50s5t13u5v9+
2s5t12u7v8-56s5t12u5v10+28s4t20u4v4+72s4t19u4v5+105s4t18u4v6+90s4t17u4v7-s4t16u6v6+
70s4t16u4v8-28s3t23u3v3-68s3t22u3v4-78s3t21u3v5-56s3t20u3v6+17s2t26u2v2+34s2t25u2v3+
28s2t24u2v4-6st29uv-8st28uv2+t32}

_application PolyhedralFan
_version 2.2
_type PolyhedralFan

AMBIENT_DIM
4

DIM
3

LINEALITY_DIM
1

RAYS
-4 -1 0 0 # 0
1 0 1 0 # 1
3 2 3 0 # 2
0 -1 -4 0 # 3

N_RAYS
4

LINEALITY_SPACE
1 1 1 1

ORTH_LINEALITY_SPACE
0 0 1 -1
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0 1 0 -1
1 0 0 -1

F_VECTOR
1 4 6

CONES
{} # Dimension 1
{0} # Dimension 2
{1}
{2}
{3}
{0 1} # Dimension 3
{0 3}
{1 2}
{1 3}
{0 2}
{2 3}

MAXIMAL_CONES
{0 1} # Dimension 3
{0 3}
{1 2}
{1 3}
{0 2}
{2 3}

PURE
1

MULTIPLICITIES
2 # Dimension 3
8
4
2
2
2

�

Therefore, we see that the relationship between multiplicities in T (X∗Y ) and T X, T Y is far from
being clear. Moreover, we shouldn’t expect any general formula involving these quantities. However,
because the model we’re studying in this paper is highly symmetric we should expect all multiplicities
to be the same. This will be the case for T X, as we shall see in next section.

One last example will show us that the fan structure can come from subdividing maximal cones
obtained via Minkowski sums:
Example 3. Let X = Y = V (xz−yw+zy+xw, x3 +y3 +z3 +w3) ⊂ C[x, y, z, w]. It’s associated ideal
is generated by these two polynomials (via a primary decomposition computation). The tropicalization
of X will consist of 6 rays plus a lineality space generated by the all 1’s vector.

gfan_buchberger | gfan_tropicalstartingcone | gfan_tropicaltraverse

Q[x,y,z,w]
{xz-yw+zy+xw, x^3+y^3+z^3+w^3}
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_application PolyhedralFan
_version 2.2
_type PolyhedralFan

AMBIENT_DIM
4

DIM
2

LINEALITY_DIM
1

RAYS
-1 0 0 0 # 0
-1 -1 0 0 # 1
1 1 0 0 # 2
-1 -4 0 0 # 3
0 0 -1 0 # 4
4 4 3 0 # 5

N_RAYS
6

LINEALITY_SPACE
1 1 1 1

ORTH_LINEALITY_SPACE
0 0 1 -1
0 1 0 -1
1 0 0 -1

F_VECTOR
1 6

CONES
{} # Dimension 1
{0} # Dimension 2
{1}
{2}
{3}
{4}
{5}

MAXIMAL_CONES
{0} # Dimension 2
{1}
{2}
{3}
{4}
{5}
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PURE
1

MULTIPLICITIES
3 # Dimension 2
2
2
1
3
1

We mod out by the lineality space and we get a fan structure consisting of six rays {e + 0, . . . , en}
in R3. They are grouped into two sets: {e0, e1, e2, e3} and {e1, e2, e4, e5}. The union of the pairwise
Minkowski sums on each set gives us two vector spaces, namely (z = 0 and (x − y = 0). To finish
computing T (X ∗X) as a set, we need to add the cones (e0, e4), (e0, e5), (e3, e4) and (e3, e5). However,
this will not be the fan decomposition of T (X ∗X), partly because the intersection of the two vector
spaces above won’t be a face of each one, contradicting the definition of a polyhedral fan. We compute
the implicit equation of X ∗X with Singular:

LIB = "elim.lib";
ring R = 0, (s,t,u,v,x,y,z,w,a,b,c,d), lp;
ideal I =(s-x*a, t-y*b, u-z*c, v-w*d,
x*z-y*w+z*y+x*w, x^3+y^3+z^3+w^3,a*c-b*d+c*b+a*d, a^3+b^3+c^3+d^3);
eliminate(I, a*b*c*d*x*y*z*w);
_[1]=3s6u2v+s6v3+15s5tu2v-6s5tuv2+3s5tv3+33s4t2u2v-24s4t2uv2+3s4t2v3+42s3t3u2v-
36s3t3uv2+2s3t3v3+33s2t4u2v-24s2t4uv2+3s2t4v3-3s2tu6-15s2tu5v-33s2tu4v2-42s2tu3v3-
33s2tu2v4-15s2tuv5-3s2tv6+15st5u2v-6st5uv2+3st5v3+6st2u5v+24st2u4v2+36st2u3v3+
24st2u2v4+6st2uv5+3t6u2v+t6v3-t3u6-3t3u5v-3t3u4v2-2t3u3v3-3t3u2v4-3t3uv5-t3v6

To finish, we compute the tropicalization of this variety with gfan, which provides the weighted
polyhedral complex structure:

gfan_buchberger | gfan_tropicalstartingcone | gfan_tropicaltraverse
&>outputXX.gfan.cube

Q[s,t,u,v]
{3s6u2v+s6v3+15s5tu2v-6s5tuv2+3s5tv3+33s4t2u2v-24s4t2uv2+3s4t2v3+42s3t3u2v-
36s3t3uv2+2s3t3v3+33s2t4u2v-24s2t4uv2+3s2t4v3-3s2tu6-15s2tu5v-33s2tu4v2-42s2tu3v3-
33s2tu2v4-15s2tuv5-3s2tv6+15st5u2v-6st5uv2+3st5v3+6st2u5v+24st2u4v2+36st2u3v3+
24st2u2v4+6st2uv5+3t6u2v+t6v3-t3u6-3t3u5v-3t3u4v2-2t3u3v3-3t3u2v4-3t3uv5-t3v6}

_application PolyhedralFan
_version 2.2
_type PolyhedralFan

AMBIENT_DIM
4

DIM
3

LINEALITY_DIM
1

RAYS
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-1 0 0 0 # 0
-1 -1 0 0 # 1
1 1 0 0 # 2
-1 -4 0 0 # 3
0 0 -1 0 # 4
4 4 3 0 # 5

N_RAYS
6

LINEALITY_SPACE
1 1 1 1

ORTH_LINEALITY_SPACE
0 0 1 -1
0 1 0 -1
1 0 0 -1

F_VECTOR
1 6 12

CONES
{} # Dimension 1
{0} # Dimension 2
{1}
{2}
{3}
{4}
{5}
{1 3} # Dimension 3
{0 1}
{0 2}
{2 3}
{0 4}
{0 5}
{1 5}
{1 4}
{2 4}
{2 5}
{3 5}
{3 4}

MAXIMAL_CONES
{1 3} # Dimension 3
{0 1}
{0 2}
{2 3}
{0 4}
{0 5}
{1 5}
{1 4}
{2 4}
{2 5}
{3 5}
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{3 4}

PURE
1

MULTIPLICITIES
6 # Dimension 3
6
2
2
3
1
2
2
6
6
1
1

In this case we see that the vector space (z = 0) ⊂ T (X ∗X) is decomposed into the union of the cones
(e0, e1), (e1, e3), (e3, e2) and (e2, e0). In particular, the cone (e0, e3) which appeared in our Minkowski
sum construction, decomposes into the union of (e0, e1) and (e1, e3). Therefore, in this case, the fan
structure is given by the minimal cones constructed in our Minkowski sum. �

5 Computations

5.1 Computation of T (X ∗X)

We now turn into the question of how do we get a handle on our tropical computations. According
to our key result, we only need to work with the right-hand side of our equality. Recall that in our
case, our varieties are X = Y = Sec(P1 × P1 × P1 × P1), i.e. the first secant of the Segre embedding
of P1 × P1 × P1 × P1.

By our discussions in previous sections, we know how to compute the tropical variety associated to
X: we need to consider the tropical variety of all three 4× 4-flattenings. To compute this variety we
use gfan, and to compute the ideal associated to each flattening we use macaulay2. More precisely:

i1 : R =
QQ[p0000,p0001,p0010,p0011,
p0100,p0101,p0110,p0111,
p1000,p1001,p1010,p1011,
p1100,p1101,p1110,p1111]

I1 = minors(3, matrix({{
p0000,p0001,p0010,p0011},{
p0100,p0101,p0110,p0111},{
p1000,p1001,p1010,p1011},{
p1100,p1101,p1110,p1111
}}))

R =
QQ[p0000,p0001,p0010,p0011,
p0100,p0101,p0110,p0111,
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p1000,p1001,p1010,p1011,
p1100,p1101,p1110,p1111]

I1 = minors(3, matrix({{
p0000,p0001,p0010,p0011},{
p0100,p0101,p0110,p0111},{
p1000,p1001,p1010,p1011},{
p1100,p1101,p1110,p1111
}}))

I2 = minors(3, matrix({{
p0000,p0010,p1000,p1010},{
p0001,p0011,p1001,p1011},{
p0100,p0110,p1100,p1110},{
p0101,p0111,p1101,p1111
}}))

I3 = minors(3, matrix({{
p0000,p0001,p1000,p1001},{
p0010,p0011,p1010,p1011},{
p0100,p0101,p1100,p1101},{
p0110,p0111,p1110,p1111
}}))

o1 = R

o1 : PolynomialRing

i2 :
o2 = ideal (- p0010*p0101*p1000 + p0001*p0110*p1000 + p0010*p0100*p1001 - p0000*p0110*p1001 -
p0001*p0100*p1010 + p0000*p0101*p1010, - p0010*p0101*p1100 + p0001*p0110*p1100 +p0010*p0100*
p1101 - p0000*p0110*p1101 - p0001*p0100*p1110 + p0000*p0101*p1110, - p0010*p1001*p1100 +
p0001*p1010*p1100 + p0010*p1000*p1101 - p0000*p1010*p1101 - p0001*p1000*p1110 + p0000*p1001*
p1110, - p0110*p1001*p1100 + p0101*p1010*p1100 + p0110*p1000*p1101 - p0100*p1010*p1101 -
p0101*p1000*p1110 + p0100*p1001*p1110, - p0011*p0101*p1000 + p0001*p0111*p1000 + p0011*p0100*
p1001 - p0000*p0111*p1001 - p0001*p0100*p1011 + p0000*p0101*p1011, - p0011*p0101*p1100 +
p0001*p0111*p1100 + p0011*p0100*p1101 - p0000*p0111*p1101 - p0001*p0100*p1111 + p0000*p0101*
p1111, - p0011*p1001*p1100 + p0001*p1011*p1100 + p0011*p1000*p1101 - p0000*p1011*p1101 -
p0001*p1000*p1111 + p0000*p1001*p1111, - p0111*p1001*p1100 + p0101*p1011*p1100 + p0111*p1000*
p1101 - p0100*p1011*p1101 - p0101*p1000*p1111 + p0100*p1001*p1111, - p0011*p0110*p1000 +
p0010*p0111*p1000 + p0011*p0100*p1010 - p0000*p0111*p1010 - p0010*p0100*p1011 + p0000*p0110*
p1011, - p0011*p0110*p1100 + p0010*p0111*p1100 + p0011*p0100*p1110 - p0000*p0111*p1110 -
p0010*p0100*p1111 + p0000*p0110*p1111, - p0011*p1010*p1100 + p0010*p1011*p1100 + p0011*p1000*
p1110 - p0000*p1011*p1110 - p0010*p1000*p1111 + p0000*p1010*p1111, - p0111*p1010*p1100 +
p0110*p1011*p1100 + p0111*p1000*p1110 - p0100*p1011*p1110 - p0110*p1000*p1111 + p0100*p1010*
p1111, - p0011*p0110*p1001 + p0010*p0111*p1001 + p0011*p0101*p1010 - p0001*p0111*p1010 -
p0010*p0101*p1011 + p0001*p0110*p1011, - p0011*p0110*p1101 + p0010*p0111*p1101 + p0011*p0101*
p1110 - p0001*p0111*p1110 - p0010*p0101*p1111 + p0001*p0110*p1111, - p0011*p1010*p1101 +
p0010*p1011*p1101 + p0011*p1001*p1110 - p0001*p1011*p1110 - p0010*p1001*p1111 + p0001*p1010*
p1111, - p0111*p1010*p1101 + p0110*p1011*p1101 + p0111*p1001*p1110 - p0101*p1011*p1110 -
p0110*p1001*p1111 + p0101*p1010*p1111)

o2 : Ideal of R
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o2 = ideal (- p0011*p0100*p1000 + p0001*p0110*p1000 + p0010*p0100*p1001 - p0000*p0110*p1001 -
p0001*p0010*p1100 + p0000*p0011*p1100, - p0011*p0101*p1000 + p0001*p0111*p1000 + p0010*p0101*
p1001 - p0000*p0111*p1001 - p0001*p0010*p1101 + p0000*p0011*p1101, - p0101*p0110*p1000 +
p0100*p0111*p1000 + p0010*p0101*p1100 - p0000*p0111*p1100 - p0010*p0100*p1101 + p0000*p0110*
p1101, - p0101*p0110*p1001 + p0100*p0111*p1001 + p0011*p0101*p1100 - p0001*p0111*p1100 -
p0011*p0100*p1101 + p0001*p0110*p1101, - p0011*p0100*p1010 + p0001*p0110*p1010 + p0010*p0100*
p1011 - p0000*p0110*p1011 - p0001*p0010*p1110 + p0000*p0011*p1110, - p0011*p0101*p1010 +
p0001*p0111*p1010 + p0010*p0101*p1011 - p0000*p0111*p1011 - p0001*p0010*p1111 + p0000*p0011*
p1111, - p0101*p0110*p1010 + p0100*p0111*p1010 + p0010*p0101*p1110 - p0000*p0111*p1110 -
p0010*p0100*p1111 + p0000*p0110*p1111, - p0101*p0110*p1011 + p0100*p0111*p1011 + p0011*p0101*
p1110 - p0001*p0111*p1110 - p0011*p0100*p1111 + p0001*p0110*p1111, - p0100*p1001*p1010 +
p0100*p1000*p1011 + p0001*p1010*p1100 - p0000*p1011*p1100 - p0001*p1000*p1110 + p0000*p1001*
p1110, - p0101*p1001*p1010 + p0101*p1000*p1011 + p0001*p1010*p1101 - p0000*p1011*p1101 -
p0001*p1000*p1111 + p0000*p1001*p1111, - p0101*p1010*p1100 + p0100*p1010*p1101 + p0101*p1000*
p1110 - p0000*p1101*p1110 - p0100*p1000*p1111 + p0000*p1100*p1111, - p0101*p1011*p1100 +
p0100*p1011*p1101 + p0101*p1001*p1110 - p0001*p1101*p1110 - p0100*p1001*p1111 + p0001*p1100*
p1111, - p0110*p1001*p1010 + p0110*p1000*p1011 + p0011*p1010*p1100 - p0010*p1011*p1100 -
p0011*p1000*p1110 + p0010*p1001*p1110, - p0111*p1001*p1010 + p0111*p1000*p1011 + p0011*p1010*
p1101 - p0010*p1011*p1101 - p0011*p1000*p1111 + p0010*p1001*p1111, - p0111*p1010*p1100 +
p0110*p1010*p1101 + p0111*p1000*p1110 - p0010*p1101*p1110 - p0110*p1000*p1111 + p0010*p1100*
p1111, - p0111*p1011*p1100 + p0110*p1011*p1101 + p0111*p1001*p1110 - p0011*p1101*p1110 -
p0110*p1001*p1111 + p0011*p1100*p1111)

o2 : Ideal of R

// Let us check the basic geometric invariants for this ideal

i3 : degree I1

o3 = 20

i4 : dim I1

o4 = 12

i5 : I = I1+ I2+ I3;

o5 : Ideal of R

// Basic geometric invariants for the ideal of flattenings

i6 : dim I

o6 = 10

i7 : degree I

o7 = 64

i8 : gens prune I

i9 : toString gens gb I

This last line will enable us to compute the corresponding tropical variety using a set of generators of
I.
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From these computations we see that the ideal generated by the flattenings has the expected
dimension, if we consider the affine cone over the projective variety Sec(P1 × P1 × P1 × P1). Now
that we gave a generating set for the ideal corresponding to our secant variety X, we can proceed to
compute its associated tropical variety. For this we make use of gfan.

An important remark must be made at this stage. From our previous discussion, we know that the
ideal associated to X inside C[p0000, . . . , p1111] is invariant under the action of S4 n (S2)4 given by

(σ, τ1, τ2, τ3, τ4) · (pi0,i1,i2,i3) = pτ0(iσ−1(0)),τ1(iσ−1(1)),τ2(iσ−1(2)),τ3(iσ−1(3))
.

If we identify the index (ijkl) with the binary expansion of numbers from 0 to 15 (i.e. (ijkl) ↔
l23 + k22 + j21 + i20), then the action translates to this new setting as follows:

(σ, τ) ∗ (
∑

i

ai2i) =
∑

i

τi(aσ−1(i))2i

i.e. via embedding σ and τ into S16. The semidirect product structure will be (σ, τ) ∗ (σ′, τ ′) =
(σ ◦ σ′, δ), were δi = τi ◦ τ ′σ−1(i). Therefore our semidirect group structure is G = S4 nϕ (S2)4, where
ϕ : S4 → Aut((S2)4), σ 7→ (ϕ(σ))(τ) = τσ−1 . So (σ, τ) ∗ (σ′, τ ′) becomes σσ′, τϕ(σ)(τ ′).

In particular, if i, j, k, l denote four distinct elements in {0, . . . , 3}, then for σij = (i j) and τl = (0 1)
we get σijτl = τk for k 6= i, j, l. Therefore, the group 〈σij , τk : i, j, k ∈ {0, . . . , 3}〉 equals the set
{τ i0

0 ◦ . . . τ i3
3 ◦ σ : ij ∈ {0, 1}, σ ∈ S4}.

Luckily, gfan is equiped with an option that allows us to exploit any symmetry of a variety
determined by an action of a subgroup of the symmetric group of Sn, in this case n = 16. For
this we need to proving a set of generators as part of the input of the program. The program checks
that the ideal stays fixed when permuting the variables with respect to elements in this group. The
program uses breadth first search to compute the set of reduced Gröbner bases up to symmetry with
respect to the specified generators of the subgroup. The program will group cones together according
to the orbits under group action. This will become very useful in subsequent steps of the construction.

In our case, the group will be generated by the transpositions σ01 = (0 1), σ12 = (1 2) and σ23 = (2 3)
corresponding to S4 and by τ = ((0 1), id, id, id) ∈ (S2)4, where we should consider both subgroups
embedded in S16. Note that gfan requires as input vectors of the form (δ(0), . . . , δ(15)) encoding the
element δ of our group.

gfan_tropicalstartingcone --symmetry | <flatten.gfan.start |
gfan_tropicaltraverse >flatten.gfan.output

The file flatten.gfan.start contains a Gröbner basis for the ideal of flattenings (which was computed
with the command gfan buchberger) and the list of generators of our group acting on our ideal. The
input file can be found in

http://math.berkeley.edu/˜macueto/flatten.gfan.start

In this case, the group is described by the list of generators {σ01, σ12, σ23, τ} ⊂ S16:

{(0,1,2,3,8,9,10,11,4,5,6,7,12,13,14,15),
(0,1,8,9,4,5,12,13,2,3,10,11,6,7,14,15),
(0,8,2,10,4,12,6,14,1,9,3,11,5,13,7,15),
(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7)}

After 28 hours of computations on a Pentium 4, 3.4 GHz, 4GB RAM, linux 2.6.20 , gfan outputs
the desired tropical variety T X. The output file is available at:

http://math.berkeley.edu/˜macueto/flatten.gfan.output

We summarized some information that will be relevant for the Minkowski sum computation.
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AMBIENT_DIM
16

DIM
10

LINEALITY_DIM
5

N_RAYS
382

LINEALITY_SPACE
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 -1 0 -1 -1 -2 0 -1 -1 -2 -1 -2 -2 -3

F_VECTOR
1 382 3436 11236 15640 7680

An important fact is worth pointing out. As indicated in the output file, gfan captures the group
action and also the multiplicities of each maximal cone of our fan. In this case, all multiplicities equal
one. Regarding the orbits, there are 13 rays up to symmetry and 49 maximal cones up to symmetry,
and with each collection, there are several choices for the cardinality of the orbits. This fact will be
important for understanding the structure of T (X ∗X).

According to our key result, we need to compute T X and the Minkowski sum of this polyhedral
fan with itself. Since we know that this will result in a pure polyhedral fan, we only need to compute
all Minkowski sums between pairs of cones of maximal dimension.

For this step we’ll use the action of our subgroup of S16. Since we are taking the Minkowski sum of
T X with itself, there is a natural (coordinatewise) action of G×G on T X×T X that is carried onto
T X + T X. Therefore, to compute the Minkowski sum of maximal cones we need only to consider
49× 7680 pairs and then let our group act on these cones to obtain all maximal cones in T (X ∗X).
We will take into account the flips after we have our output of 376, 320. In particular, this says that we
have an upper bound of 49× 7680 = 376, 320 orbits corresponding to the maximal cones in T (X ∗X).

If we are lucky enough (and indeed we are!) a lot of these sums won’t have maximal dimension,
so we can forget about them. In our case, this maximal dimension will be 10 after moding out by the
lineality space. The way to filter out the maximal cones is as follows. We concatenate our two lists of
5 rays and check its dimension. If it is 10, we save the new list of 10 vectors. To finish, we add the
lineality space and check if the final dimension is 15. This computation is carried out by a Python
code, which is available at

http://math.berkeley.edu/˜macueto/processRays.py

After this we see that the total number of maximal cones computed is 92,469. It is important to
say that all 92, 469 are all distinct. This follows because all rays in the tropical variety are extremal
rays generating the maximal cones.

By construction, among the 92, 469 cones above are all representatives of the orbits of maximal
cones in T (X ∗X). Fortunately, since not all orbits of the set of rays have equal cardinality, this list
of 92, 469 cones won’t be a list of distinct representatives for the orbits of maximal cones in T (X ∗X).

More precisely, there are three types or orbits: they have cardinalities 96, 192 and 384. The number
of each one of them is given in the following table:

k 96 192 384 TOTAL
# 9 2,171 16,792 18,972
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A complete description of the orbits can be found in:

http://math.berkeley.edu/˜macueto/Orbits/

(There are three files, one per size of orbit.)
Concerning multiplicities, we see among our list on 92, 469 maximal cones (containing representa-

tives of all orbits) there are only 37 cones that appear in it twice. And there are no maximal cones
appearing more that twice. The file describing this is available at

http://math.berkeley.edu/˜macueto/CombinationsGivingMaximalCones.zip

The first entry on each row indicates the maximal cone, whereas the second one is a list of the original
cones in T X summing to it. Finally, the last number indicates the cardinality of this list.

This gives us the characterization of the fiber of each maximal cone γ ∈ T (X ∗ X) under the
Minkowski sum map φ : T X×T X → T (X∗X): namely φ−1(γ) = {(µ, ν), (ν, µ)} for unique maximal
cones µ, ν ∈ T X. Namely, two distinct pairs of maximal cones (σ, τ), (σ′, τ ′) in T X will give the
same maximal cone in T (X ∗X) when computing each Minkowski sum iff the lists {τ, σ}, {τ ′, σ′} of
10 rays agree. By the computation we’ve just mentioned, the only way this can occur is if τ ′ = σ and
σ′ = τ .

Therefore, as we can see from the construction, the maximal cones in T (X ∗ X) come from in-
terchanging the representative of two maximal cones in T X that sum to the previous 15-dimensional
cone. Thus, we should expect all maximal cones in our Minkowski sum will have “multiplicity” two,
and we need to rule out this to get the right expected multiplicities.

Remark 3. From the construction above, we have 18,972 orbits (of cardinalities 96, 192 and 384),
and a total number of 6,865,824 maximal cones. We guess that all maximal cones in T (X ∗X) will
have multiplicity 1.

5.2 Computation of the Newton polytope of the implicit equation

Now that we know the tropicalization of our hypersurface (f = 0) in P15, we wish to turn things
upside down, and describe the equation f . In particular, we’re interested in computing it’s degree and,
moreover, its Newton polytope. As we will explain, there is a strong connection between T (f) and
NP(f).

Let’s give some insight concerning this inverse problem. First of all, w.l.o.g. we can work over
the ring of Laurent polynomials, since f is not a monomial and the tropicalization remains the same.
Since I = (f) ⊂ C[x±1

0 , . . . , x±1
15 ] is a principal ideal, then

T I = {w | inwI contains no monomial} = {w | inw(f) is not a monomial}

Hence, by definition of the tropicalization, the maximal cones in the tropical variety T I form the
normal fan of all normal cones at the edges of our Newton polytope. Why? By the H-representation
of the Newton polytope of f , the only way to have more than two terms in inw(f) is if the terms involve
in the initial form lie in the span of an edge of the polytope. In particular, if the Newton polytope
is fully dimensional, then from each maximal cone in T (f) we can obtain the vector generating the
corresponding edge in NP(f), although we still need to determine its length. This magnitude will
correspond to the multiplicity of the associated maximal cone in T (f).

Unfortunately, in our situation the Newton polytope won’t be fully dimensional. More precisely,
by inspection we see that the lineality space of our tropical variety is invariant under the action of our
group S4 n (S2)4 ⊂ S16. Therefore, its orthogonal complement (computed as the Orthogonal lineality
space in gfan) will also be invariant under this action. Moreover, we know that our Newton polytope
lives inside an affine translate of this orthogonal lineality space, and it is fully dimensional inside this
subspace of R16. Thus, we can still recover the direction of the edge by means of each maximal cone
in T I.

The general algorithm to determine NP(f) by means of T (f) was developed in [9], Theorem 1.2 (see
also [12] for several numerical examples). It allows us to recover the vertices of the Newton polytope
of f , where f ∈ C[x±1

0 , . . . , x±1
15 ] is a Laurent polynomial and NP(f) lies in the positive orthant and
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touches all coordinate axis. Thus, the polytope NP(f) can be reconstructed uniquely, up to translation,
from the tropical hypersurface T (f) (i.e. from the set together with the information provided by the
multiplicities of its maximal cones). In particular, by computing one single vertex of NP(f) by this
method we’ll obtain the degree of f . The algorithm is known as the “ray shooting” method and it
allows us to find vertices of the polytope in a given direction. In our case, these directions will be
given by the directions of the edges, which we can read of from the tropical variety.

We now describe the algorithm. Assume we are given the normal fan of an unknown polytope, and
the multiplicity of each codim-1 cone (dual to an edge of the polytope), i.e. the lattice length of the
edge. We want to find the unique polytope, lying in the positive orthant and touching all coordinate
hyperplanes, whose normal fan is the given fan. Pick a generic vector w. Then, the face determined
by w will be a vertex of NP(f), so w will belong to a fully-dimensional cone of the normal fan, namely,
the dual cone to this vertex. Our goal is to compute this vertex.

To obtain its i-th coordinate, we proceed in a recursive way, walking from vertex to vertex towards
the i-th coordinate hyperplane, at each step keeping track of how far we go in the i-th direction.
This construction has a correspondence in the dual world: we walk from chamber to chamber (fully-
dimensional cones) passing through walls (codimension 1 cones) at each step. Each time we pass
through a wall we need to record the lattice length of the dual edge in i-th direction. To do this
systematically, we shoot a ray from the head of the vector w in the direction −ei, and every time the
ray meets a wall, we record the “intersection multiplicity”: the absolute value of the determinant of
the n × n matrix where the first column is −ei and the other n − 1 columns form a lattice basis for
the wall. The sum of those intersection multiplicities (times the multiplicities of the wall) will be the
i-th coordinate of the vertex.

The big advantage of this method is that we don’t need to know the fan structure of the normal
fan. The normal fan can be given as a pile of cones that may or may not intersect nicely. We can
do ray-shooting with a list of cones. This matches our setting, since we only computed the maximal
cones of T (f) = T (X ∗X) via Minkowski sums, disregarded lower dimensional cones. Moreover, our
maximal cones might get subdivided to give the fan structure of T (X ∗X).

Note that if we are able to compute one single vertex of NP (f) by means of this method, then we
would have the degree of the homogeneous polynomial f as the sum of the coordinates of this vertex.

Concerning the geometry of the Newton polytope, we should remark that this object has lots of
symmetries coming also from the action of the group S4 n (S2)4. More explicitly, we know that the set
of vertices of the Newton polytope of f is invariant under the action of the group. This follows because
the ideal T = 〈(zii − xiyi, ft(x), gl(y) : i, j ∈ [n], t = 1, . . . , s, l = 1, . . . , r)〉 ⊂ C[x, y, z] in Proposition 1

is invariant under the action of
(
S4 n (S2)4

)3 ⊂ (S16)3. Therefore, the ideal I(X ∗ X) = T ∩ C[z]
also has this same property. In particular, it’s defining equation I(X ∗ X) = (f) is invariant under
the action of the group S4 n (S2)4 up to scaling by a non-zero constant. As a consequence of this, we
should make use of this symmetry to construct the Newton polytope.

Therefore, we see that the Newton polytope has also a symmetric structure determined by S4 n
(S2)4 ⊂ S16 and NP(f)⊂ H + v (i.e. an affine translate of H) is fully dimensional, where H is the
Orthogonal lineality space. The ray-shooting method will give us a particular translate: the one
positioning the Newton polytope in the positive orthant and touching all coordinate hyperplanes.
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