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1. Introduction
To begin, the reader may wish to know what a rational curve is.
Definition 1. A rational curve is an algebraic curve of genus 0. An

alternative definition is that it is an algebraic curve C for which there exists a
birational map C → C given by t → (χ1(t), χ1(t))), χ1, χ2 ∈ C(t); these two def-
initions are equivalent. Such a parametrization is called a rational parametriza-
tion of the curve; in this paper, "parametrization" will be understood to mean
"[rational] parametrization".

Given that such a parametrization exists, the natural question might be
"How might a parametrization of a given rational curve be constructed?" The
book Rational Algebraic Curves: A Computer Algebra Approach ([1]) by F. Win-
kler and J. Sendra covers this topic in depth, in particular focusing on algo-
rithms that may be used to construct a parametrization or, given a parametriza-
tion of a certain algebraic curve, determine certain useful properties about the
parametrization. Most importantly, it describes the algorithm Parametrization-

by-Adjoints, which is guaranteed to output a rational parametrization of a
given rational algebraic curve in a finite number of steps.

One might ask for a motivation (ignoring any purely theoretical or aesthetic
interests) for parametrizing rational curves. As it turns out, rational curves have
applications in computer graphics, geometric modeling, solving Diophantine
equations, and computing general solutions to first-order ordinary differential
equations - to name just a few areas - so it is handy to know how to parametrize
them.

As for myself, when I learned that curves of genus 0 were rationally parametriz-
able (and conversely, that any rationally parametrizable curve must have genus
0), I became interested in the subject and wished to know more. To my sur-
prise, I found out a relatively simple algorithm existed to output a rational
parametrization for any given curve of genus 0, and that it could even be worked
through by hand for curves of low degree, as we will see in an example.

We now list a few useful definitions and lemmas, as given in [1]. (Proofs will
be omitted.)

Definition 2. An affine parametrization P(t) of a rational curve C is
proper if almost every point on C is generated by one value of the parameter
t.

Definition 3. A linear system of curves H parametrizes C iff
1) dim H=1,
2) the intersection of a generic element of H and C contains a nonconstant point
whose coordinates depend rationally on the free parameter in H, and
3) C is not a component of any curve in H.

Definition 3a. An irreducible projective curve C is parametrizable
by lines if there is a linear system of curves H of degree 1 (i.e. lines) that
parametrize C.

Lemma 1. Let H(t) be a linear system of curves parametrizing C; then,
there is only one nonconstant intersection point of a generic element of H(t)
and C depending on t, and this gives a proper parametrization of C.

Definition 4. The transformation Q of the projective plane P2(K) given
by x′ = yz, y′ = xz, and z′ = xy is called the standard quadratic trans-
formation. A quadratic transformation is any transformation Q ◦ T , where T
is a change of coordinates. We note that, amongst other things, Q is its own
inverse.
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Definition 5. The first neighborhood of a singular point P on C is
the intersection of the image of C under the quadratic transformation taking P
to (0:0:1) and the line z=0, the second neighborhood of C is the union of the
first neighborhoods of all the points in the first neighborhood of P, etc. The
neighborhood graph of C is the union of all neighborhoods of C.

Definition 6. A curve C’ is adjoint to C iff multP (QP (C ′)) ≤multP (QP (C))−
1 for every point P in the neighborhood graph of C, where QP (C) is the se-
quence of quadratic transformations and linear transformations generating the
neighborhood in the neighboring graph of C to which P belongs. In particu-
lar, for a curve C with only ordinary singular points, this condition is simple
multP (C ′) ≤multP (C) for all singular points P of C. Ak(C) is the set of all
adjoints of C of degree k.

Lemma 2. Let C be a projective curve of degree d and genus 0, let k ≤
d − 2, d − 1, and let S be a set of kd − (d − 1)(d − 2) − 1 simple points of
C. Then Ak(C)∩H(k,

∑
P ∈S(P )) parametrizes C. If k = d and S is a set of

d2 − (d − 1)(d − 2) − 1 = 3(d − 1) simple points of C, then choose Q /∈C;
Ad(C)∩H(d, Q +

∑
P ∈S(P )) parametrizes C instead.

Definition 7. If G is a polynomial in K[x, y, z][t], we define ppt(G) to be
the primitive part of G with respect to t - that is, G divided by the g.c.d. of its
coefficients.

Definition 8. The length of an integer a is ⌊log2(|a|)⌋+2. LMAX(h), h ∈
[x1, . . . , xr−1][xr] with coefficients hi ∈ Z[x1, . . . , xr−1], is the length of ‖h‖max,
where ‖h‖max = maxi=0,...,deg(h){‖hi‖max}. The length of a rational number
fracpq, where p, q ∈ Z and GCD(p, q)=1, is length(p)+length(q).

Definition 9. We say, for two functions f(x) and g(x) defined on a subset
of the real numbers, g(x) = O(f(x)) if, for x0 sufficiently large, there exists
sufficiently large N > 0 such that |g(x)| < N|f(x)| for all x > x0. The complexity
of an algorithm is often described in terms of the time or number of steps it
takes to carry out; if the amount of time it takes to carry out an algorithm is
O(nm + a1nm−1 + · · · + am−1n + am), O(logc(n)), or O(cn) (where n is part of
the algorithm’s input, c>0, and a1, . . . , am ∈ C), we say that the complexity of
the algorithm is polynomial, logarithmic, or exponential in n. (Alternatively,
that the algorithm takes polynomial, logarithmic, or exponential time.)

Given these lemmas and definitions, we may now state the main algorithm
in [1], which allows us to parametrize any given rational curve (though some
are much simpler to parametrize than others).
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2. Parametrization by Adjoints
Let an irreducible projective curve C of degree d and genus 0 by defined by

the polynomial F(x : y : z) ∈K[x, y, z] .
1. If d < 3 or C has exactly one point of multiplicity d − 1, apply the

following Parametrization by Lines algorithm:
If d = 1, C is a line. If d > 1, compute the (d − 1)-fold point of C, and,
perhaps after a change of variables, call it (a : b : 1). Set g(x, y) = F(x + a :
y + b : 1). Let gd(x, y) and gd−1(x, y) be the homogenous components of g(x, y)
of degree d and degree d − 1, respectively. Return P(t)=(-gd−1(1, t)+agd(1, t),
-tgd−1(1, t)+bgd(1, t), gd(1, t)).

2. Otherwise, choose k ∈ {d − 2, d − 1, d} and compute the defining polyno-
mial of Ak(C).

3. Choose a set S of kd − (d − 1)(d − 2) − 1 simple points of C.
4. If k < d, compute the defining polynomial H of Ak(C)∩H(k,

∑
P ∈S(P )) -

otherwise, choose Q /∈C and compute the defining polynomial H of Ad(C)∩H(d, Q+∑
P ∈S(P ).
5. Set one of the parameters in H to 1 and the other to t. Return the solution

in P2(K(t)) of {ppt(resy(F, H))=0, ppt(resx(F,H))=0}.
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3. An example of the application of Parametriza-
tion by Lines

Exercise 4.19 in [1] . Let C be the affine curve defined by f(x,y)=(x2 +4y +
y2)2 − 16(x2 + y2)=0. Compute a rational parametrization of C.

The homogenization of f is of course g(x : y : z) = (x2+4yz+y2)2−16z2(x2+
y2); evaluating this gives ( dg

dx
, dg

dy
, dg

dz
)=(2(2x)(x2 + 4yz + y2) − 32z2x, 2(4z +

2y)(x2 + 4yz + y2) − 32z2y, 2(4y)(x2 + 4yz + y2) − 32z(x2 + y2)). Setting g, dg
dx

,
dg
dy

, and dg
dz

all equal to 0 gives that 2g-z dg
dx

= 2(x2 + y2)(x2 + 4yz + z2) = 0,

so either x2 + y2 = 0 or x2 + 4yz + z2 = 0; letting x2 + y2 = 0 immediately
gives from g = 0 that (4yz)2 = 0, and letting x2 + 4zy + y2 = 0 gives from
dg
dx

= dg
dy

=0 that 16z2x = 32z2y = 0. y=0 gives x=0 immediately, and z = 0

gives x2 = (−1)y2, so the singular points are (0:0:1), (1:i:0), and (i:1:0).
In this case, k = d − 2 = 2serves nicely, as then card(S) simply is (2)(4)-

(3)(2)-1 = 1, so we may choose any nonsingular point on {g=0}, say (4:0:1).
All singularities are non-ordinary. Blowing up, we obtain that the points in

the first neighborhood of (0:0:1) are (0:1:0) and (1:0:0), both simple, that the
points in the first neighborhood of (1:i:0) are (1:0:0) and (1-4i : 1 : 0), both
simple, and that the points in the first neighborhood of (i:1:0) are (1:0:0) and
(1:4i:1:0), also both simple. As a result, we need not consider these neighboring
points in the calculation of the adjoint curves.

Curves adjoint to g=0 then must at least pass through Sing({g=0}), so we
may write out A2({g = 0}) as {H = a11x2+a22y2+a33z2+a12xy+a13xz+a23yz|
H(0:0:1)=H(1:i:0)=H(i:1:0)=0}. Then, a33 = 0, a11 − a22 + a12i = 0, and
a22 − a11 + a12i = 0, so a12 = 0 and a11 = a22. We then may write the general
form of H as a11(x2 +y2)+a13xz+a23yz. Elements of H(2,(4:0:1)) pass through
(4:0:1), so 16a11 + 4a13=0, and a generic element of A2({g = 0})∩H(2, (4:0:1))
has the form H=a11(x2 + y2) − 4a11xz + 4a23yz.

Setting a11 equal to 1 and a23 equal to t, we obtain the form H=x2 + y2 −
4xz + tyz. As {g=0} is parametrized by A2({g = 0})∩H(2, (4:0:1)), we may
obtain the parametrization of g by solving x2 + y2 − 4xz + tyz = (x2 + 4yz +
y2)2 − 16z2(x2 + y2) = 0 for x, y, and z. This gives x2 + y2 = 4xz − tyz, so
0 = (4yz + 4xz − tyz)2 − 16z2(x2 + y2) =
z2((4x + (4 − t)y)2 − (4x)2 − (4y)2) =
z2((4x)2 + 2(4x)(4 − t)y + (4 − t)2y2 − (4x)2 − (4y)2) =
z2(2(4x)(4 − t)y + (4 − t)2y2 − (4y)2) =
z2y(2(4x)(4 − t) + (4 − t)2y − (16y)) =
z2y(8(4 − t)x + t(t − 8)y). Hence, ignoring the powers of z and y, we see that

we now need to solve 8(4 − t)x + t(t − 8)y = 0 and z = x2+y2

4x−ty
. This gives

(x : y : z) = (y t(t−8)
8t−32 : y : x2+y2

4x+ty
) = (y t(t−8)

8t−32 : y : y (32−8t+t2)2

−32t2(t−4) ) = (−4t3(t − 8) :

−32t2(t − 4) : (16 + (4 − t)2)2). By substituting 4u + 4 = t, we may simplify
this to (1024(−1 + u2)(1 + u)2 : −2048u(1 + u2) : 256(1 + u2)2) and so, we have
a rational parametrization of C:

( 4(1+u)2(u2
−1)

(1+u2)2 , − 8u2(1+u2)
(1+u2)2 )
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4. Remarks About Parametrization By Ad-
joints

(As the computer algebraic system CASA was only available to those who
had registered for a license, and the link to the license-registration was broken,
I instead had to use Mathematica.)

For details on the computational complexity of the various steps of the al-
gorithms, please see On the Complexity of Parametrizing Rational Curves by
Mn̆uk, Sendra, and Winkler ([3]), which discusses computational complexity of
the various parts of the algorithm in depth. In particular, it shows the following
result:

Lemma 3. The worst-case complexity for the algorithm Parametrize (in
essence, Parametrization by Adjoints), working on rational ordinary singu-
larities, is O(d12(d log(d)+LF )2+d12max{LR, log(d)+LS}2), where LF =LMAX(F),
LR is the maximum length of the given rational simple points, and LS is the
maximum length of singularities.

Furthermore, [3] also proves that, if C is allowed to posses non-ordinary
singularities, the time it takes to run the algorithm may be exponential in the
degree of F! This is an example of a problem for which it is much easier to deal
with algebraic curves possessing only ordinary singular points.

Setting k = d − 2 obviously gives the quickest calculation, as fewer simple
points of C need to be produced and the degrees of the polynomials that need
to have their coefficients calculated are minimized.

Of these steps, computing defining polynomials is mechanically the simplest,
as it is essentially solving a system of linear equations for the coefficients of the
polynomials. The main difficulty lies in finding the points that members of
Ak(C)∩H(k,

∑
P ∈S(P )) (or of Ad(C)∩H(d, Q +

∑
P ∈S(P )) must pass through,

namely the singular points of C (and their neighboring points) and the kd −
(d − 1)(d − 2) − 1 simple points lying on C. Fortunately, we need not search for
each of these points individually.

We now introduce a definition which will be crucial to finding points in bulk:
Definition 10. Let K be an algebraically closed field containing the coef-

ficients of F, K be the smallest subfield of K containing the coefficients of F,
and let L be a subfield of K such that K ⊂ L ⊂K. The set of projective points
F ={(p1(α) : p2(α) : p3(α)) | m(α) = 0} ⊂ P

2(K) is called a family of s
conjugate points over L if the following conditions are satisfied:
1) p1, p2, p3, m ∈ L[t], and gcd(p1, p2, p3)=1,
2) m is square-free and degree(m)=s,
3) degree(pi)<degree(m) for i=1, 2, 3,
4) F contains exactly s different points of P2(K).
Such a family is denoted by {(p1(t) : p2(t) : p3(t))m(t).

Through exploitation of families of conjugate points, we need only determine
d − k + 1 simple points on our own, as detailed in [1], by constructing families
of conjugate simple points . In fact, as Bizzarri’s paper ([2]) shows, only one
simple point needs to be found on C in order for a family of kd−(d−1)(d−2)−1
conjugate simple points on C to be constructed. (We will list the algorithm for
this construction later.)

First, however:
Define Ca to be the affine algebraic curve corresponding to the image of the

intersection of C with the hyperplane {z = 1} ⊂ P
2(K) under the isomorphism

z = 1 → A
2(K).
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Definition 11. We say an affine curve defined by a polynomial f(x, y) is in
regular position with respect to x if and only if the coefficient of ydeg(f) in
f is nonzero and, if f(x0, y0)=f(x0, y1) = df

dx
(x0, y0) = df

dx
(x0, y1) = 0, y0 = y1.

We may check that Ca is in regular position with respect to x by checking
that <f(x, y1), f(x, y2), df

dx
(x, y1), df

dx
(x, y + 2), 1 − w(y1 − y2)> (where w is an

added variable) has Gröbner basis equal to 1, so that, for y1 − y2 6= 0, f(x, y0),
f(x, y1), df

dx
(x, y0), and df

dx
(x, y1) are never all simultaneously 0.

If Ca is not in regular position with respect to x, we may perform a change of
coordinates to make it be so. The usefulness of having Ca be in regular position
with respect to x is that, in order to find kd − (d − 1)(d − 2) − 1 simple points
and all the singular points on Ca, we need only find their x-coordinates, as then
exactly one y-coordinate will correspond to each x-coordinate.
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5. The Algorithm In More Detail
First, we compute the singular points of Ca.
Assuming Ca is in regular position with respect to x, we let f(x,y)=F(x,y,1)

and input the following code into Mathematica:
a[1]=(PolynomialGCD[Resultant[D[f, y] , f, y], Resultant[D[f, x] , f, y] )
(*the roots of a[1] are exactly the x-coordinates of the singular points
of Ca*)
For[i=1; i < d, a[i + 1] ]=(PolynomialGCD[c[i] , Resultant[D[f, {y, i}] ,
f, y], Resultant[D[f, {y, i}] , f, y]), i++)
(*the roots of a[i] are exactly the x-coordinates of the singular points of
Ca with multiplicity at least i+1*)
For[i1=1; i1 < d, b[i1]=(a[i1]/PolynomialGCD[D[a[i1] , x], a[i1] ])),
i1++);b[d + 1]=1;
(*b[i] has exactly the same distinct roots as a[i] , but with no multiple roots*)
For[i2=1; i2 < d, c[i2]=(b[i2]/b[i2 + 1]), i2++)
(*the roots of c[i] are exactly the x-coordinates of the singular points of Ca

with multiplicity at least i+1 but less than i+2, i.e. those of multiplicity
exactly equal to i+1*)

For[i3=1; i3 < d, gb[i3]=GroebnerBasis[f, D [f, x] , D [f, y] ,
c [i3]} , {x, y}], i3++)
(*this step gives the Gröbner basis gb[i3] of the ideal corresponding
to the set of singular points of Ca with multiplicity i3+1*)
Since we have ensured there exists exactly one simple intersection point for

every singular point of f, the computed Gröbner basis gb[j] contains a poly-
nomial S that is linear in y, as there is exactly one common intersection point
for each root of f. Write this polynomial as rj(x, y) = uj(x) + vj(x)y; we now
obtain the set of j-fold singular points of Ca as a family of conjugate points

F j = {(α :
uj(α)
vj(α) : 1)cj(α) = 0}. Finding the rest of the singular points of C

(those with z-coordinate 0) consists of checking the zeroes of F(x : y : 0) to see
if they are singular points of C, and if so, of what multiplicity. Denote the set
of j-fold singular points of C with z-coordinate 0 as F ’j .

Now that we have obtained the singular points, we may find the adjoint
curves of degree d to C. For curves with only ordinary singular points, we solve
the system of linear equations∑

0<j1,j2<k rj1,j2xj1yj2 = 0 for all (x, y) ∈
⋃

1<j<dF j ;
d

dx
(
∑

0<j1,j2<k rj1,j2xj1yj2) = 0 for all (x, y) ∈
⋃

2<j<dF j ;
. . . ;
di

dxi (
∑

0<j1,j2<k rj1,j2xj1yj2) = di

dxi−1y
(
∑

0<j1,j2<k rj1,j2xj1yj2) = ...

= di

dyi (
∑

0<j1,j2<k rj1,j2xj1yj2) = 0 for all (x, y) ∈
⋃

i+1<j<dF j ;
. . . ;∑

0<j1<d rj1,d−j1xj1yd−j1 = 0 for all (x : y : 0) ∈F ’J ...
di

dxi (
∑

0<j1<d rj1,d−j1xj1yd−j1) = di

dxi−1y
(
∑

0<j1<d rj1,d−j1xj1yd−j1) = ...

= di

dyi (
∑

0<j1<d rj1,d−j1xj1yd−j1) = 0 for all (x, y) ∈
⋃

i+1<j<dF j ; . . . for the
linear relations between the rj1,j2 to obtain the generic form of an adjoint curve
of Ca. Once we have done that, we may proceed to find the kd−(d−1)(d−2)−1
simple points.

Take a simple point P=(p1 : p2 : p3) on C=F(x : y : z)=0. Let us take a
degree-k adjoint curve to C that also passes through P, and call this curve M; let
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M be defined by some homogenous polynomial H(x : y : z). Let f(x, y)=F(x : y :
1) and h(x, y)=H(x : y : 1). By Bezout’s Theorem and the rationality of C, the
intersection of Ca and Ma (given by {f(x, y)=0} and {h(x, y)=0}, respectively)
should contain kd−(d−1)(d−2) simple points if p3 6= 0 and kd−(d−1)(d−2)−1
simple points if p3 = 0 (as ( p1

p3

, p2

p3

) does not lie in Ca ∪ Ma). We now may input
the following code into Mathematica:

h:=(PolynomialMod[H, {z-1}])
A1:=(Resultant[f, h, y] )
A2:=(PolynomialGCD[Resultant[ f, D[f, x] , y], Resultant[f, D [f, y] , y]])
B1:=(A1/PolynomialGCD[A1, D[A1, x])
B2:=(A2/PolynomialGCD[A1, D[A2, x])
(*A1 has roots exactly equal to the x-coordinates of the elements of Ca ∪Ma,
while A2 has roots exactly equal to the x-coordinates of the singular
points of Ca. B1 and B2 have the same properties, but are square-free.*)
E:=(B1/B2)
If p3 6=0 (g=e/(x-p1/p3))
(*the above is to remove ( p1

p3

, p2

p3

) from the list of simple points*)
Else g=e
(*the roots of g are the x-coordinates of the elements of Ca∪ Ma that are
not singular points of Ca, namely the simple intersection points of Ca with

Ma*)
The g constructed has roots exactly corresponding to the x-coordinates of

the simple intersection points of Ca with Ma. It is possible that some of the
intersection points of Cand M in projective space will lie on the line at infinity
or have the same x-coordinate when mapped into affine space; in this case, g
will not have full degree kd− (d−1)(d−2)−1, and a new M should be selected.
Otherwise, compute GroebnerBasis[f, h, g]. Since we have ensured there exists
exactly one simple intersection point for every root of g, the computed basis
contains a polynomial p that is linear in y, as there is exactly one common
intersection point for each root of g. Write this polynomial p(x, y) as q(x) +
s(x)y.

Then, F= {(β : q(β)/s(β) : 1)g(β)=0} is a family of kd − (d − 1)(d − 2) − 1
simple points on Ca, as desired.

Then, we add the condition
sum0<j1,j2<krj1,j2xj1yj2zk−(j1+j2)=0 for all (x : y : 1) ∈F.
and solve for the further linear relations between the rj1,j2. We will be left with
an equation that is linear in t, and we then go about the process of solving for
the generic point in Ak(C)∩H(k,

∑
P ∈S(P )) (or Ad(C)∩H(d, Q +

∑
P ∈S(P )).

We may do this by resultants, as the algorithm suggests, or, in small cases, solve
the resulting equations by hand, as in the example.
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6. Summary
We have showed how to obtain a rational parametrization for any given

curve of genus 0. However, this algorithm may be quite slow for large n, as [3]
shows. Thanks to usage of families of conjugate points, the greatest slowing
point in the algorithm, when calculations are aided by computer, is not in
finding the simple points or even in finding the singular points, but finding the
neighborhood graph of C. On a CAS better-adapted to dealing specifically with
algebraic curves, such as SINGULAR or CASA, this is likely a simple command
away (even though it would still take a while to compute). However, as finding
the neighborhood graph would be a complicated procedure, due to having to
take the correct quadratic transformation for every non-ordinary singular point,
finding the points of intersection, checking to see if any of the resulting points in
the first neighborhoods were non-ordinary, etc., I elected to omit the algorithm
from this paper. It may be found in [3] under the name Neighborhood Tree.

I split up the algorithms as I was not sure how to induce Mathematica to
recognize and select the elements of the Gröbner bases that were linear in y.
If I had known a way to do this, I would have joined the two blocks of code
together by computing F j in the code itself.

If I were to continue learning about parametrization of rational curves, I
would like to learn more about interesting variations on rational curves, such as
what can be done with rational curves possessing only ordinary singular points
or almost-rational curves. I would also like to know what work has been done on
rationally parametrizable surfaces; there is a great deal in this field to explore,
and I would enjoy learning more about it.

9



7. Bibliography
[1] Sendra, J., Winkler, F., Perez-Diaz, S.: Rational Algebraic Curves: A

Computer Algebra Approach. Springer-Verlag, New York, 2007.
[2]Bizzarri, M., Lávic̆ka, M.: Algorithm for parametrization of rational curves

revisited. Journal for Geometry and Graphics, 2011.
[3]Mn̆uk, M., Sendra, J., Winkler, F.: On the Complexity of Parametrizing

Curves. Contributions to Algebra and Geometry, vol. 37 (1996), No. 2, pp.
309-328.

10



8. Figures

Figure 1: The contour plot of the curve in the example for -10<x,y<10
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Figure 2: The plot of the parametrization produced in the example for -15<u<15
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