WHAT IS ... a spectrahedron?

A spectrahedron is a convex set that appears
in a range of applications. Introduced in [3], the
name “spectra” is used because its definition in-
volves the eigenvalues of a matrix and “-hedron”
because these sets generalize polyhedra.

First we need to recall some linear algebra. All
the eigenvalues of a real symmetric matrix are
real and if these eigenvalues are all non-negative
then the matrix is positive semidefinite. The set
of positive semidefinite matrices is a convex cone
in the vector space of real symmetric matrices.

A spectrahedron is the intersection of an affine-
linear space with this convex cone of matrices. An
n-dimensional affine-linear space of real symmet-
ric matrices can be parametrized by

as * = (x1,...,%,) ranges over R™, where
Ag,..., A, are real symmetric matrices. This
writes our spectrahedron as the set of  in R” for
which the matrix A(x) is positive semidefinite.
This condition, denoted A(x) = 0, is commonly
known as a linear matriz inequality.

For example, we can write the cylinder,

{(z,y,2) eR® : 22 +¢y* <1, -1 <2z <1},

as a spectrahedron. To do this, parametrize a
3-dimensional affine space of 4 x 4 matrices by

14+ Y 0 0
Y 1—= 0 0
0 0 1+2 0
0 0 0 1—=2

This matrix is clearly positive definite at the
point (x,y,z) = (0,0,0). In fact, it is positive
semidefinite exactly for points in the cylinder.

This matrix has rank four at points in the in-
terior of the cylinder, rank three at most points
on the boundary, and rank two for points on the
two circles on the top and bottom. Here we start
to see the connection between the geometry of
spectrahedra and rank. The boundary is “more
pointy” at matrices of lower rank.
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Another example is a polyhedron, which is
the intersection of the non-negative orthant with
an affine-linear space. This is a spectrahedron
parametrized by diagonal matrices, since a diag-
onal matrix is positive semidefinite exactly when
the diagonal entries are non-negative.

Like polyhedra, spectrahedra have faces cut
out by tangent hyperplanes, but they may have
infinitely many. For example, one can imagine
rolling a cylinder on the floor along the one-
dimensional family of its edges.

This brings us to one of the main motivations
for studying spectrahedra: optimization. The
well-studied problem of maximizing a linear func-
tion over a polyhedron is known as a linear pro-
gram. Generalizing polyhedra to spectrahedra
leads to semidefinite programming, the problem
of maximizing a linear function over a spectra-
hedron. Semidefinite programs can be solved in
polynomial time using interior-point methods and
form a broad and powerful tool in optimization.

Angles, statistics, and graphs.

Semidefinite programs have been used to relax
many “hard” problems in optimization, meaning
that they give a bound on the true solution. This
has been most successful when the geometry of
the underlying spectrahedron reveals that these
bounds are close to the true answer.

For a flavor of these applications, consider the
spectrahedron of 3 x 3 matrices with 1’s along the
diagonal (shown in yellow below):

(@ Z)E]RB' 315 ‘f YY s positive
Y ’ y oz 1 semidefinite

This spectrahedron consists of points (z,y,z) =
(cos(a), cos(), cos(7y)) where a, 3,7 are the pair-
wise angles between three length-one vectors in
R3. To see this, note that we can factor any pos-
itive semidefinite matrix A as a real matrix times
its transpose, A = VVT. The entries of A are
then the inner products of the row vectors of V.



The four rank-one matrices on this spectrahe-
dron occur exactly when these row vectors lie on
a common line. They correspond to the four ways
of partitioning the three vectors into two sets.

This elliptope appears in statistics as a set
of correlation matrices and in the remarkable
Goemans-Williamson semidefinite relaxation for
finding the maximal cut of a graph (see [2]).

This spectrahedron sticks out at its rank-one
matrices, meaning that a random linear function
often (but not always) achieves its maximum at
one of these points. This is good news for the
many applications that favor low-rank matrices.

Sums of squares and moments.

Another important application of semidefinite
programming is to polynomial optimization [1,
Chapter 3]. For example, given a multivariate
polynomial p(z), one can bound (from below)
its global minimum by the maximum value of
A in R so that the polynomial p(z) — A can be
written as a sum of squares of real polynomials.
(Sums of squares are guaranteed to be globally
non-negative!) Finding this A is a semidefinite
program and the expressions of a polynomial as
a sum of squares form a spectrahedron.

For example, take the univariate polynomial
p(t) = t* + 12 + 1. For any choice of the parame-
ter @ in R we can write our polynomial as

1 0 a 1
0 1—-2a O t
a 0 1 12

pt)y = (1t 1)

When this 3 x 3 matrix is positive semidefinite, it
gives a representation of p(t) as a sums of squares.
Indeed, if it has rank r we can write it as a sum of
r rank-one matrices y ;_, v;vl . Multiplying both
sides by the vector of monomials (1,t,t?) writes
p(t) as the sum of squares Y ;_, ((1,¢, %) - v;)2.

Here the spectrahedron is a line segment
parametrized by a € [-1,1/2]. Its two rank-two
end points correspond to the two representations
of p(t) as a sum of two squares:

(t2 —1)% + (V3t)? and (t> +1/2)% 4+ (v/3/2)>.

This idea extends to relaxations for optimiza-
tion of a multivariate polynomial over any set de-
fined by polynomial equalities and inequalities.

Dual to this theory is the study of moments,
which come with their own spectrahedra. The
convex hull of the curve {(¢,t2,3) : t € [-1,1]}
(a spectrahedron) is an example shown above.

A non-example.

To finish, let us return to the question of
what a spectrahedron is with a non-example.
Projecting our original cylinder
onto the plane x + 2z = 0 results
in the convex hull of two ellipses.
This convex set is not a spectra-
hedron! Any spectrahedron is cut
out by finitely many polynomial
inequalities, namely all of the di-
agonal minors of the matrix being
non-negative. However the pro-
jection cannot be written this way. This shows
that, unlike polyhedra, the class of spectrahedra
is not closed under taking projections.

Spectrahedral conclusions.

The study of spectrahedra brings together
optimization, convexity, real algebraic geome-
try, statistics, and combinatorics, among others.
There are effective computer programs like cvx
and YALMIP (both for MATLAB) that work with
spectrahedra and solve semidefinite programs.

Spectrahedra are beautiful convex bodies and
fundamental objects in optimization and matrix
theory. By understanding the geometry of spec-
trahedra (and their projections) we can fully ex-
plore the potential of semidefinite programming
and its many applications.
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